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Simultaneous online auctions, in which the auction of all items being sold starts at the same time
and ends at the same time, are becoming popular especially in selling items such as collectables
and art pieces. In this paper, we analyze the characteristics of bidders (Reactors) in simultaneous
auctions who update their preauction value of an item in the presence of influencing bidders
(Influencers). We represent an auction as a network of bidders where the nodes represent the
bidders participating in the auction and the ties between them represent an Influencer-Reactor
relationship. We further develop a random effects bilinear model that is capable of handling
covariates of both bidder types at the same time and account for higher-order dependence among
the bidders during the auction. Using the model and data from a Modern Indian Art auction, we
find that Reactors tend to update their values on items that have high preauction estimates, bid on
items created by high investment risk artists, bid selectively only on certain items, and are more
active in the second half of the auction. Implications for the auction house managers are discussed.

1. Introduction

For the last three decades, simultaneous auctions have become one of the most popular
auction settings for selling high-priced affiliated private value items, including FCC radio
bandwidth spectrum [1], U.S. treasury bills [2], and timber [3]. In these auctions, all the
items are sold simultaneously, meaning that their auctions start at the same time and end
at the same time. The set of bidders who attend these auctions remain the same throughout
the auction event. Such an auction setting is particularly successful in situations where the
items are highly complementary and the buyers have a demand for more than one item. For
example, broadcasting companies typically need to purchase more than one bandwidth of
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the radio spectrum; art collectors buy more than one item of their favorite artist and so on.
Recently, this auction format has become popular in online auctions to sell collectables and
fine arts [4].

In typical affiliated private value auctions such as art auctions, affiliation theory
[5] suggests that some bidders will consult the bid amount of other bidders during the
auction and update their preset valuation and their “willingness to pay” for the items
they are interested in(Bidders’ valuations have some dependence with each other (loosely
speaking, one bidder’s high value signal makes it more likely that other bidders will exhibit
high values), implying that bidders can change valuation if others’ bidding behaviors are
observable as in open bid format [5].) . Particularly, if the bidders have limited information
about the art items, they will consult bids of other bidders as additional item information
[6, 7]. Furthermore, if the art items are sold in simultaneous auctions, bidders frequently
encounter each other in more than one item. Therefore, it is possible for value-updating
bidders to get influenced by the same bidder more than once. How does the characteristics of
“known” bidders affect the propensity of value-updating behavior? In this paper, we intend
to answer this question. In particular, we analyze the characteristics of such value-updating
bidders (termed here as Reactors) in the presence of influencing bidders (termed here as
Influencers). We examine three important questions pertaining to the Reactors. In what type
of lots (art items) do bidders update their value? Do they bid more in the first half or in the
second half of the auction? Are they selective in the lots on which they bid, or do they bid on
many lots?

Traditional approaches such as general linear models and logistic regressions are
useful in estimating aggregate effects of different characteristics of overbidding bidders and
in identifying lots where such behavior can be witnessed but they fall short of fulfilling
the goal of this study. Particularly, they are not capable of estimating effects of individual
Reactors and Influencers characteristics that ultimately lead to overbidding of Reactors.
Further, these models lack the capacity to capture higher-order bidder dependency that
exists in simultaneous auctions. Particularly, with bidders competing for multiple items
simultaneously, bidders “recognize” each other and engage in anticompetitive practices
such as bidder collusion [3, 4]. To some degree, this limitation is due to the data structure
available from the auction houses. To overcome this issue, we represent the auction data in
the form of a network Yij of bidders where bidder j (the Reactor) has updated his valuation
in reaction to the bids of bidder i (the Influencer). Using this rich and innovative framework,
we examine the characteristics of Reactors using a randomeffects dyadic relation model [8].
This is based on a generalized regression framework and is capable of handling covariates of
both bidder types. It builds on the social relations model [9, 10] and is capable of specifying
random-effects between subsequent bidders. It is proficient in simultaneously considering
regressor variables as well as correlation between Reactors having the same Influencers,
between Reactors bidding on the same item, and reciprocity between Reactors and Influencers.
In other words, this approach analyzes the bidder characteristics in consideration with the
bidder dependence in these simultaneous auctions.

From the auction house manager’s perspective, understanding the behavior of bidders
is important. Since the rivalry among auction houses has intensified in recent years, much
more attention is now given to strengthen relationships with bidders. The underlying quest
for all the managers is now to cultivate and promote a strong relationship with bidders and
encourage them to participate more in future auctions. Reactors play a pivotal role in the
success of the auction house. Their value updating behavior typically leads to overbidding
and higher price [11] paid for the item, thus playing a critical part in the price formation
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process in the auction. Therefore, managers are interested in learning on what and when
these bidders bid. (Auction house managers from multiple auction houses were interviewed
during our investigation.) To this end, our paper attempts to investigate their characteristics
in these simultaneous auctions.

Prior studies on this issue [12, 13], although limited, have mainly focused on
understanding the underlying psychological factors that result in value updating behavior.
They identified factors including bidder rivalry, social effects, and escalation of commitment
that lead to a “win at any cost” mentality of the Reactors (when they start bidding
irrationally in order to win the item [11]). (This emotional phenomenon is commonly known
as “auction fever”.) Our paper is essentially an extension of this body of literature. We
assume that bidders do update their value during auctions and such behavior is revealed
when bidders place a high bid value after using a proxy bidding system earlier in the
auction. Proxy bidding is a commonly available feature in most online auction houses
where bidders set a maximum amount they are willing to pay, and then let the auction
house place proxy bids on their behalf until that price. Along these lines, Ku et al. [11]
performed a survey of bidders and found that most of them use proxies to set their
maxima.

Another uniqueness of our paper from other online auction research is the context
of our study, that is, auctions of high-end fine arts. Selling high-priced art items through
online auctions has become a recent trend in the art market. As the demand for fine art
has reached its all-time high [14], auction houses and art dealers have found Internet-based
auctions as one of the reliable ways to sell art items to a wider group of art lovers. Established
online auction houses such as SaffronArt (http://www.saffronart.com/), Attinghouse.com,
and AspireArt (http://www.aspireart.com/), use the simultaneous auction setting in their
auctions. Simultaneous online auctions are different from eBay auctions, which are frequently
analyzed in academic research. In a simultaneous auction, all the items up for sale are sold
concurrently to the same group of bidders over a certain period of time. This gives rise to a
complex competitive environment, where there is a great level of interdependence between
bidders leading to value-updating behavior by some of them. With the art market so hot and
with so much at stake for the auction house managers, our paper is well focused in helping
these managers develop a better relationship with their customers. From our analysis, we
find that Reactors typically bid on fewer items, suggesting that they might be the collectors
and not the art dealers [15]. They also bid on high-value items and bid more in the second
half of the auction than in the first half. We further find that Reactors and Influencers rarely
alter their role during the auction and there is more possibility for Reactors to encounter the
same Influencers over other items than for Influencers meeting the same Reactors over other
items.

In sum, the contribution of our study is threefold. First, we investigate characteristics
of value-updating bidders in simultaneous online art auctions. Second, from the technical
standpoint, we demonstrate an application of a random-effects dyadic relational model for
complex human behavior and emphasize the importance of new and advanced statistical
techniques available to the social sciences. And third, we introduce a new approach of
considering bid history in the form of a network. This innovative and rich framework will
not only allow us to examine the interbidder influence in our study but will also encourage
future bidder behavior studies in other auction settings.

The rest of the paper is presented as follows. First, we describe the auction data of our
research and discuss our unique approach of representing it as a social network. Second, we
discuss the random-effects dyadic relation model and explain how we use it to determine
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the characteristics of Reactors. Third, we present the results of our investigation. Finally, we
discuss the implications of our work and present directions for future research.

2. Auction Data and Bidder Network

Online auctions have become a hot research topic in economics, marketing, management, and
statistics. (Laudon and Traver [16] estimate that online auction sales (C2C and B2C) will top
$36 billion by 2007. Revenue exceeded $6 billion in 2006 at eBay, the pioneering online auction
firm where everything from paperclips to private jets get sold. Even traditional auction
houses like Christie’s (whose annual revenues are expected to top $4 billion in 2006) are
adopting the online model. (http://www.iht.com/articles/2006/07/12/news/auction.php)
(http://internet.seekingalpha.com/article/25034)) Particularly, with the availability of
detailed bidding data from online auctions, we are now able to investigate bidder behavior
and auction characteristics in details that were not possible to explore earlier. For example, in
the last decade, a wide range of new studies have looked at interesting auction issues such
as price dynamics [17, 18], bidder surplus [17], importance of reference points in auctions
[19, 20], herding behavior [21], and forward-looking behavior of bidders [22]. Interestingly,
all these studies have focused exclusively on single-item auctions such as eBay, where bidders
compete for one item at a time.

Unlike prior studies, this paper investigates simultaneous online auctions where
multiple items are sold concurrently to a same group of bidders over a certain period
of time. We have collected the data from an online auction house called SaffronArt
(http://www.saffronart.com/). This auction house sells only Modern Indian Art and has
become a prominent distribution channel of that genre in recent years. More specifically,
the data come from a three-day auction where 199 art lots (a unique piece of art such as
a painting, a drawing or a sculpture) were sold. Unlike eBay auctions, these auctions are
in simultaneous first-price ascending format. The lots are open at a specific date and time,
and they close simultaneously at a specific time. Moreover, to allow bidders to compete for
multiple items, the lots are closed sequentially in a group of 20 to 25 lots. For example, lots 1–
25 may close at 9:00 AM and lots 26–50 will close at 9:30 AM. Further, to discourage devious
online bidder behavior such as sniping the auction has a soft closing time: the closing time
extends by three minutes whenever a bid comes during the last three minutes of the auction.
(Sniping is a strategic bidding activity where bids are submitted in the last moments of the
auction to allow minimal time to other bidders to react to this bid. Such behavior is prominent
in eBay auctions as the auction closes promptly at a specific time.), This time extension
continues until no one bids during a span of three minutes.

2.1. Modern Indian Art

Modern Indian Art, with over $100 million in auction sales in 2006, is now one of the
leading emerging art markets in the world. Although traditional auctions for Modern
Indian Art have existed since 1995, it is only since 2000 that the market has exploded,
with values realized at auctions growing at a brisk 68.7% annually (coincidentally, this is
when SaffronArt (http://www.saffronart.com/), the source of our data, started its online
auctions of Modern Indian Art). In 2006, online auction sales of Modern Indian Art from
SaffronArt (http://www.saffronart.com/) ($36.76 million) had more sales (of Modern Indian
Art) than the traditional auction houses like Sotheby’s ($35.29 million) and Christie’s
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($33.08 million). Further, SaffronArt (http://www.saffronart.com/) sold more art items (537)
compared to Sotheby’s (484) and Christie’s (329) in that year.(In 2005, online auction sales
of Modern Indian Art by SaffronArt (http://www.saffronart.com/) were $18.06 million,
more than that of Sotheby’s ($10.49 million) and Christie’s ($14.89 million). SaffronArt
(http://www.saffronart.com/) also sold more art items (390) compared to Sotheby’s (276)
and Christie’s (248) in 2005.) The top ten Indian artists sold 31% of the lots and contributed
to 57% of the total value realized at auctions since 1995. Two of these artists are now ranked
in the top 100 artists in the world based on their auction sales in 2005. A new set of emerging
artists (the new trendsetters, typically born after 1955) have contributed 2% in value and 3%
in lots and are becoming increasingly popular, commanding ever higher prices.

2.2. Bidder Influence Network

Identifying Reactors in an auction is challenging. First of all, no prior information is available
about the private-value distribution of the bidders. These bidders do not reveal the maximum
amount they are willing to spend, nor do they explicitly announce their value update at the
end of the auction. Luckily, in online auctions, the auction house provides a proxy bidding
service to the participants. Proxy bidding is a commonly available feature in most online
auctions where bidders set the maximum amount they are willing to pay for the auctioned
item, and then let the auction house place proxy bids on their behalf until that price. Bidders
using this facility have a predetermined value for the item and use proxy bidding to stay
within that value limit [23]. Ku and his colleagues [11] performed a survey of the bidders
and found that most of them use proxies to set their maxima. The respondents used terms
such as “maximum personal limit”, “what we were willing to spend”, “the most I was willing to
bid”, and “by how I valued it” to explain their proxy bids. In the same lines, we considered a
bidder to be updating his value if he/she reenters the bidding process and places a normal
(nonproxy) bid that is higher than his/her earlier proxy bid.

One of the challenges with the available auction (see Figure 1) is how we capture the
interbidder dependence during an auction. Particularly, as we frequently observe the same
bidders competing for multiple items simultaneously, it is important that we include this
auction feature in our analysis. That is, we should consider the influence of the Influencers
over the Reactors in our modeling effort of their characteristics. In order to consider the inter-
bidder dependencies, proper representation of the bidding data is necessary. We transform
the bid history into anN×N bidder influence matrix where N denotes the number of bidders
participating in the auction. The value yi,j in each cell of the influence matrix indicates the
influence of bidder i over bidder j. We considered the influence measure yi,j as the total
number of items in which the Influencer (bidder i) has bid between the proxy and nonproxy
bid of the Reactor (bidder j). Since the auctions are held simultaneously, prior auction studies
[3, 4] suggest that bidder-pair with multiple engagements tend to influence each other. Dass
and Reddy [4] also showed that such engagements lead to dyadic level bidder effects, which
has significant effect on the seller’s profit even after controlling for the aggregate competition
in the auction. Figure 2 illustrates the network data structure with Reactors and Influencers as
nodes. Here y1,2 indicates the number of items in which bidder 1 (an Influencer) has placed a
bid between the proxy and non-proxy bid of bidder 2 (a Reactor).

We also considered two other possible measures of influence for our bidder network
Yi,j . The first approach considers the order in which the Influencers have placed their bids. We
assumed that the bidders whose bid is close to that of the non-proxy bid of the Reactor will
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Figure 1: Bid History from an Online Auction of Modern Indian Art.

provide more value information than the bidders who have placed a bid earlier than that. We
captured this notion by computing the difference between the bid ranks (order of the bids)
of the Reactor and his/her Influencers. The second approach considers the reaction time of
the Reactors. In other words, it considers the difference between the bids of the Influencers’
and the Reactors’ normal bid. The shorter the time difference is, the larger is the influence.
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Bidder 1

Bidder 2

Bidder 3

Bidder 80

...

Bidder 1 Bidder 2 Bidder 3 · · · Bidder 80

0
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x12 x13

x21 x23

x31 x32

Reactors

Figure 2: Socio Matrix of Influencers and Reactors.

The longer the time difference is, the weaker is the influence as the Reactor may have used
other resources to update his value of the item. The second approach yielded the same results
as our first approach, and thus their results are excluded from this paper. (The results from
these approaches can be obtained from the auctions.)

3. Value Updating Behavior of Bidders

This study assumes that the characteristics of Influencers and Reactors are homogeneous
within the bidder types. Since the bidder influence data are represented in the form of a
sociomatrix Y = [yi,j], there are certain modeling constraints that need to be addressed.
First, the model needs to accommodate bidder level covariates. The main goal of this
paper is to characterize bidders who update their value during a simultaneous auction.
Therefore, our modeling framework should be capable of investigating the characteristics
that define as Reactors. And second, the model should allow second-order dependencies (such
as reciprocity and common bidder effects in auctions where two interdependent bidders
have common Influencers or common Reactors). Second-order dependencies are essential in
identifying the stability of the bidder characteristics. For example, reciprocity will tell us
whether bidders exchange their role as Reactors or Influencers during the auction. The effects
of common Influencers and Reactors will emphasize how repeated encounters with the same
bidders affect bidder decisions. In this paper, we develop a randomeffects dyadic relational
model to investigate the characteristics of the bidders.

3.1. Random-Effects Dyadic Relation Model

This modeling approach is based on the works of Ho [24], and Hoff and Ward [8] that specify
and analyze random-effects for the originator (Influencer) and the recipient (Reactors) in a
social relations setting. It starts with the description of a simple linear model and builds the
complexities around it sequentially. Consider modeling the dyadic influence data yi,j with a
linear regression model of the following form:

yi,j = β′xi,j + εi,j , (3.1)

where yi,j represents the influence of bidder i over bidder j, and xi,j represents the dyadic level
covariates. The regressor xi,j is assumed to have enough individual level bidder information
such that the distribution of the errors is invariant under permutations of the unit labels.
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This is similar to having an n × n matrix of errors with a distribution that is invariant under
identical row and column permutations; thus {εi,j : i /= j} is equal to {επ(i),π(j) : i /= j} in terms
of their distribution. This condition is called a weak row-and-column exchangeability [8]
of an array. For undirected networks, such as our bidder influence network, it results into
a random effects representation of the error term εi,j such that it is equal in distribution to
f(μ, ai, aj , γi,j) where μ, ai, aj , γi,j are independent random variables and f is a function that is
specified [25, Theorem 14.11].

Therefore, individual bidders’ characteristics and higher-order dependence among
the bidders’ effects during the auction are captured by an error component of the linear
model where the model assumes a covariance structure that is exchangeable under identical
permutations of i and j indices of the Influencers and Reactors, respectively. We model this
error as Gaussian, and thus, the joint distribution of εi,j is as follows:

εi,j = ai + bj + γi,j , (3.2)

where ai represents the effect of bidder characteristics of Influencer i, bj represents the effect
of bidder level characteristics of Reactor j, and (ai, bj)

′ ∼multivariate normal [MVN] (0,Σab).
Hence,

[
ai

bj

]
∼N

([
0

0

]
,

[
σ2
a σab

σba σ2
b

])
. (3.3)

Additionally, (γi,j γj,i)
′ also follows a multivariate normal distribution with MVN(0,Σγ).

Therefore,

[
γi,j

γj,i

]
∼N

([
0

0

]
,

[
σ2
γ ρσ2

γ

ρσ2
γ σ2

γ

])
. (3.4)

The covariance structure of the error term is therefore

E
(
ε2
i,j

)
= σ2

a + 2σab + σ2
b + σ

2
γ , E

(
εi,jεj,i

)
= ρσ2

γ + 2σab,

E
(
εi,jεk,l

)
= 0, E

(
εi,jεi,k

)
= σ2

a,

E
(
εi,jεk,j

)
= σ2

b , E
(
εi,jεk,i

)
= σab,

(3.5)

where σ2
a represents the variance in an observation due to the presence of common Influencer,

σ2
b represents the variance in an observation due to the presence of common Reactors, and
ρ represents the correlation of observations within a influencer-reactor pair and serves as
a measure of reciprocity or mutuality in the bidder influence data [8]. (This model is
also known as the “round-robin” model [9, 10].) To analyze the characteristics differences
between Influencers and Reactors in a particular sample space, the error structure as shown
above can be added to a linear predictor in a generalized linear model. Thus,

θi,j = β′xi,j + εi,j , (3.6)

where εi,j = ai + bj + γi,j .



Journal of Probability and Statistics 9

The above (3.6) is modeled such that the dyadic data are unconditionally dependent,
but conditionally independent, given the random effects of Influencers and Reactors. Moreover,
β′xi,j = β0 as the bidder influence is only modeled in terms of the individual bidder level
covariates. Therefore, we consider it as a generalized linear mixed-model with inverse-link
function g(θ). Thus,

E
(
yi,j | θi,j

)
= g

(
θi,j

)
,

p
(
y12, y13, . . . , yn,n−1 | θ12, θ13, . . . , θn,n−1

)
=
∏
i /= j

p
(
yi,j | θi,j

)
.

(3.7)

In our case, a Poisson model with log-link is appropriate, given that we measure the level of
influence yi,j as the number of items where bidder i has presumably influenced bidder j to
update his/her value. Thus,

g
(
θi,j

)
= εθi,j ,

p
(
yi,j | θi,j

)
∼ Poisson

(
eθi,j

)
.

(3.8)

3.2. Incorporating the Effects of Higher-Order Dependence

In auctions, there are possibilities that the effect of intense rivalry initiated between two
bidders in the early part of the auction may spillover to the later part of the auction and
influence the Reactors to update their values. Consider a hypothetical scenario: say bidder
A and bidder B have engaged in a bidding-war in the auction. This bidding phenomenon
may influence the proxy bidder, say C to update his/her private value and place a higher
non-proxy bid (similar to transitivity). Such second-order effects are common in art auctions
[4, 15, 26].

In the social networks literature, researchers have used simple functions of latent
characteristics vector zi for Influencers and zj for Reactors and added their inner product z′izj
to the error model in a fixed effect setting to capture such higher-order effects [8]. They used
models of the form θi,j = β′xi,j + f(zi, zj) where the latent characteristics function f(zi, zj)
is considered either as a distance model {f(zi, zj) = −|zi − zj |} or as a projection model
f(zi, zj) = z′izj/|zj |. We followed a similar approach and added the inner product z′izj to
the error model (3.2). Thus,

εi,j = ai + bj + γi,j + ζi,j , (3.9)

where ζi,j = z′izj is a mean-zero random effect and the random effects ai, bj , and γi,j are
modeled with the multivariate normal distributions described earlier. The moment properties
of the distributions of ζ are E(ζi,j) = 0;E(ζ2

i,j) = trace
∑2

z;E(ζi,jζj,kζk,i) = trace
∑3

z if the
z’s are modeled as independent k-dimensional MVN random vectors with mean zero and
covariance structure matrix as

∑
z and all other second-and third-order moments are equal

to zero. Moreover, an orthogonal transformation of the z’s leaves z′izj invariant, suggesting
that

∑
z is a diagonal matrix. For example, lets us consider the case where

∑
z = σ2

zIk×k and
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the above moments are 0, kσ4
z, and kσ6

z, respectively. When we add ζi,j to the error term, the
nonzero second-and third-order moments become

E
(
ε2
i,j

)
= σ2

a + 2σab + σ2
b + σ

2
γ +Kσ

4
z,

E
(
εi,j , εj,i

)
= ρσ2

γ + 2σab +Kσ4
z,

E
(
εi,jεj,kεk,i

)
= Kσ6

z, E
(
εi,jεi,k

)
= σ2

a,

E
(
εi,jεk,j

)
= σ2

b , E
(
εi,jεk,i

)
= σab.

(3.10)

The above shows that the effect ζi,j = z
′
i
zj can be interpreted as a mean-zero random effect

that is able to capture the higher-order dependencies found among the bidders in an auction.
Marginally, if k increases, the distribution of ζi,j will converge to a normal distribution (due
to central limit theorem). Jointly, if the ζ′s of the Influencer and Reactor have at least one unit
in common, the Markov dependence graph will plot the two bidders as neighbors. If ζ′s are
considered as fixed effects, they can be viewed as interaction terms that are highly constrained
due to the functional dependence on the z’s. For example, if the zi and zj are vectors of
similar directions and magnitude, then z′izk and z′jzk will not be different. This characteristic
can be related to bidder transitivity as we described earlier. (For more information on how the
moments are scaled, please refer to [8, 24, 27].)

Since the inner-product term z′izj is a fixed effect, it can be considered as a reduced-
rank interaction term. This is typically known as the bilinear effect or multiplicative interaction.
To include this inner product of the member’s latent characteristics in the random effect
model, (3.6) is reparameterized as

θi,j = infi + reaj + γi,j + z′izj ,

inf = β′infxinf,i + ai,

reai = β′reaxrea,i + bi,

(3.11)

where xinf,i are the Influencer specific covariates and xrea,i are the Reactor specific covariates in
the model.

The above model is estimated using a Bayesian estimation process. A Markov Chain
Monte Carlo (MCMC) algorithm is used to sample values of the Influencer and Reactor specific
parameters from their posterior distribution. We estimate the parameters for the generalized
bilinear regression model by constructing a Markov chain in {βinf, βrea,

∑
ab, Z, σ

2
z,
∑

γ} (where
Z is a k × n latent vector matrix) with p(βinf, βrea,

∑
ab, Z, σ

2
z,
∑

γ | Y ) as the invariant
distribution. A Gibbs sampling is used to obtain the chain and to sample θ.

The algorithm followed as per Hoff [8] is as follows.

(1) Sampling of linear effects in the model is as follows

(a) Sample inf, rea | βinf, βrea,
∑

ab, Z, θ,
∑

γ with a linear regression.

(b) Sample βinf, βrea | inf, rea,
∑

ab with a linear regression.

(c) Sample
∑

ab,
∑

γ from their full conditionals.
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(2) Sampling of bilinear effects is as follows

(a) For each bidder i = 1, 2, . . . , n, sample zi | {zj : j /= i}, θ, β, s, r,Σz,Σγ with a
linear regression.

(b) Sample Σz from its full conditional distribution.

(3) Update {θi,j , θj,i} using Metropolis-Hastings step.

(a) Propose
[
θ∗i,j

θ∗j,i

]
∼N(

[
β′xi,j+ai+bj+z′izj

β′xj,i+aj+bi+z′j zi

]
,Σγ).

(b) Accept
[
θ∗i,j

θ∗j,i

]
with probability p(yi,j | θ∗i,j)p(yj,i | θ

∗
j,i)/p(yi,j | θi,j)p(yj,i | θj,i)∧ 1.

The prior distributions of the parameters are taken as follows:

(i) β ∼MVN(0, 80 × I4×4),

(ii) Σab ∼inverse Wishart Distribution (I2×2, 4),

(iii) σ2
u, σ

2
v ∼ iid inverse gamma(1,1), σ2

γ = (σ2
a + σ

2
b
)/4, ρ = (σ2

a − σ2
b
)/(σ2

a + σ
2
b
).

We used K = 2 dimensions in our analysis. (Five different values of K = 0 to K = 1 were
tested with a fourfold cross-validation procedure as described by Ho in his seminal paper
[8]. The predictive performances for all the K values were roughly the same. The biggest
improvement in the marginal likelihood criterion was from K = 1 to K = 2. Therefore, K = 2
was selected.)

4. Bidder Covariates

Reactors are examined in the context of three types of characteristics: lot (item) characteristics,
auction characteristics and bidder behavior characteristics.

4.1. Lot Characteristics

Prior work on auctions of fine arts [26, 28] found that both the preauction estimates of the
items provided by the auction house and the art type (paper or nonpaper work) are to be
significant drivers of auction prices. Before the auction starts, potential bidders are exposed
to various types of information about the lots. Lot information and provenance provided
by the auction house (in their printed catalogs and in their websites), and comments and
suggestions of the art experts (in personal blogs, art magazines, etc.), provide information on
the value of the art items such as the estimated price, artist information, and previous auction
price history of similar paintings by the artists. The price estimates indicate the value of the
items as suggested by the auction house experts (like curators, art specialists, etc.). Mei and
Moses [29] found these value estimates to have high correlation with the final realized prices
of the art items. Therefore, the higher the preauction estimates, the greater is the tendency
for the item to fetch a higher price, and so higher stakes are associated with it. Such high
stakes lead to higher bidder propensity to clarify and justify their future bids. Therefore,
bidders look for other value signals from different sources and are inclined to change their
value belief during the auction of these lots. Thus, we hypothesize that the bidders who act
as Reactors tend to bid on lots that have high preauction estimates.
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The media on which the art item is painted plays an important role in its maintenance
and longevity [26]. For example, works on paper are typically of low price as compared to
that of works on canvas since paper tends to be more fragile than canvas. Therefore, low
financial risk is associated with the purchase of nonpaper items, and thus, we hypothesize
that the Reactors will tend to update values more on nonpaper items.

4.2. Artist Characteristics

Artist characteristics such as reputation and previous auction history of the artists also play
an important role in the valuation of the art items. Established artists are highly reputed and
their works are well recognized in the art market. Most of their works have been resold many
times in the market and, thus, their value commonly known to all. Therefore, the works of
established artists present a low-risk purchase opportunity for the bidders [26]. On the other
hand, emerging artists are new to the art market and their works are not well known. Further,
not enough works of these artists are sold in the marketplace in order to estimate their values
confidently. Therefore, the values of the works of these artists are highly uncertain, making
them high-risk purchases. Thus, Reactors are hypothesized to react and change their values in
lots created by the emerging artists as they tend to seek more information from other bidders.

Like artist reputation, historical market information such as the average price per
square inch of the artists’ art works or the total number of items sold in the previous year
provides a signal to the bidders about the market value of the artist [26]. If the value realized
by the works of an artist is low in the previous year, stakes will be high for their art work.
Since evaluators are unaware of how the market will react to the works of these artists, they
are high-risk purchases for the bidders. Similarly, if fewer items of the artist are sold in the
previous year’s auctions, less information is available about the artist’s present market value.
Therefore, it is highly probable for bidders to rely upon other value signals in these lots. Thus,
it is hypothesized that Reactors will tend to change their values in these lots.

4.3. Bidding Characteristics

During auctions, Reactors are assumed to wait and consult bids of others participants
(Influencers) to reduce any uncertainty they may have about the value of a lot. Thus, we
conjecture that Reactors will bid more in the second half of the auction than in the first half.
Further, these bidders by the virtue of their behavior tend to be selective in the types of lots on
which they bid. Their attachment to a particular item is an integral reason for them to update
their private value for the lot [13]. Therefore, we hypothesize that they will participate in
auctions of fewer lots than other bidders will.

5. Results

The description of the bid data is presented in Table 1. In this particular auction, 199 lots were
sold, and 42 bidders were observed to change their value belief for 63 lots during a Modern
Indian Art auction held in December 2005. Eighty bidders participated in the auctions of
these 63 lots creating 947 bid instances. Thus, an 80× 80 bidder matrix is created and only the
influence on those forty-two bidders who changed their value belief is considered. Bidder
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Table 1: Data description.

No. of lots sold 199
No. of bids 3080
Average no. of bids per lot (range) 15.47 (2, 48)
Average value of the lots (range) $56,282 ($2,850, $1,351,000)
Average first bid of the lots (range) $19,343 ($650, $300,000)
Average no. of bidders per lot (range) 6.35 (2, 14)
Average time of bids (scaled 0-1) 0.4998
Average time of entry to the auction 0.5386
Average time of exit to the auction 0.8397

Table 2: Correlation matrix of the bidder covariates.

(x1) (x2) (x3) (x4) (x5) (x6) (x6) (x8)

Low pre-auction
estimates of the lots
bid (x1)

1

No. of lots sold by the
artists in theprevious
year’s auction (x2)

0.551∗∗ 1

No. of lots by
emerging artist (x3)

−0.183 −0.182 1

No. of lots by
established artist (x4)

0.584∗∗ 0.655∗∗ 0.210 1

No. of paperworks
(x5)

0.127 0.201 0.474∗∗ 0.399∗∗ 1

No. of bids placed in
the first half of the
auction (x6)

0.107 0.158 0.359∗∗ 0.431∗∗ 0.515∗∗ 1

No. of bids placed in
the second half of the
auctions (x7)

0.204 −0.089 0.291∗∗ 0.264∗ 0.116 −0.201 1

Total no. of unique
lots bid (x8)

0.239∗ 0.243∗ 0.666∗∗ 0.673∗∗ 0.693∗∗ 0.606∗∗ 0.304∗∗ 1

∗∗Correlation is significant at the 0.01 level (2-tailed).
∗Correlation is significant at the 0.05 level (2-tailed).

level covariates are used in the model to determine the characteristics of those who overbid.
Table 2 presents the correlation between the bidder level covariates.

A Markov Chain Monte Carlo algorithm was run for the influence data. Each chain
was run for 200,000 iterations. However, since a large number of parameters (Influencer and
Reactor specific covariates, and terms capturing higher-order dependencies) are analyzed in
the model, only every 50th iteration is stored in order to keep the output file to a reasonable
size, as suggested by MacEachernand and Berliner [30]. Outputs from first 20,000 iterations
are considered as burn-ins and are not recorded. (A burn-in of 20,000 and capturing every
50th iteration suggests that the model should stabilize by the 400th row of the output.
Examining the trace plot, we do find that the model has stabilized well before 400, suggesting
that 20,000 burn-in was sufficient. Complete traces are available from the authors.) The
posterior means and quantile-based 95% confidence intervals are presented in Tables 3 and 4
where the mean is highlighted with bolded fonts.
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Table 3: Posterior Means and Quantile-Based 95% Confidence Interval for Influencer and Reactor Level
Covariates.

Covariates Influencer Reactor
Low pre-auction estimates of the lots bid −0.3861 5.3660

0.2545 9.2870
0.9042 13.1774

No. of lots sold by the artists in the previous year’s auction −0.5961 −5.8831
−0.1460 −3.2870
0.3120 −0.6054

No. of lots by emerging artists −0.1371 −1.6351
0.2415 0.8290
0.6323 3.0512

No. of lots by established artists −0.1492 −3.7290
0.2350 −1.3695
0.6120 0.9690

No. of paper works −0.4022 −0.6831
−0.0295 1.3795
0.3471 3.5781

No. of bids placed in the first half of the auction 0.1229 −0.4751
0.5240 1.8985
0.9260 4.7242

No. of bids placed in the second half of the auction −0.7030 8.2930
−0.2420 11.0610
0.2515 7.3632

Total number of unique lots bid −0.7850 −10.165
−0.2305 −6.4200
0.3080 −3.2234

Here we will only discuss the results where the 95% confidence interval does not
include a zero. From Table 3, we find that the pre-auction estimates have a positive effect for
the Reactors. This suggests that bidders who typically change their value belief have bid on
lots with high estimated values. We also examined the bidder characteristics of the Influencers
and Reactors by comparing their bidding frequency during each half of the auction. Results
show that the coefficient for the number of second half bids for the Reactors is positive, but
there is no effect of the first half bid frequency. This suggests that Reactors tend to bid more
in the second half of the auction than the first half. We also found that Influencers bid more
in the first half as compared to the second half of the auction. In addition, we examined the
coefficient for the total number of unique lots bid by the two types of bidder. We found that
the coefficient for the Reactors to be negative (coefficient = − 6.4200) and no effect for the
Influencers. This suggests that Reactors participate in auctions of fewer lots as compared to the
Influencers. A summary of the results is presented in Table 5.

Estimates of other major parameters (Table 4) suggest that the common influence
variance is smaller than the common Reactor variance, meaning that the Influencers maintain
their role throughout the auction. Since these influencing bidders are frequently observed to
bid on more lots, they tend to be the art dealers [15]. On the other hand, the common Reactor
variance is large. This also supports the findings that the Reactors bid on fewer items and
thus, the same Reactor is seldom encountered by the Influencers. Error variance was found to
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Table 4: Posterior means and quantile-based 95% confidence interval for major parameters of the bilinear-
effects model.

Parameters Posterior mean and C.I.

Common influencer variance
1.4927
1.9965
2.7062

Common reactor variance
67.9891
91.5990
128.6762

Influencer-Reactor covariance
− 5.1890
− 2.4560
0.1013

Error variance
0.0720
0.1160
0.1970

Reciprocity
− 0.7680
− 0.4960
− 0.0399

Variance of latent dimensions
0.0610
0.1320
0.3330

Variance of inner dimensions
0.0490
0.0970
0.2120

be small, suggesting a good fit for our model. Finally, we find that the reciprocity is negative,
which further suggests that the Reactors and Influencers rarely switch roles during the auction.

6. Implications and Future Directions

This paper investigates the characteristics of bidders (termed here as Reactors) who update
their private value of the items in the presence of the influencing bidders (termed here as
Influencers). Traditional approaches such as linear models or logistic regressions, although
useful in our context, lack the capacity to capture the inter-bidder effects and analyze
Reactors and Influencers concurrently. To overcome this issue, we represent the auction data
as networks of bidders where the nodes represent the bidders participating in the auction
and the ties between them represent an Infuencer-Reactor relationship. We further develop a
random-effects bilinear model capable of handling the covariates of both bidder types at the
same time and account for higher-order dependence occurring during an auction.

From the auction house manager’s perspective, this study provides a way to identify
different types of bidders in terms of how they manage and update their private value
towards an item. Such information is vital for auction house managers in strengthening
their relationship with their customers and helps them to determine how to attract them
to future auctions. For example, our analysis suggests that Reactors mostly bid on fewer
items, indicating that they might be the art collectors, who, unlike the art dealers, are very
selective on the items they desire to purchase [15]. Therefore, there is great possibility and
opportunity for the auction house managers to take part in the strategic decisions of the
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Table 5: Summary of the findings.

Covariates Influencers Reactors

Low pre-auction
estimates of the
lots bid

No effect

Positive effect suggesting
that Reactors tend to update
values on lots with high
pre-auction estimates

Artist’s
reputation No effect

Negative effect suggesting
that Reactors tend to update
value on works of artists
who have sold fewer works
in recent years

No. of paper
works No effect No effect

Bid frequency at
each half of the
auction

Positive effect of the first
half bid frequency and no
effect of the second half bid
frequency. This indicates
that Influencers bid more in
the first half as compared to
the second half of the
auction

Positive effect of second half
bid frequency and no effect
of the first half bid
frequency. This indicates
that the Reactors tend to bid
more in the second half as
compared to the first half of
the auction

Total no. of
unique lots bid No effect

Negative effect suggesting
that Reactors tend to bid on
small number of lots

Table 6: Managerial Implications.

Findings Managerial Implications

Reactors bid on fewer items and mostly on
high-priced items

– Provide more potable information about the artist
and the artwork such as price trend, performance
of other items of the artist in the auction
– Provide customized support through account
managers

Reactors bid more in the second half than in
the first half of the auction

– Managers have time (1-2 days in a 3 day auction)
to offer solutions to these bidders

bidders and support in their decision making process. Suggestive decisions are shown in
Table 6 to support the auction house managers.

As with most research work, this study also has some limitations that need to be
acknowledged. First, it is difficult to determine why the Reactors have used the proxy bidding
system. We used an identification system in the lines of work done by Ku and his colleagues
[11], which is tested and proved using a bidder survey. Work by Bapna and his colleagues
[23]) found that certain types of bidders in online auctions use proxy bidding as a part of
their bidding strategy (referred to as Agent Bidders). They suggested that these bidders place
more than 60% of their bids as proxy bids. Reactors in our study had less than 20% of their total
bids as proxy bids, and thus can be assumed not to be Agent Bidders. We tried two different
approaches to identify the level of influence of an Influencer over a Reactor. Although our
measure is grounded on the auction theory, still, further study is needed to develop a better
influence measure.

A bidder’s value change plays a fundamental role in determining the attractiveness of
auctioned items. Therefore, sophisticated models may be developed using value updating



Journal of Probability and Statistics 17

behavior in the future to design more profitable auctions and also help in designing
future auctions. Our study contributes to auction house strategy refinement by investigating
competition among bidders at the dyadic bidder level. Further studies on this topic are
essential to understand the underlying bidding dynamics in auctions.

We hope that this paper will encourage other researchers to start investigating bidder
behavior and competition at a more microlevel. We also hope that our paper will promote
future applications of bilinear effects models and other advanced techniques in other areas of
social sciences.
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