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A trimming mean eliminates the extreme observations by removing observations from each end
of the ordered sample. In this paper, we adopted the Hogg’s and Brys’s tail weight measures.
In addition, a new algorithm was proposed as a linear estimator based on the quartile; we
used a quartile to divide the data into three and four groups. Then two new estimators were
proposed. These classes of linear estimators were examined via simulation method over a variety
of asymmetric distributions. Sample sizes 50, 100, 150, and 200 were generated using R program.
The results of 50 were tabulated, since we have similar results for the other sizes. These results were
tabulated for 7 asymmetric distributions with total trimmed proportions 0.10 and 0.20 on both
sides, respectively. The results for these estimators were ordered based on their relative efficiency.

1. Introduction

Trimmingmean is a statistical measure of central tendencymuch like themean andmedian. It
involves the calculation of the mean after discarding given parts of a probability distribution
or a sample at the beginning and the end of the whole data, and typically discarding an
equal amount of both [1] . For most statistical applications, 5 to 25 percent of the ends are
discarded. The trimming mean is a useful estimator because it is less sensitive to outliers
than the mean but will still give a reasonable estimate of central tendency or mean for many
statistical models. In this regard it is referred to as a robust estimator. Under normality, the
best possible amount of trimming is zero. But under very small departures from normality,
the mean is no longer optimal and can present rather poorly [2]. The best known study of the
robust estimates of location was Princeton Robust Study [3]. They recommended α-trimmed
mean to desire the trimmed proportion to minimize the estimated variance. Numerous
papers on robust estimators of location have emerged since the Princeton Robust Study,
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and the conclusions are as varied. Most of these studies also centered on symmetric and
contaminated symmetric distributions. In addition, these estimators classically utilized one
or more additional statistics, such as ancillary or selector statistics, to adjust the value of the
estimator to adapt the sample distribution [4]. However, in practical applications, there is no
guarantee that the observed sources are symmetric. Particularly, when the number of samples
is small, the interference of outliers significantly increases. Therefore, proper asymmetric
truncations need to be made. In this paper, asymmetric trimmed algorithms are suggested to
estimate the parameters of asymmetric trimming mean which used the classification scheme,
at the first step by tail length and skewness, and at the second step a ratio involving left and
right truncations based on the quartile values. Additionally, the total truncations are assumed
to be 0.10 and 0.20 of the whole data.

2. Robust Location Measures

Many location estimators can be presented in the same technique by ordering the values of
the sample as x(1) ≤ x(2) ≤ · · · ≤ x(n) and applying the weight function wi [5]

μ =
n∑

i=1

wix(i), (2.1)

wherewi is specified to reduce the influence of certain observations in the form of weighting
and xi represents the ordered data. As for the sample mean, the value is wi = 1/n. To make
the comparison between different estimators easier, we will present Hogg’s and Brys’s Tail
Weight Measures and new estimators based on the quartile in the next sections.

2.1. Hogg’s and Brys’s Tail Weight Measures

Hogg and Lenth [6] proposed and defined the tail measure, T , and the peakedness measure,
P , while Schmid and Trede [7] have studied these estimators. In addition, Brys et al. [8]
proposed and discussed the LQWp tail weight measure; these estimators are defined as
follows, respectively,

T =
X0.975 −X0.025

X0.875 −X0.125
, (2.2)

P =
X0.875 −X0.125

X0.75 −X0.25
, (2.3)

LQWp = −X(1−p)/2 +Xp/2 − 2X0.25

X(1−p)/2 −Xp/2
, (2.4)

where X(·) are the corresponding distribution percentiles, and the percentiles p = 0.125 and
p = 0.25 should be used to preserve the robustness property of this measure according to Brys
et al. [8]. The procedures of Reed and Stark [9] are adopted to define sets of adaptive linear
estimators. We use these estimators to compute asymmetric trimming mean. The general
proposal for their approach is presented as follows.
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(i) Let ξ be the value for the total amount of trimming from the sample.

(ii) Then, the proportion to be trimmed from the lower end (ξL) of the sample can be
determined by the proportion ξL = ξ[UEX/(UEX +LEX)], whereUEX and LEX are
the numerator and denominator portions of the previous defined T , P , and LQWp

equations (2.2), (2.3), and (2.4), respectively.

(iii) The upper trimming proportion can be defined by ξ2 = ξ − ξ1. Based on this general
system, the hinge estimators, which are trimmed, these hinges used to identify the
values of lower and upper observations that should be trimmed; it can be defined
as the following:

HTξ1 = ξ

[
UWT

(UWT + LWT)

]
, (2.5)

HPξ1 = ξ

[
UWP

(UWP + LWP )

]
, (2.6)

HLQWpξ1 = ξ

⎡
⎢⎣

UWLQWp(
UWLQWp + LWLQWp

)

⎤
⎥⎦. (2.7)

Then, we computed the greatest integer number of ξ2 and ξ1. After that, we assume that ξ1 = r
and ξ2 = s and the (r, s)-trimmed mean T(r,s) is defined as

T(r,s) =
1

n − r − s

[
n−s∑

i=r+1

Xi

]
, (2.8)

where Xi is the ith ordered observation.

2.2. New Estimators Based on the Quartile

A quartile represents any of the three values, which divides the sorted data set into four
equal groups. This enables each group to represent one fourth of the whole sample. Now,
we define the new estimator based on the quartile to determine the asymmetric trimming
mean as follows: assume that x(1), x(2), . . . , x(n) are ordered data, and let Q1, Q2, and, Q3 be
the quartiles. Then, two estimators are defined based on these values. The first estimator
is computed when the data is divided into three groups, while the second estimator is
computed by dividing the data into four groups. The general proposal for their approaches
is defined as follows. Let x(1) and x(n) be the first and last values of the ordered data,
respectively. Then, we assume that the interval (x(1), Q1) is the first group, the interval
(Q1, Q2) is the second group, the interval (Q2, Q3) is the third group, and the interval
(Q3, x(n))is the fourth group which is the last group. This permits the new estimators to be
defined.

2.2.1. Three-Group Estimator

The three-groups (3GQ) estimator method is defined as follows.
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(i) L3G is the mean of the observations for the first interval (x(1), Q1), and it can be
defined as

L3G =
q1∑

i=1

xi, (2.9)

where q1 signifies the number of observations in the first group.

(ii) M3G is the mean of the observations in the interval (Q1, Q3), and it can be defined
as

M3G =
q2+q3∑

i=q1+1

xi, (2.10)

where q2 and q3 are the number of observations in the second and third groups,
respectively.

(iii) U3G is the mean of the observations in the third group (Q3, x(n)), and it can be
defined as

U3G =
n∑

i=q1+q2+q3+1

xi, (2.11)

where n is the number of observations in the whole data set.

Then, the hinge estimator for the three-group method is defined as follows:

H3G =
(U3G −M3G)
(M3G − L3G)

. (2.12)

In order to determine a proportion to be trimmed from the lower end of the sample (ξL), then
we use the following proportion:

ξL = ξ

[
UH3G

(UH3G + LH3G)

]
, (2.13)

where UH3G and LH3G are the numerator and denominator of the estimator H3G,
respectively, ξ is the total trimming proportion to be trimmed from the sample, and the upper
trimming proportion can be defined by ξU = ξ−ξL. Let ξL = r and ξU = s, then, the asymmetric
trimming mean is calculated as defined by (2.8).

2.2.2. Four-Group Estimator

The four-group estimator method (4GQ) is defined as follows.

(i) Let L4G be the mean of the observations in the first interval, and this mean is the
same as the L3G equation (2.9).
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(ii) M4G1 is the mean of the observations in the interval (Q1, Q2), and it can be defined
as

M4G1 =
q2∑

i=q1+1

xi. (2.14)

(iii) M4G2 is the mean of the observations in the interval (Q2, Q3), and it can be defined
as

M4G2 =
q3∑

i=q1+q2+1

xi. (2.15)

(iv) U4G is the mean of the observations in the fourth group, and it is same asU3G.

Then, the hinge estimator can be described for three-group method as follows:

H4G =
(U4G − L4G)

(M4G2 −M4G1)
. (2.16)

In order to determine a proportion to be trimmed from the lower end of the sample (ξL), then
we use the following proportion:

ξL = ξ

[
UH4G

(UH4G + LH4G)

]
, (2.17)

where UH4G and LH4G are the numerator and denominator of estimator H4G, respectively,
ξ is the total trimming proportion to be trimmed from the sample, and the upper (ξU) and
lower (ξL) trimming proportions are defined as the above.

3. Simulation Methods

In the Princeton Robust Study [3], efficiency was introduced to provide a basis for comparing
two estimators. The relative efficiency of two procedures is the ratio of their efficiencies,
although, frequently this phrase is used where the comparison is made between two
procedures. The natural logarithm of the relative efficiency of the estimator was introduced
by [9]. In this paper, we computed the relative efficiency (RE) for the proposed new measure
estimators depending on the quartile values method and the comparative Hogg’s and Brys’s
estimators method, selecting the smallest variance from the proposed methods as base, and
then each variance divides this base as the Relative Efficiency. Additionally, the values of
the total trimming proportions to be trimmed from the sample are 0.10 and 0.20. Random
numbers were generated for each of the seven asymmetric distributions using R program.
These distributions were selected Beta (2,4), Gamma (3,2), Chi square (4), Burr (3,1), Pareto
(3,1), Weibull (3,1), and Skewed-normal distributions; sample sizes of 50, 100, 150, and 200
were generated for each iteration (N) of 1000, 2500, and 5000. Since similar results were found
for all iteration values, we tabulated the results of theN = 2500 iterations with fit of the mean
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for each distribution with ±0.0005. Then, we tabulated the results of a simulation study when
the sample size is 50 for these distributions. The estimators were ordered within each table
based on the type of the distribution with minimum relative efficiency.

4. Results

Within these classes of estimators, we are concerned with the behavior of the new estimators
3G0.10, 3G0.20, 4G0.10, and 4G0.20. The 3G0.10 and 3G0.20 estimators are two of the top
four estimators in all the distributions studied (Table 1), while there are mixed results for
the estimators 4G0.10, and 4G0.20. Additionally, T0.10 is one of the top four estimators in
five of the distributions studied (five of seven). In order to investigate the performance
of the new estimators, there are four properties of estimators: biases, efficiency, mean
square error, and consistency [10]. In this study, the relative mean square errors are
computed, as the values of the MSE for different sample sizes cannot be analogous.
However, an estimator can be chosen as the minimum of the 3G10, 3G20, 4G10, and
4G20, and the relative MSE of the estimators which can be calculated by the following
equation:

RMSE(Method) =
MSE

(
Minimum proposed Estimator

)

MSE(Estimator)
, (4.1)

while Table 2 showed the relative mean square errors based on the seven asymmetric
distributions. The methods 3G, 4G, and T were consistent among the top three estima-
tors.

5. Conclusion

Most of the previous studies on the problem of the intervention of the mean estimation data
sets ignored the type of the distribution of the datasets. But statistics such as skewness and tail
length, both describe the distribution characteristics. In this paper, we proposed newmeasure
estimators by dividing the whole datasets into groups with respect to the quartile values. The
boundaries of the groups were derived from quartile, in order to determine the proportions of
trimming on both sides of the datasets. Therefore, these boundaries were divided with regard
to the type of the probability density function with respect to the value of the quartile (first,
second, and third). The proposedmethodwas tested via a simulation study over the adaptive
estimators which were proposed by Brys et al. [8] for seven asymmetric distributions. The
relative efficiency (RE) is defined as the ratio of the variance of the minimum estimators for
the proposed methods (three and four with proportions 0.10 and 0.20) to the variance that
was derived from other hinge estimators proposed by Brys et al. [8] with the same values
of proportions. The variances for proposed methods are lower than the variance derived
from the Brys et al. [8] method. All the relative efficiencies for these estimators are less than
or equal one. Similarly, most of the values of the RMSE for all the asymmetric distribution
are also less than one except for the estimator P0.20 under Burr distribution. The methods
3G, 4G, and T were consistent among the top three estimators for the distributions in this
study.
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Table 1: Linear estimators.

Estimator Estimate Variance RE Ln(RE) Bias
Beta distributions (2,4)
3G0.20 0.330061 0.034774 1.000000 0 0.003266
3G0.10 0.326579 0.034809 1.001000 0.001 0.006748
4G0.10 0.342047 0.034839 1.001880 0.00188 −0.008720
T0.10 0.342047 0.034839 1.001880 0.00188 −0.008720
P0.10 0.342047 0.034839 1.001880 0.00188 −0.008720
T0.20 0.343893 0.034875 1.002900 0.0029 −0.010566
P0.20 0.343893 0.034875 1.002900 0.0029 −0.010566
LQW0.1250.10 0.313242 0.035167 1.011290 0.01123 0.020085
LQW0.250.10 0.313242 0.035167 1.011290 0.01123 0.020085
4G0.20 0.357454 0.035345 1.016430 0.0163 −0.024127
LQW0.1250.20 0.303437 0.035657 1.025380 0.02506 0.029890
LQW0.250.20 0.291850 0.036483 1.049160 0.04799 0.041477
Gamma distribution (3,2)
T0.20 6.036901 7.783501 0.999751 −0.0002 −0.036792
3G0.10 5.942697 7.785443 1.000000 0 0.057412
T0.10 5.942697 7.785443 1.000000 0 0.057412
LQW0.1250.10 5.942697 7.785443 1.000000 0 0.057412
3G0.20 5.845643 7.806007 1.002641 0.00264 0.154466
4G0.10 6.168469 7.810492 1.003217 0.00321 −0.168360
P0.10 6.168469 7.810492 1.003217 0.00321 −0.168360
LQW0.1250.20 5.845643 7.806007 1.002641 0.00264 0.154466
LQW0.250.10 6.168469 7.810492 1.003217 0.00321 −0.168360
P0.20 6.228680 7.834392 1.006287 0.00627 −0.228571
LQW0.250.20 6.228680 7.834392 1.006287 0.00627 −0.228571
4G0.20 6.439132 7.974888 1.024333 0.02404 −0.439023
Chi-square distribution (4)
3G0.10 3.997780 9.828042 1.000000 0 0.002420
T0.10 3.997780 9.828042 1.000000 0 0.002420
P0.10 3.997780 9.828042 1.000000 0 0.002420
3G0.20 4.089484 9.836008 1.000811 0.00081 −0.089284
P0.20 3.881409 9.842147 1.001435 0.00143 0.118790
T0.20 3.881409 9.842147 1.001435 0.00143 0.118790
4G0.10 4.301156 9.918610 1.009215 0.00917 −0.300956
4G0.20 4.348989 9.949690 1.012378 0.0123 −0.348789
LQW0.1250.10 3.345020 10.257297 1.043677 0.04275 0.655180
LQW0.250.10 3.345020 10.257297 1.043677 0.04275 0.655180
LQW0.1250.20 2.791903 11.288018 1.148552 0.1385 1.208297
LQW0.250.20 2.791903 11.288018 1.148552 0.1385 1.208297
Burr distribution (3,1)
3G0.20 0.494108 0.278845 1.000000 0 0.006350
P0.20 0.494108 0.278845 1.000000 0 0.006350
3G0.10 0.492520 0.278868 1.000081 0.000081 0.007938
T0.10 0.492520 0.278868 1.000081 0.000081 0.007938
P0.10 0.492520 0.278868 1.000081 0.000081 0.007938
T0.20 0.462763 0.280226 1.004951 0.004939 0.037694
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Table 1: Continued.

Estimator Estimate Variance RE Ln(RE) Bias
4G0.10 0.541519 0.280491 1.005902 0.005885 −0.041061
4G0.20 0.546247 0.280902 1.007375 0.007348 −0.045790
LQW0.1250.10 0.388761 0.291281 1.044597 0.043631 0.111697
LQW0.250.10 0.388761 0.291281 1.044597 0.043631 0.111697
LQW0.1250.20 0.314296 0.313462 1.124141 0.117019 0.186162
LQW0.250.20 0.314296 0.313462 1.124141 0.117019 0.186162
Pareto distribution (3,1)
3G0.20 1.513229 5.210438 1.000000 0 −0.013318
4G0.20 1.513229 5.210438 1.000000 0 −0.013318
T0.20 1.513229 5.210438 1.000000 0 −0.013318
3G0.10 1.622767 5.225354 1.002863 0.00286 −0.122856
4G0.10 1.622767 5.225354 1.002863 0.00286 −0.122856
T0.10 1.622767 5.225354 1.002863 0.00286 −0.122856
P0.10 1.370864 5.226914 1.003162 0.00316 0.129048
p0.20 1.099740 5.370398 1.030700 0.03024 0.400172
LQW0.1250.10 0.919826 5.546760 1.064548 0.06255 0.580086
LQW0.250.10 0.919826 5.546760 1.064548 0.06255 0.580086
LQW0.1250.20 0.728119 5.805925 1.114287 0.10821 0.771793
LQW0.250.20 0.775311 5.735306 1.100734 0.09598 0.724600
Weibull distribution (1,3)
3G0.10 2.999831 9.738460 1.000000 0 0.000277
P0.10 2.999831 9.738460 1.000000 0 0.000277
3G0.20 3.074395 9.743978 1.000567 0.00057 −0.074287
P0.20 3.074395 9.743978 1.000567 0.00057 −0.074287
4G0.10 3.253236 9.802534 1.006579 0.00656 −0.253128
T0.10 2.765150 9.793665 1.005669 0.00565 0.234958
4G0.20 3.328679 9.846419 1.011086 0.01103 −0.328572
T0.20 2.618965 9.883730 1.014917 0.01481 0.381143
LQW0.1250.10 2.346914 10.165121 1.043812 0.04288 0.653193
LQW0.250.10 2.346914 10.165121 1.043812 0.04288 0.653193
LQW0.1250.20 1.692180 11.449135 1.175662 0.16183 1.307928
LQW0.250.20 1.692180 11.449135 1.175662 0.16183 1.307928
Skewed-normal distribution
3G0.20 2.593322 0.214400 1.000000 0 0.003977
T0.20 2.593322 0.214400 1.000000 0 0.003977
LQW0.1250.20 2.593322 0.214400 1.000000 0 0.003977
3G0.10 2.586861 0.214494 1.000434 0.00043 0.010438
T0.10 2.586861 0.214494 1.000434 0.00043 0.010438
LQW0.1250.10 2.586861 0.214494 1.000434 0.00043 0.010438
P0.10 2.623642 0.215079 1.003163 0.00316 −0.026343
p0.20 2.627732 0.215311 1.004246 0.00424 −0.030432
LQW0.250.10 2.552086 0.216429 1.009461 0.00942 0.045214
4G0.10 2.661124 0.218458 1.018926 0.01875 −0.063825
4G0.20 2.697760 0.224477 1.046999 0.04593 −0.100461
LQW0.250.20 2.495980 0.224650 1.047806 0.0467 0.101319
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Table 2: Relative mean square error.

Estimator Skewed normal Beta (2,4) Gamma (3,2) Chisq (4) Burr (3,1) Pareto (3,1) Weibull (1,3)
3G10 0.9991 0.997996 1 1 1 0.9943 1
3G20 1 1 0.9947 0.9983 1.0001 1 0.9988
4G10 0.9635 0.9962 0.9936 0.9819 0.9884 0.9943 0.98701
4G20 0.9140 0.9682 0.9536 0.9758 0.9856 1 0.9783
T10 0.9991 0.9962 1 1 1 0.9943 0.988
T20 1 0.9942 1.0004 0.9971 0.9903 1 0.9710
P10 0.9937 0.9962 0.9936 0.9196 1 0.9937 1
P20 0.9915 0.9942 0.9875 0.7709 1.0001 0.9421 0.9988
LQW0.12510 0.9991 0.9779 1 0.9196 0.9182 0.8856 0.9194
LQW0.12520 1 0.9516 0.9947 0.7709 0.8012 0.8139 0.7400
LQW0.2510 0.9814 0.9779 0.9936 1 0.9182 0.8856 0.91943
LQW0.2520 0.9127 0.9105 0.9875 0.9971 0.8012 0.8323 0.7400
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