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We use the quantile function to define statistical models. In particular, we present a five-parameter
version of the generalized lambda distribution (FPLD). Three alternative methods for estimating
its parameters are proposed and their properties are investigated and compared by making use of
real and simulated datasets. It will be shown that the proposed model realistically approximates a
number of families of probability distributions, has feasible methods for its parameter estimation,
and offers an easier way to generate random numbers.

1. Introduction

Statistical distributions can be used to summarize, in a small number of parameters, the
patterns observed in empirical work and to uncover existing features of data, which are
not immediately apparent. They may be used to characterize variability or uncertainty
in a dataset in a compact way. Furthermore, statistical distributions may both facilitate
the mathematical analysis of the basic structure of empirical observations and interrelate
information from two or more sources. The aim of this paper is to make a contribution to
the use of quantile statistical methods in fitting a probability distribution to data, following
the line of thought indicated by Parzen [1] and Gilchrist [2, Section 1.10]. In particular, we
adopt a five-parameter version of the generalized lambda distribution
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where 0 ≤ p ≤ 1, q = 1 − p. X(p,λ) is the quantile function and p ∈ [0, 1]. If λ2 ≥ 0
and λ3 ∈ [−1, 1], then (1.1) is a continuous and increasing function of p. Here, λ1 controls,
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albeit not exclusively, the location of an FPLD; the parameter λ2 acts for a multiplier to the
translated quantile function [X(p,λ) − λ1] and is, thus, a scale parameter; λ3, λ4, λ5 influence
the shape of [X(p,λ)]. The limiting cases λ4 → 0 and/or λ5 → 0 must be interpreted
according to L’Hopital’s rule. The references [2–7] are illustrative regarding the history of
various parametrizations of the distribution (see also [8]). The (1.1) version was proposed by
Gilchrist [2, page 163] as an extension of the generalized lambda distribution (GLD) in the
parametrization given by Freimer et al. [5]
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where the scale parameter λ2 appears as a reciprocal and λ3 = 0.
The FPLD can be useful in problem solving when there are difficulties with specifying

the precise form of an error distribution, because it can assume a wide variety of curve shapes
and, more importantly, it uses only one general formula over the entire range of data. Its
versatility, however, is obtained at the cost of an unusually large number of parameters if
compared with the array of studies referred to in the literature on fitting distributions to data.
Gilchrist [9] notes the rather strange fact that, throughout the history of statistics, researchers
seem to have been quite happy to use many parameters in, for example, regression, yet they
have kept to two or three parameters in most distributional models. Clearly, a high number
of parameters are a less challenging task in our age of readily available computer power.
Moreover, the number of individual data in a statistical sample has considerably increased
from what was customary a few decades ago, so there should be no special reason for not
using five- (or more) parameter distributional models.

Regrettably, the richness of shape in (1.1) is not accompanied by a comparable
development in parameter estimation techniques. For instance, one of the classical methods
for computing λ = (λ1, . . . , λ5) can be based on matching the first five moments of the
sample observations. In this case, though, the problem of modelling the data would be
restricted to distributions possessing fairly light tails because the fifth moment must be
finite. In addition, the percentiles estimates (e.g., Karian and Dudewicz [10]) and methods
using location and scale-free shape functionals (e.g., King and MacGillivray [11]) depend
markedly on the particular choice of percentage points. On the other hand, maximum
likelihood estimation is computationally demanding because of the complex and unwieldy
objective function (see Tarsitano [12]). Asquith [13] as well as Karvanen and Nuutinen
[14] equated sample L-moments to those of the fitted distribution. However, higher L-
moments are inelastic to changes in the parameters, leading to difficulties in estimation.
These questions have been the focus of intense academic research in the past few years,
for example, Ramberg et al. [4], King and MacGilllivray [15], Karian and Dudewicz [7],
Lakhany and Mausser [16], Rayner and MacGillivray [17], Fournier et al. [18], and Su
[19].

In the present paper, we start from the fact that the vector of parameters λ can be
divided

into linear and nonlinear parameters, so that we can apply the nonlinear least squares
(NLS) method, proposed by Öztürk and Dale [20], which is driven by the minimization
of the sum of squared differences between the observed order statistics and their expected
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values. Furthermore, we will develop a criterion driven by the minimization of the sum of
the least absolute deviations between the observed order statistics and their medians. The
two estimation procedures are based on a two-stage inner/outer optimization process. The
first stage is the inner step in which the linear parameters are estimated for fixed values of the
nonlinear parameters. The second stage is the outer step in which a controlled random search
(CRS) technique is applied in order to determine the best companion value for the nonlinear
parameters. The two stages are carried out consecutively, and the process is stopped when
the difference between the values of the minima of two successive steps becomes smaller than
a prefixed tolerance threshold.

The rest of the paper is organized as follows. The Section 2 describes the density of
the FPLD random variables and underlines the advantage of its use in practical work. The
Section 3 derives the nonlinear least squares for the estimation of λ. In Section 4, we outline
a procedure for applying the criterion of least absolute deviations to the FPLD. The CRS, an
optimization algorithm based on a purely heuristic, derivative-free technique is presented in
the fifth section. In Section 6, the effectiveness of the proposed methods is demonstrated and
compared using real and simulated data. Finally, we conclude and outline future research
directions in Section 7.

2. Overview of the Five-Parameter Lambda Distribution (FPLD)

The FPLD is a highly flexible and adaptable tool for modelling empirical and theoretical
distributions and, hence, might have many potential applications. In this section, we
summarize its general features. The density-quantile function of a FPLD random variable
is

f
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The range of a FPLD is given by [X(0,λ), X(1,λ)] and is different for different values
of λ; in particular, the extremes are [λ1 − λ2γ1, λ1 + λ2γ2] if λ4, λ5 > 0; [λ1 − λ2γ1,∞) if λ4 > 0,
λ5 ≤ 0; and (−∞, λ1 + λ2γ2] if λ4 ≤ 0, λ5 > 0. Hence, the FPLD can model distributions whose
support extends to infinity in either or both directions as well as those with finite support.

The rth moment of the linear transformation Z = 2(X − λ1)/λ2 + k1 − k2 where k1 =
(1 − λ3)/λ4, k2 = (1 + λ3)/λ5 is
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The symbol B(α, β) with α, β > 0 denotes the complete beta function. As a consequence, the
rth moment of Z exists and is finite if λ4 and λ5 are greater than r−1.
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The central moments of X which can be derived from (2.2) are
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(2.3)

The shape of the FPLD is sensitive to its parameter values; in fact, the moments of
X(p,λ) are determined by a combination of all of the vector λ elements. If λ4 = λ5 and λ3 =
0, then the FPLD is symmetric about λ1 because, in this case, (1.1) satisfies the condition
X(p,λ) = −X(q,λ). If λ4 = λ5, then (2.1) is skewed to the left (right) if λ3 < 0 (λ3 > 0),
which suggests a natural interpretation of λ3 as a parameter which is prevalently related to
the asymmetry ofX(p,λ). For a FPLD, interchanging λ4 and λ5 and simultaneously changing
the sign of λ3 reverses the type of skewness. If λ3 = −1 (λ3 = 1), then λ4 (λ5) indicates the left
(right) tail flatness in the sense that the smaller λ4 (λ5) the flatter the left (right) tail of the
FPLD density. In practice, λ4 and λ5 capture the tail order on the two sides of the support of
X(p,λ).

The densities (2.1) are zeromodal if {max(λ4, λ5) > 1} ∧ {min(λ4, λ5) < 1}, unimodal
with continuous tails if {max(λ4, λ5) < 1}, unimodal with truncated tails if {min(λ4, λ5) > 2},
U-shaped if 1 < λ4, λ5 < 2, and S-shaped if {max(λ4, λ5) > 2} ∧ {min(λ4, λ5) > 1}. Curves
corresponding to large positive values of λ4 and λ5 have extreme peakedness and short high
tails. For λ2 = 0 the FPLD degenerates X(p,λ) = λ1 to a one-point distribution.

The FPLD family is a good model for use in Monte Carlo simulation and robustness
studies because it contains densities which cover a large spectrum of arbitrarily shaped
densities. For example, if λ4 → 0, λ5 → 0, then X(p,λ) converges on a potentially
asymmetric form of the logistic distribution; if λ4 → ∞ and λ5 → 0, then X(p,λ) is
an exponential distribution whereas for λ4 → 0, λ5 → ∞, X(p,λ) becomes a reflected
exponential distribution. Furthermore, FPLD fits data containing extreme values well; in fact,
for λ4 → ∞, |λ5| < ∞, the FPLD corresponds to the generalized Pareto distribution. For
λ5 → ∞, |λ4| < ∞, the FPLD generates the power-function distribution. The rectangular
random variable is present in four versions: (λ3 = −1, λ4 = 1), (λ3 = 1, λ5 = 1), (λ4 = 1, λ5 = 1),
and (λ3 = 0, λ4 = 2, λ5 = 2).

The FPLD could have an important role as a general (not necessarily Gaussian)
distribution if it is able to produce good approximations to many of the densities commonly
encountered in applications. There are several measures of closeness and overlapping of
two statistical distributions based on the distance between density functions or between
distributions functions (see, e.g., [21] and [7, pages 196–201]). On the other hand, the FPLD
is expressed in the quantile domain, so, for a reliable assessment of the agreement between
the exact distribution and that provided by the FPLD, we should use a measure based
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Table 1: Comparison of FPLD approximations for symmetric distributions.

Model λ1 λ2 λ3 λ4 λ5 Maxd
Gaussian (0, 1) 0.00000 1.35921 0.00000 0.13312 0.13312 0.0065
Laplace: (0, 1) 0.00000 1.32397 0.00000 −0.09556 −0.09556 0.0957
Student’s t: ν = 2 0.00000 0.91014 0.00000 −0.45155 −0.45155 0.0973
Cauchy (0, 1) 0.00000 0.66267 0.00000 −0.99250 −0.99250 0.1673
Beta (0.5, 0.5) 0.00000 1.63202 0.00000 1.45456 1.45456 0.0593

on quantiles. Statistical literature is not very helpful in providing criteria to quantify the
proximity between distributions naturally arising from a quantile framework. In the present
paper we have used the Tchebycheff metric, that is, the closeness between the theoretical
quantile function X(p) and the FPLD is quantified by the maximum absolute difference
(Maxd) between observed and fitted quantiles:

max
1≤i≤500

∣∣X
(
pi
) −X

(
pi,λ

)∣∣, where pi =
i

501
, i = 1, 2, . . . , 500. (2.4)

The Tchebycheffmetric is attractive because it leads to the minimization of the worst case and
does not imply a heavy computational burden.

The five parameters of X(p,λ) have been estimated using the controlled random
search method described in Section 5. Table 1 shows the accuracy of the FPLD fit to some
standard symmetric distributions.

Our findings suggest that the FPLDfit is reasonably good for all of themodels included
in the table, with the only possible exception being the Cauchy random variable.

One of the major motives for generalizing the four-parameter GLD to the five-
parameter FPLD is to have a more flexible, and, hence, more suitable, distribution for fitting
purposes. Howmuch better, though, is the FPLD when compared to the GLD? Are the fitting
improvements that the FPLD provides significant enough to offset the complexity that is
introduced through a fifth parameter? Table 2 shows the results of the fitting procedure
for some asymmetric distributions. The first row presents the parameter estimates and the
Tchebycheffmetric for the FPLD approximation; the second row presents the same quantities
for the GLD approximation using the FMKL parametrization (see Freimer et al. [5]). The
values in the table indicate that the upper bound on the discrepancy between the true and the
approximated distribution is systematically lower for the FPLD than it is for the GLD. The
amounts appear to be large enough to justify the inclusion of an additional linear parameter
in the GLD so as to form the FPLD.

The most important point to note in Tables 1 and 2 is that the FPLD is a flexible class of
very rich distributional models which cover the Gaussian and other common distributions.
In this sense, the FPLD is a valid candidate for being fitted to data when the experimenter
does not want to be committed to the use of a particular distribution.

3. Nonlinear Least Squares Estimation

Öztürk andDale [20] proposed a nonlinear least squares (NLS) framework to estimate vector
λ for a four-parameter generalized distribution. The method can easily be generalized to
handle a FPLD.
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Table 2: Comparison of FPLD and GLD approximations for asymmetric distributions.

Model λ1 λ2 λ3 λ4 λ5 Maxd
Chi-square ν = 3 1.10010 2.84313 0.61505 0.48579 0.01338 0.0046

2.01822 1.07570 0.97596 −0.03394 0.0827
Lognormal (4, 2) 3.44560 1.07305 0.16147 0.21008 0.04776 0.0048

3.56591 3.64067 0.26715 0.01550 0.0193
Weibull (1, 3) 0.92565 0.50134 −0.15389 0.30875 0.12579 0.0013

0.87453 8.10780 0.26347 0.16478 0.0052
Gumbel (0, 1) −0.00050 1.50239 0.32984 0.19211 −0.00046 0.0020

0.34406 2.44744 0.33889 −0.04845 0.0549
Inv. Gaussian (0.5, 6) 0.45521 0.18606 0.17494 0.25786 0.02961 0.0014

0.47729 20.64410 0.32817 0.00039 0.0044

For a given random sample S = {x1, x2, . . . , xn} of n-independent observations from
X(p,λ), the ith order statistic may be expressed as

xi:n = E(xi:n) + ei, i = 1, 2, . . . , n, (3.1)

in which the ordered observations are compared with their expected values under the
hypothesized distribution X(p,λ) and ei is a measure of the discrepancy between the
observed and modelled ith value. The error terms {ei, i = 1, 2, . . . , n} are such that E(ei) = 0
and σ2(ei) = σ2

i . The heteroskedasticity in (3.1) is not the only violation of standard
assumptions of the classical regression model. In fact, the error terms are not independent
and do not come from a symmetrical distribution (except for the median). However, since
the purpose was to obtain an approximate solution, Öztürk and Dale [20] ignored these
inadequacies.

The expected value of the ith order statistic from a FPLD is available in closed form

E(xi:n) = λ1 +

(
β1/λ4

) ∫1
0 p

λ4+i−1qn−idp +
(
β2/λ5

)[
1 − ∫1

0 p
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]

B(i, n + 1 − i)
, (3.2)

where β1 = 0.5(1 − λ3)λ2, β2 = 0.5(1 + λ3)λ2. It follows that the deterministic component of
(3.1) can be written as

xi:n(λ) = β0U0,i + β1U1,i + β2U2,i, i = 1, 2, . . . , n, (3.3)

with β0 = λ1 and

U0,i = 1, U1,i = λ−14

[
Γ(n + 1)Γ(i + λ4)
Γ(i)Γ(n + 1 + λ4)

− 1
]
,
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Γ(n + 1 − i)Γ(n + 1 + λ5)

]
.

(3.4)
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The least squares approach calls for β in (3.3) to be chosen so as to minimize

S2(λ) =
n∑

i=1

[xi:n − xi:n(λ)]
2. (3.5)

The S2(λ) is linear in β1, β2, β3 but not in (λ4, λ5). According to Lawton and Sylvestre [22]
the solution to (3.5) can be obtained by fixing the value of (λ4, λ5) and, then, applying the
ordinary least squares to solve the linear problem

β̂(λ4, λ5) =
(
Ut

λUλ
)−1

Ut
λx (3.6)

for β, where Uλ denotes the (n × 3) matrix with elements given by (3.4) and x is the
(n × 1) vector of the ordered observations. The conversion of β0, β1, β2 into λ1, λ2, λ3 is
straightforward:
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Öztürk and Dale [20] used an approximation of E(xi:n) to overcome the problems created by
repeated use of the gamma function in (3.4). More specifically, they used E(xi:n) = X(p+i ,λ),
with the plotting positions p+i = i(n + 1)−1, i = 1, 2, . . . , n. In this case, the pseudoregressors
are

V0,i = 1, V1,i = λ−14
[(
p+i

)λ4 − 1
]
, V2,i = λ−15

[(
p+n+1−i

)λ5 − 1
]
. (3.8)

Parameter estimates are then obtained as in (3.5) through (3.7) with Vj,i in place of Uj,i for
j = 1, 2, 3. We can now define the reduced form of the quantile function (3.5) in which β̂ is
substituted into (3.3). Clearly, the reduced quantile function only depends on the pair (λ4, λ5).
We might try to find a better estimate of (λ4, λ5) by using one of the function minimization
techniques to solve (3.5) and then go through exactly the same procedure as the one described
above. The two-stage process is repeated until the correction for S2(λ) becomes sufficiently
small.

4. Least Absolute Deviations Estimation

Filliben [23] noted that order statistics means have three undesirable properties: (1) no
uniform technique exists for generating the E(xi:n) for all distributions; (2) for almost all
distributions E(xi:n) is difficult or time consuming to compute and so must be stored or
approximated; (3) for other distributions (e.g., Cauchy), the expected value of the order
statistics E(xi:n) may not always be defined. All three of these drawbacks are avoided in
general by choosing to measure the location of the ith order statistic by its median rather
than by its mean.

The use of the median in preference to the mean leads naturally to the absolute
error being the loss function instead of the squared error. Gilchrist [2] called distributional
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residuals the deviations of the observed data from a given quantile function ei = xi:n −
X(pi,λ), i = 1, 2, . . . , n. In this context, the method of nonlinear least squares discussed in the
previous section is defined as distributional least squares since it involves using the ordered
data as a dependent variable, whereas the deterministic component of the model is defined
by a quantile function.

The least squares criterion is reasonable when data come from a normal distribution
or when linear estimates of the parameters are required. While data may contain outliers or
highly influential values, the method of least squares has a clear disadvantage in that it may
be pulled by extremely large errors. The least absolute deviation estimation of parameters is
more suitable in such cases.

In this section we consider the problem of finding a vector of constants y ∈ Rn which
minimizes the objective function

min
y∈Rn

n∑

i=1

∣
∣xi:n − yi

∣
∣, (4.1)

where xi:n is the ith order statistic of the sample S = {x1, x2, . . . , xn} from the quantile function
X(p,λ). Rao [24] observed that the solution to this problem is the vector of marginal medians,
that is, the ith element of y is the median of the order statistics xi:n.

The quantile function (see, e.g., Gilchrist [2, page 86]) of the ith order statistic for a
sample of size n from an FPLD is X[p∗i (p),λ] with

p∗i
(
p
)
= B−1(p, i, n + 1 − i

)
, (4.2)

where B−1(·) is the inverse of the incomplete beta function. Consequently, the median of the
ith order statistic can be computed using

p∗i = X
[
B−1(0.5, i, n + 1 − i),λ

]
, i = 1, 2, . . . , n. (4.3)

The quantities in (4.3) are a solution of (4.1) in the sense that, for a fixed value of λ, the
following expression

n∑

i=1

∣∣xi:n −X
[
p∗i ,λ

]∣∣ (4.4)

attains its minimum value. It follows that the estimate of λ that minimizes (4.4) can be
obtained by the use of distributional absolutes (DLAs).

There is nothing in the previous section that cannot be extended to the criterion (4.4).
In the light of the decomposition of λ into two groups, linear parameters (λ1, λ2, λ3), and
nonlinear parameters (λ4, λ5), another two-stage procedure can be devised. In the inner stage,
we determine the vector β̃ which minimizes

S1(λ) =
n∑

i=1

|xi:n − x̃i:n(λ)|, with x̃i:n(λ) =
2∑

j=0

βjWi,j , (4.5)
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with respect of the linear parameters β and for a given value of the nonlinear parameters
(λ4, λ5). In this case, the pseudo regressors are

W0,i = 1, W1,i = λ−14
{[

p∗i
]λ4 − 1

}
, W2,i = λ−15

{[
1 − p∗i

]λ5 − 1
}
. (4.6)

The computation of the LAD estimates for β̃ in (4.5) can be formulated as a linear
programming optimization and the standard simplex method can be employed to solve this
problem. For a detailed treatment of the method of least absolutes see, for example, Koenker
and D’Orey [25]. The conversion of β0, β1, β2 into λ1, λ2, λ3 takes place as shown in (3.7). Once
(λ1, λ2, λ3) have been estimated, we can obtain a new value for (λ4, λ5) with the same outer
step as that used in the previous section. The inner and outer steps can be alternated until a
satisfactory result is found.

Least absolute deviations have, undoubtedly, greater sophistication than least squares,
although two important points should be made regarding this issue. First, the annoying
computation of p∗i has to be executed just once. In addition, the fact that B(p, i, n + 1 − i) =
1 − B(1 − p, n + 1 − i, i) implies that p∗n+1−i = 1 − p∗i and, consequently, the number of medians
to be computed is halved.

5. Controlled Random Search (CRS)

The inner/outer scheme outlined in previous sections has the merit of reducing the
dimension of the nonlinear problem. To apply it, however, we must minimize two relatively
complex objective functions S1(λ) and S2(λ) of two unknowns, λ4, λ5, which generally have
more than one minimum. The solutions to these equations are difficult to obtain through
traditional optimization approaches. In order to perform this special task, we resorted to
a direct search optimization technique (CRS) proposed by Price [26], which is suitable for
searching the global minima for continuous functions that are not differentiable, or whose
derivatives are difficult to compute or to approximate (see [27, 28]).

Some well-known direct search procedures such as the downhill simplex method
of Nelder and Mead [29] and the pattern-search method of Hooke and Jeeves [30] are
familiar to statisticians. However, these techniques are really local optimization methods;
in practice, they are designed so as to converge on a single optimum point and, therefore,
they, unavoidably, discard information related to all other possible optima. In contrast, a
wise application of the CRS overcomes this drawback since this method is especially suited
to multimodal functions. In effect, CRS procedures have more randomness in their decision
process, thus increasing the chances of finding a global optimum. Of course, global optimality
cannot be guaranteed in finite time.

A CRS procedure employs a storage A of points, the number of which is determined
by the user for the particular problem to be solved. Repeated evaluation of the function to
be optimized, f(x), is performed at points randomly chosen from the storage of points and
the search region is progressively contracted by substituting the worst point with a better
one. The search continues until an iteration limit is reached, or until a desired tolerance
between minimum and maximum values in the stored f(x) values is attained. Apparently,
these methods are less known and less frequently used in statistics (two works that have
appeared in literature are those by Shelton et al. [31] as well as Křivý and Tvrdı́k [32]).
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For practical purposes, it is necessary to confine the search within a prescribed
bounded domain. LetC ⊂ Rk be the set of admissible values of the k = 2 nonlinear parameters
of the FPLD model. The most promising region that we have found in our applications is the
rectangle delimited by

C = {(λ4, λ5) | −0.999 ≤ λ4 ≤ 3; −0.999 ≤ λ5 ≤ 3}. (5.1)

Furthermore, C ensures that the mean of the order statistics from a FPLD always exists and
the ranges of λ4, λ5 cover most of the distributional shapes commonly encountered.

The theory and practice of global optimization have progressed rapidly over the last
few years, and a wide variety of modifications of the basic CRS algorithm are now available.
In particular, we refer to the scheme discussed in Brachetti et al. [33].

Any CRS implies many subjective choices of constants and weights. The version used
in our paper is as follows.

(1) Generate a setA ofm0 > (k + 1) random admissible points in C. Find the minimum
and the maximum in A and their function values: (xL, fL), (xH, fH).

(2) If |fH−fL|/(10−7+|fH |+|fL|) < 10−8, then stop. Also stop if the limit to the number of
function evaluations has been reached. The point with the lowest objective function
value found is returned. If required, return all the points in A.

(3) Choose at random, without duplication, a set B of k points in (A − xL), include xL
in B, and compute the centroid x = (k + 1)−1

∑
x∈B x. Define A1 = A − B.

(4) Select randomly a point xr ∈ A1.

(5) Generate uniform random numbers d1, d2, . . . , dk in [0, 2] and compute the trial
point xi,T = (1 + di)xi − dixr,i, for i = 1, 2, . . . , k; thus, the exploration of the space
around the centroid is based on a randomized reflection in the simplex originally
used by Price [26].

(6) If xT ∈ M, then compute fT = f(xT ) and go to step (7). If xT /∈M, then repeat step (5)
a fixed numberm1 of times. If xT is still unfeasible, then exclude xr fromA1, redefine
the set A1 and, if it is not empty, repeat step (4) for at most m2 times; otherwise go
to step (9).

(7) If fL < fT < fH , then replace fH with fT and xH with xT and then redetermine the
maximum xH and fH .

(8) If fT < fL, then replace fH with fL, xH with xL, fL with fT , xL with xT , and xH and
fH .

(9) Randomly choose two distinct points x2, x3 in (A − xL) and compute

dQ,i = (x2,i − x3,i)fL + (x3,i − xL,i)f2 + (xL,i − x2,i)f3, (5.2)

for i = 1, 2, . . . , k.

(10) If |dQ,i| > 10−7 for each i, then build the following quadratic interpolation of the
objective function:

xQ,i =

[
(x2,i − x3,i)2fL + (x3,i − xL,i)2f2 + (xL,i − x2,i)2f3

2dQ,i

]

(5.3)
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for i = 1, 2, . . . , k. If some of the |dQ,i| ≤ 10−7, then generate k uniform random
numbers di, i = 1, 2, . . . , k, in [0, 1] and compute

xi,Q = dixi,L + (1 − di)xi,H, for i = 1, 2, . . . , k. (5.4)

(11) If xQ /∈M, then repeat steps (9)-(10) no more than m3 times. If xQ is still unfeasible,
then return to step (2).

(12) Execute steps (7)–(9)with xQ in place of xT and fQ in place of fT and then return to
step (2).

We experimented by using the CRS algorithm, with x = λ, f(x) = S2(λ), m0 = 30k, m1 =
m2 = m3 = 4(k + 1), and k = 2. For the random component of our implementation we used
quasirandom Faure sequences (Faure [34]) rather than pseudorandom numbers. This choice
was made in order to cover the search region Cmore evenly (see, e.g., Morokoff and Caflisch
[35]).

The CRS procedure has several desirable features. Boundaries and objective function
can be arbitrarily complex because the procedure does not require the calculation of
derivatives. Shelton et al. [31] observed that, if several points within the optimization region
are equally good, the procedure will make this clear to the user.

The general outline presented here should give some appreciation of the philosophy
underlying the design of CRS. It is important not to forget that, although this method proved
very robust in many applications, typical nonlinear problems which have a complicated
bound-constrained, possibly multiextremal objective function are challenging tasks and the
success of an automated algorithm is still dependent upon the researcher’s guidance. In
particular, intervention may be needed to contract the box constraints on the parameters in
order to perform a finer search in a final stage.

6. Comparison of the Procedures

In this section we present results of some numerical experiments carried out in order to study
the behavior of the FPLDmodel. Moreover, we perform a comparison between estimated and
theoretical values to test the accuracy of the estimators proposed in the previous sections and
investigate their properties through a Monte Carlo sampling process.

6.1. Fitting to Data

To illustrate the efficacy of the FPLD as a modeling device we applied it to four sets of real
data. To judge the overall agreement between estimated and observed quantiles we used
the correlation between the empirical values xi:n centered on the arithmetic mean x and the
hypothesized values

r(λ) =
∑n

i=1[xi:n − x]
[
X
(
pi,λ

) − μ(λ)
]

{∑n
i=1 [xi:n − x]2

∑n
i=1

[
X
(
pi,λ

) − μ(λ)
]2}0.5

, (6.1)
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where pi = i/(n + 1), and

μ(λ) =
∫1

0
X
(
p,λ

)
dp = λ1 +

λ2
2

[
1 + λ3
1 + λ5

− 1 − λ3
1 + λ4

]
. (6.2)

From another point of view, (6.1) can be considered a measurement of the linearity of the
Q-Q plot for empirical versus theoretical standardized quantiles. The coefficient (6.1) will
always be positive since xi:n and X(pi,λ) are both arranged in ascending order of magnitude.
More specifically, r(λ) takes values in the [0, 1] interval. The case r(λ) = 0 corresponds to
a noninformative model X(pi,λ) = λ1, i = 1, 2, . . . , n; a value of the coefficient r(λ) close to
one will suggest a good fit of the FPLD. The model that causes data to be most like a straight
line on its Q-Q plot is the FPLD that most closely resembles the underlying distribution of
the data. Correlations that are too small indicate a lack of fit. Finally, r(λ) = 1 means that
xi:n = X(pi,λ), i = 1, 2, . . . , n, that is, the observed data correspond exactly to their expected
values.

Table 3 reports our findings on the following datasets:

(i) recorded annual drought of Iroquois River recorded near Chebanse (IL), n = 32,
Ghosh [36],

(ii) times in seconds to serve light vans of the Severn Bridge River crossing in Britain,
n = 47, Gupta and Parzen [37],

(iii) peak concentrations of accidental releases of toxic gases, n = 100, Hankin and Lee
[38],

(iv) observations on overall length of bolts, n = 200, Pal [39].

The symbol ν denotes the number of function evaluations required to find the global
optimum of the criterion. The acronym OD refers to the plotting positions p+i proposed by
Öztürk and Dale [20].

The best overall performance is achieved by NLS; comparably good results are also
obtained for DLA and they are only slightly inferior for OD. Based on these few values,
the computational difficulties encountered in NLS may be worth the effort. The estimates
provided by DLA can be very different from the others because they are based on a different
distance metric. The complexity of DLA is higher than that of NLS or OD, due to its more
intricate search. The limited impact on the modelling adequacy does not compensate for the
extra energy expended for the DLA procedure.

6.2. Simulations

In this section we carry out a simulation study to evaluate the performance of the proposed
methods mainly with respect to their biases and squared errors for different sample sizes. In
particular, we consider the parameter combination that allows the FPLD to approximate to
the standard Gaussian distribution:

λ0 = (0.00000, 1.35921, 0.00000, 0.13312, 0.13312). (6.3)
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Table 3: Comparison of FPLD interpolations.

Method λ1 λ2 λ3 λ4 λ5 ν r(λ)
Ghosh [36]
NLS 13.5553 48.5361 0.9978 −0.5401 0.1851 1283 0.7812
OD 14.7086 46.5057 0.9917 −0.6384 0.1140 1158 0.3821
DLA 15.2217 51.2328 09160 0.9585 0.2036 9287 0.3771
Gupta and Parzen [37]
NLS 5.4370 2.9152 −0.1544 0.6544 −0.1097 1097 0.8468
OD 6.3223 3.4372 −0.6018 0.8189 −0.4031 1139 0.9100
DLA 4.9864 2.6533 0.1058 0.5644 −0.0895 2673 0.7579
Hankin and Lee [38]
NLS 5.4882 4.6259 0.6731 −0.0152 0.2025 1095 0.6982
OD 5.5427 4.4453 0.6759 −0.0896 0.1620 1049 0.5605
DLA 5.9392 4.0234 0.5977 −0.0764 0.0935 5395 0.6147
Pal [39]
NLS 6.3981 0.1982 0.7108 −0.0518 0.2184 961 0.6771
OD 6.3971 0.1933 0.7330 −0.1266 0.1983 1082 0.5337
DLA 6.4183 0.1803 0.5849 −0.0087 0.1329 2272 0.6142

The vector λ0 will act as our reference point. The reason we use the Gaussian model is that
the normality assumption is one of the most extensively used in statistics and a new method
should at least work in this default case.

Two simple coefficients of performance have been considered for comparing

MRB
(
λj
)
= N−1

N∑

i=1

∣∣∣∣∣
λi,j − λ0,j

αj

∣∣∣∣∣
, where αj =

⎧
⎨

⎩

λ0,j if λ0,j /= 0

1 if λ0,j = 0
,

RMSE
(
λj
)
=

[

N−1
N∑

i=1

(
λi,j − λ0,j

)2
]0.5

.

(6.4)

The mean relative bias (MRB) quantifies the average relative magnitude of the accuracy for
each parameter and the root mean squared error (RMSE) represents the mean Euclidean
distance between simulation and measurement. Methods that yield estimates which are
closer to the true parameter value have lower bias, higher precision, and lower RMSEs.

The statistics in (6.4) were calculated by generating N = 10, 000 different random
samples of size n ∈ (30, 60, 120, 250, 500) fromX(p,λ0). The results are summarized in Table 4

For all methods, MRB and RMSE decrease as the sample size increases, an indication
that all of the estimators are consistent. The sign of the bias for the exponential parameters
is almost always negative showing a systematic underestimation of (λ4, λ5) probably due to
the fact that the Gaussian has an infinite range (which would imply a FPLD with negative
values of the exponential parameters), but it is well approximated by a FPLD with a limited
support.

As might have been expected, the bias and the standard error of the exponential
parameters (λ4, λ5) yielded little or no discernible differences, particularly for the largest
samples. The bias of the NLS technique is generally smaller than those of the other methods.
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Table 4: Simulation results.

Method Index n λ1 λ2 λ3 λ4 λ5

NLS MRB 30 0.0049 0.5616 −0.0042 0.3627 0.3382
60 −0.0061 0.1994 0.0037 −0.1199 −0.0756
120 0.0004 0.0789 −0.0015 −0.0565 −0.0687
250 0.0014 0.0342 −0.0017 −0.0205 −0.0265
500 −0.0021 0.0176 0.0027 −0.0110 0.0035

OD 30 0.0033 0.5080 −0.0055 −0.7632 −0.7697
60 −0.0149 0.1782 0.0140 −1.0219 −0.8967
120 0.0004 0.0636 −0.0013 −0.5128 −0.5173
250 −0.0047 0.0190 0.0055 −0.2752 −0.2395
500 0.0021 0.0035 −0.0016 −0.1402 −0.1441

DLA 30 0.0083 0.5739 −0.0047 −0.0693 −0.0791
60 −0.0046 0.2045 0.0020 −0.4196 −0.4449
120 0.0072 0.0702 −0.0082 −0.2173 −0.2610
250 0.0058 0.0280 −0.0058 −0.0898 −0.1174
500 0.0008 0.0111 −0.0014 −0.0495 −0.0535

NLS RMSE 30 0.8814 2.1470 0.7079 0.7572 0.7578
60 0.6729 0.9853 0.5984 0.4033 0.4026
120 0.4728 0.3686 0.4602 0.2140 0.2128
250 0.3225 0.1567 0.3340 0.1300 0.1310
500 0.2208 0.1004 0.2369 0.0879 0.0875

OD 30 0.8610 2.1256 0.7446 0.8617 0.8664
60 0.7257 0.9355 0.6628 0.5121 0.5104
120 0.5290 0.3262 0.5226 0.2832 0.2823
250 0.3567 0.1630 0.3765 0.1636 0.1630
500 0.2410 0.1013 0.2630 0.1027 0.1029

DLA 30 0.8733 2.1730 0.7405 0.8594 0.8580
60 0.7040 1.0139 0.6358 0.4775 0.4784
120 0.5058 0.3063 0.4951 0.2412 0.2426
250 0.3378 0.1606 0.3537 0.1447 0.1455
500 0.2314 0.1011 0.2497 0.0944 0.0946

This effect is particularly noticeable in the exponential parameters. The standard error of OD
and DLA are generally larger than those for the NLS so that this method can be considered as
the best of those looked at in this paper. However, for moderate sample sizes (n > 120), OD
is nearly as good as NLS, but takes less time to compute, so the choice of method depends
on the particular dataset. The DLA solution does not seem to be a real improvement over
methods based on the least squares criterion.

7. Conclusions

Statistics professionals are often faced with the problem of fitting a set of data by means
of a stochastic approximation. For this purpose, it is essential to select a single parametric
family of distributions that offers simple but still realistic descriptions of most of the potential
models of the underlying phenomenon. A very useful and tractable parametric model is
the five-parameter generalized lambda distribution. By means of the FPLD model we have
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obtained some satisfactory fitting of empirical data and at least one of the many subordinate
models can provide a good approximation to several common distributions.

More specifically, we have analyzed three methods for estimating the parameters of
the FPLD (two of which are completely new). The common denominator of all of themethods
is the replacement of linear parameters by their least squares or least absolutes estimates,
given the value of the nonlinear parameters that, in turn, are determined by using a controlled
random search technique. The proposed procedures are simple to apply as they only require
a derivative-free optimization over a bounded region. Thus, many obstacles to the use of the
FPLD are resolved. The efficiency of the new algorithms has been verified by applications to
real and simulated data.

Our findings indicate that NLS estimators outperform least absolute deviation
estimators with respect to bias and mean square error. For large sample, however, the
difference between NLS and the approximated, but more manageable, scheme OD proposed
by Öztürk and Dale [20] becomes imperceptible.

As for future research, we plan to compare different diagnostic tools used to analyze
the fit of a quantile model. It would also be interesting to incorporate in the methods
described in this paper a weighting scheme (e.g., weights proportional to the local density)
so that the tails and/or the middle portion of the samples become more detectable.
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