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The idea of random matrix theory is applicable not only to the level statistics but also to various
physical observables. Taking the dynamical conductivity in isolated quantum dots with diffusive
dynamics, we investigate analytically intertwining effects of the time-reversal invariance, level
repulsion and quantum interference. We clarify an ambivalent role of the time-reversal invariance
at finite frequency by a new invariant analysis respecting the symmetry of the effective field theory.
A subtlety of the operator insertion, and the fast-slow mode separation within the effective field
description is pointed out.

1. Introduction

Since the dawn of mesoscopic physics, dynamical properties of small metallic grains
have been attracting much attention both in experiments and in theories; they have been
recognized as very useful physical realizations of the random matrix theory, because energy
levels of such systems are known to exhibit strong repulsion as in random matrices. From a
theoretical point of view, dynamical responses aremuchmore complicated to investigate than
energy level statistics. It is because the former requires an additional knowledge of electron
wavefunctions or matrix elements in addition to energy spectra.

In a pioneering paper by Gor’kov and Eliashberg (GE) [1], a phenomenological theory
of dynamical responses was built based on the two statistical hypothesis: (i) independent
fluctuations between matrix elements and energy levels (to single out the effect of the level
repulsion), and (ii) the DOS correlator approximated by the Wigner-Dyson level correlator
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[2]. Although the original work was found to be insufficient in taking account of interaction
effect [3, 4], the statistical approach has been widely accepted as a building block for
subsequent studies [5, 6].

Although statistical hypothesis seems plausible, its microscopic justification is hard
and often requires a sophisticated method. The parameter controlling the validity is the
dimensionless conductance g (for diffusive systems, g = D/L2Δ where D is the diffusion
coefficient in a linear size L and Δ is the mean level spacing). To our knowledge, the
only adequate tool to employ is the supermatrix nonlinear sigma (NL-σ) approach [7],
which proved the hypothesis (ii) in diffusive quantum dots with g ≈ ∞. Justifying the
“decoupling” hypothesis (i) came rather late [8, 9]. However, such decoupling scheme may
be oversimplified. Indeed, a new quantum effect sensitive to the time-reversal invariance (T-
invariance) was observed in the limit of g ≈ ∞ as a flux-dependent polarizability at ω � Δ
[10, 11]. The effect has been unnoticed in the treatments based on the statistical hypothesis.
This new effect should also affect the dynamical magnetto-conductivity, whose magnetic
dependence can be either positive or negative by the frequency observed [12, 13].

In this paper, utilizing the supermatrix formulation, we present a full analysis of the
quantum effect on the dynamical conductivity σ(ω) in isolated small metallic grains. Unlike
previous similar attempts, our approach encompasses all the frequency range and shed a
new light on the role of T-invariance at finite frequency. We will point out a danger of
applying a naive fast/slow mode separation within the effective field theory. We will stress
the importance of the global and gauge invariance in evaluating σ(ω).

2. Dynamical Conductivity

To be concrete, we focus ourselves on the (local) ac conductivity obtained from isolated
noninteracting quantum dots with diffusive dynamics. According to the linear response
theory, ac conductivity σ(ω) at T = 0 is expressed as

Reσ(ω) =
π

V
〈Tr[δ(ε −H)v̂xδ(ε +ω −H)v̂x]〉. (2.1)

Here the Hamiltonian H contains a random or irregular potential V (x), taking (we adopt
e = � = 1)

H =
(p̂ −A)2

2m
+ V (r). (2.2)

Instead of unjustifiable statistical hypothesis, the effective field theory assumes the ensemble
average over random potential V (x), denoted by 〈· · · 〉. The energy ε is set to the Fermi
energy; the velocity operator v̂x is defined as v̂x = i[H, x̂]. We take account of Magnetic field
B = rotA as a crossover between two universality classes: the unitary class with magnetic
field (β = 2), or the orthogonal with time-reversal invariance (β = 1). In this paper, we
neglect the level broadening, but the effect can be readily studied by introducing a complex
frequency ω �→ ω + iγ . Without the level broadening, σ(ω → +0) must vanish except for the
Drude weight.
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We are now concerned with quantum correction of ac conductivity:

σ(ω)
σcl(ω)

− 1. (2.3)

The (semi)-classical conductivity σcl accounts for the contribution evaluated by decoupling
the average of (2.1) into each δ-function:

σcl(ω) = πν2
∫

dr1dr2
V

|〈r1|v̂x|r2〉|2fε(r1, r2)fε+ω(r2, r1), (2.4)

where ν is the average density of state (DOS), and the Friedel correlation f describes the
universal spatial correlation of the wavefunction:

fε(r1, r2) = ν−1
〈

∑

i

ψi(r1)ψ∗
i (r2)δ(ε − εi)

〉

. (2.5)

The function fε(r1, r2) is directly connected with the semiclassical phase-space density
through the Wigner representation. For a diffusive electron, σcl coincides with the Drude
conductivity σ0 for ω � D/L2. However, it becomes proportional to ω2 for ω � D/L2,
because |〈r1|v̂x|r2〉|2 ∝ ω2〈|x|2〉 and the oscillator strength 〈|x|2〉 of isolated quantum dots
is finite [1, 5, 6].

To evaluate a quantum correction equation (2.3) forω 
 Δ, one can employ a standard
diagrammatical perturbation theory. In the time-reversal invariant system (β = 1), a leading
contribution comes from the Cooperon channel:

σper(ω)
σ0

− 1 = −Δ
π

∑

q

1
Dq2 − iω . (2.6)

The result shows a positive magnetoconductance because the Cooperon is vulnerable to the
time-reversal breaking,

σper(ω,B) − σper(ω,B = 0) > 0. (2.7)

When ω decreases up to the order of the mean level spacing Δ, level repulsion
should be visible. We no longer utilize the diagrammatic theory; we need a nonperturbative
treatment, that is, the supermatrix NL-σ model, or RMT with statistical hypothesis. Earlier
studies along this line started with examining the spatial dependence of the two-particle
correlator (see (3.7)); they were successful in understanding the validity of GE result by
the literal expansion of 1/g. We stress that the analysis so far is incomplete to cover the
entire range of ω. When ω exceeds Δ, we should see σ(ω) gradually changing itself into
the perturbative form (2.6); yet such a behavior cannot be captured by a finite order of 1/g
expansions, since the diffusion form can appear only through resummation of all the order of
1/g expansion.
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Restoring the correct perturbation result for ω 
 Δ has another fundamental
significance. If σ(ω) were to be proportional to the DOS correlator, it would mean σ(ω) ∝
ln2ω in 2D, but such behavior is incompatible with the RG treatment of conductivity. The role
of T-invariance has to be reconsidered dynamically depending on the frequency range (see
also experiments [12, 13]).

3. Summary of Results and Discussion

To resolve and clarify the role of T-invariance at finite frequency, we evaluate a quantum
correction of the linear ac conductivity by resorting to the supermatrix NL-σ model, which
provides a nonperturbative description of (low-energy) diffusion modes. A subtlety appears
in considering how to reproduce σcl. Since σcl is a high-energy contribution, it should be
implemented as a saddle point solution. Indeed, to reproduce (2.4), we need a nonlocal
saddle point solution Q(r1, r2) ∝ f(r1, r2). A further spatial/spectral coarse-graining restores
a local diffusive action as the effective field theory defined on the symmetric space as a result
of gauging out the massive degrees of freedom.

By implementing the above modification, the effective action with diffusive dynamics
becomes (see our conventions in Appendix A)

F[Q] = −π
c

∫

STr
[

σ0(∇Q)2 + 2iνωQΛ
]

dr. (3.1)

3.1. Dynamical Conductivity by Invariant Correlators

By devoting all the derivation to the next section and appendices, we write our result as the
following exact, nonperturbative expression of the quantum correction:

σ(ω)
σcl(ω)

− 1 = k(0) + nC(0) − 16πσcl
cV

∫

Dxx(r)dr. (3.2)

The quantum correction is found to consist of three terms: the DOS fluctuation k(0), the
“Cooperon density” fluctuation nC(0) present only for time-reversal invariant system, and
D(r) from the (global) current correlator of the supermatrix NL-σ model. The average 〈· · · 〉
now means the integration over Q with the weight e−F[Q]. Each term in (3.2) is expressed as
an invariant correlator of the NL-σ model:

k
(

r − r′
)

= − 1
c2
〈

STr[kQ(r)]STr
[

kQ
(

r′
)]〉

,

nC
(

r − r′
)

= −δβ,1
c2

〈

STr
[

kQ(r)kQ
(

r′
)

]〉

,

Dμν

(

r − r′
)

=
1 + δβ,1
c2

〈

STr
[

kJμ(r)kJν

(

r′
)]〉

,

(3.3)

where Q is defined in Appendix A; the Noether current is Jμ = (1/2)Q∂μQ. The above are
written for β = 1, 2; the symplectic class β = 4 can be incorporated by reversing the sign in
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front of nC(0). Note that a quantum correction is controlled by a coarse-grained dynamics, so
that σ0 appears in the effective field theory. This is the main result of the paper.

Equation (3.2) is exact; it has the same validity as the supermatrix NL-σ model itself,
describing all the perturbative/nonperturbative effects fully, since it is derived within the
effective theory through rewriting (2.1) without any further approximation. To examine a
concrete dependence of σ(ω), we can readily utilize various well-controlled approximations
available to the Q-matrix theory, either for ω � Δ or for ω � Δ.

Though expressions similar to (3.2) can be found in literatures, theymiss incorporating
some ingredients due to nonperturbative and/or massive contributions. The formula
substituting constant σ0 for σcl has been found before [14]. However such an expression
implies a low-frequency behavior Reσ(ω) ∝ ωβ (for β = 1, 2 for the orthogonal/unitary
class), not the form ω2+β suggested in [1, 5, 6]. The missing exponent will be explained
by a proper treatment of massive contribution σcl ∝ ω2 in the present paper. Indeed, the
appearance of frequency-dependent σcl(ω) rather than σ0 is mandatory as a consequence
of the correct (gauge) invariance of the effective theory. In addition, there seems some
interesting discrepancy with replica methods in the nonperturbative region, as will be
discussed later. Both of these massive and nonperturbative contributions become important
and dominant to the dynamical conductivity in small metallic grains.

3.2. Zero-Dimensional Limit ω  Δ

When we are interested in ω  Δ, we may use the 0D approximation of Q-matrix. In the
lowest-order approximation, we can neglect the third term and only the first and the second
term contribute. By seeing the level correlator is given by R(s) = 1 + V −1Re

∫

k(r)dr, ac
conductivity becomes

σ(ω)
σcl

≈ Rwd

(ω

Δ

)

+
Δ

−iπω δβ,1, (3.4)

where Rwd(s) is a complexified function of the Wigner-Dyson level correlator Rwd(s), that
is, ReRwd(s) = Rwd(s). This reproduces the GE result, corrected by the second term from
nC in the time-reversal invariant system. The second term has exactly the same origin of
enhancement in the inverse participation ratio in a time-reversal invariant system and of the
positive magnetopolarizability [10, 11].

Higher corrections of 1/gn (n = 1, 2) were obtained by the literal expansion of 1/g
around 0D limit [8, 9]. As for nC, the result is consistent with its perturbative form in ω 
 Δ:

nC(0;ω 
 Δ) ≈ Δ
π

∑

q

1
Dq2 − iω . (3.5)

One may naively think that this may lead to the conventional weak localization effect, but
beware of the opposite sign! Rather, the local terms k(0) and nC(0) of (3.2) serve as negative
magnetoconductance. The effect of time-reversal invariance/breaking is delicate. For the
orthogonal case, the third term, which also becomes a diffusive form with twice as large
as nC(0), cancels out nC and reproduces the standard diagrammatical result (2.6) with σcl
instead of σ0. In contrast, the unitary case is even more subtle with the 1/g-correction absent.
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The term k(0) contributes as the same order as the current correlator. Combining these, we
have a perturbative result:

σper(ω)
σcl

− 1 =
(

2 − 4
d

)

(

Δ
π

∑

q

1
Dq2 − iω

)2

. (3.6)

In d → 2, the correction needs a careful treatment; the dimensional regularization provides
a familiar logarithmic dependence lnω at the order of O(1/g2), which conforms to the RG
analysis.

3.3. Connection with the Decomposition Formula:
Global and Gauge Symmetries

To understand further the nature of (3.2) as well as elucidating subtleties in earlier
calculations by NL-σ approach, we compare the form with the “decomposition formula”
[15], which underlies the previous evaluations of dynamical responses in the nonperturbative
region [8–10]. A large g allows us to decompose spatial correlation of the two-particle Green
function into the fast and slow spatial dependence, whose contribution consists of the three
channels: k, nC defined as before, and the Diffuson channel n(r) = −c−2〈STr[kQ(r)kQ(0)]〉
[15]:

ν−2〈〈r1|δ(ε +ω −H)|r2〉〈r2|δ(ε −H)|r1〉〉

= Re
[

∣

∣f(r12)
∣

∣

2(1 + k(0) + nC(0)) + n(r12)
]

.
(3.7)

One might expect to obtain (3.2) by putting the above in the coordinate representation of
(2.1). Indeed, by applying the velocity operators, we see that the terms k(0) and nC(0) agree
exactly in two expressions. However, discrepancy exists in the third term. It arises from the
way one uses the effective field theory, either after or before the operator (matrix element)
insertion. Within the effective field theory, localization effect is encoded as interaction
between diffusion modes arising from the nonlinear constraintQ2 = 1. Not onlyQ is “gauge-
invariant” but also the NL-σ model has a global symmetry, which leads to the (nonlinear)
diffusion equation 2D∇(Q∇Q) = −iω[Λ, Q]. Both of the symmetries must be conserved. One
can immediately see the danger in inserting the operator ∇ (in v̂) on n(r) because the kinetic
equationwith nonlinear constraint induces not only a linear term ofQ but also new composite
fields. To get a meaningful result, these “higher-order” contributions must be treated not to
violate both of the global and the gauge symmetries. The present argument also highlights
the importance of formulating the problem in terms of invariant correlators defined in (3.3).
Otherwise one could not convince oneself whether the invariance is manifested or not.



Journal of Probability and Statistics 7

3.4. Incorporating Approximation

A reliable estimate of ac conductivity in a finite volume system is obtained by taking account
both of the zero-mode integration and perturbative contributions around it [16]. After some
straightforward but elaborate calculation for (3.2), we obtain the result for the unitary case:

σ(ω)
σcl

= Rwd(s)
[

1 +
2(d − 2)

d
Π2

1(ω) −
4(d + 3)

d
Π2(ω)

]

− 2
iπs

d − 2
d

Π1(ω) +
[

4(d − 2)
d

sR′
wd(s) + s

2R′′
wd(s)

]

Π2(ω),

(3.8)

where s = ω/Δ, and Πk(ω) denotes a contribution from the diffusion propagator:

Πk(ω) =
Δk

πk

∑

q

1
(

Dq2 − iω)k
. (3.9)

A similar but more involved expression can be obtained for the orthogonal case. It shows
that except for a zero-mode contribution, a dominant (anomalous) term coincides with a
perturbative behavior; nonperturbative effect is confined approximately in the factor Rwd(s).
The above observation implies that as a practical incorporating approximation, we can use
the following form:

σ(ω)
σcl

≈ Rwd

(ω

Δ

)σper(ω)
σ0

(3.10)

for all universality classes, except for the zero-mode contribution of nC. The above form is
anticipatedwhen one attempts tomake both the GE behavior for smallω and the RG behavior
for large ω compatible. We have provided a solid justification microscopically through the
NL-σ model.

4. Invariant Formulation

4.1. σ(ω) in the NL-σ Model

We now outline how the expression (3.2) is derived. Following the approach [17–19], we first
rewrite the linear response σ(ω) directly within the framework of NL-σmodel by introducing
the external (background) gauge field A. Being expanded up to O(A2) in the exponent, we
define the observable σ(ω), which is known to be equivalent to the linear response theory.
The effect of the external fieldA is incorporated into NL-σ model byQ �→ Qg = gQg−1 where
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A = g−1∇g. The symmetry of the effective theory requires the generating functional Z[A] to
take the following form for any choice of external field A:

Z[A] =
∫

DQ exp
(

−F
[

gQg−1
])

= exp
π

c

∫

STr
[

σ(ω)
(∇Qg

)2 + 2iνωQgΛ
]

dr.

(4.1)

Here we define the observable σ(ω) on the right-hand side within the effective field theory.
Comparing between both sides up to O(A2), we find σ(ω) as

σ(ω)
σcl

STr[A,Λ]2 =
〈

STr[A, Q(r)]2
〉

+
2πσcl
cV

〈

(∫

STr∇Q(r)[A, Q(r)]dr
)2

〉

. (4.2)

4.2. Symmetrization into Invariant Correlators

Though (4.2) abovemay be useful to evaluate σ(ω), an explicit dependence on the choice ofA
conceals the global and gauge symmetry of the theory, inconvenient for an actual evaluation.
So we uncover the full symmetry by symmetrizing A. Following the idea in [18, 19], we
recast the formula in terms of invariant correlators. In replica theories, such a symmetrization
procedure is readily completed by using the Fierz identity. In the present case, however,
symmetrizingA over the relevant symmetry, that is, the superalgebra gl(2 | 2) for the unitary
case (osp(4 | 4) for the orthogonal) requires more careful treatment; the source fieldA belongs
to the Lie algebra with Grassmann structure rather than the Lie superalgebra itself [20]; we
need to modify the relevant Fierz identities accordingly. As will be shown in Appendix B, a
cautious symmetrization over the basis A = Xi ∈ gl(m | n) leads to the following rules for
gl(m | n):

STr[XiA]STr[XiB] −→ STr[kAkB], (4.3)

STr[XiAXiB] −→ STr[kA]STr[kB], (4.4)

where A and B are arbitrary supermatrices. For the time-reversal invariant system, A has to
be restricted to the orthosymplectic algebra osp(4 | 4 ), which is the time-reversal invariant
subspace of gl(4 | 4 ). A resulting symmetrization rule for osp is found to be (Appendix B)

2STr[XiA]STr[XiB] −→ STr
[

kAk
(

B + B
)]

,

2STr[XiAXiB] −→ STr[kA]STr[kB] − STr
[

kACBtC
]

.

(4.5)

By using the above symmetrization, (4.2) is found to be equal to (3.2).



Journal of Probability and Statistics 9

4.3. Comparison with Replica Formulations

Quite interestingly, a striking discrepancy between supermatrix and replica formulations
emerges upon symmetrization. In the study of RG treatment of the conductivity, correspond-
ing formulae (for the ratio with σ0) have been derived long before in replica methods. While
an unsymmetrized formula corresponding to (4.2) looks almost identical [17], a symmetrized
formula in the replica method [18, 19] comprises only the third term, Dxx of (3.2) for all three
universality classes. This is so because, instead of (4.3) and (4.4), symmetrization rules for
replica theories are (See Appendix B)

Tr[XiA]Tr[XiB] −→ Tr[AB],

Tr[XiAXiB] −→ Tr[A]Tr[B].
(4.6)

Accordingly, no local terms survive after symmetrization.
In the perturbative treatment, such a difference does not show up. Both the

symmetrized and the unsymmetrized replica/supermatrix methods produce exactly the
same perturbative RG results for all the three universality classes [17–19]. On the other hand,
this is not true for nonperturbative contributions. Though some successful attempts exist to
try to obtain nonperturbative Wigner-Dyson correlations [21–23], it is unclear whether the
replica method will be able to account for a full nonperturbative effect such as (3.8) or (3.10),
to the author’s knowledge. The supermatrix formulation clearly has a better handle to work
on both perturbative and nonperturbative contributions.

5. Conclusion

In conclusion, we have examined the dynamical conductivity σ(ω) in small metallic grains
through invariant correlators of the supermatrix NL-σ model. The present formulation
allows us to understand that T-invariance can either enhance or reduce σ(ω), depending
on the frequency range. We have provide a unified point of view in understanding various
perturbative/nonperturbative and massive/massless contributions. Our expression (3.2) is
quite generic, derived from the symmetry of the effective field theory. Yet it is of much
practical use in evaluating dynamical responses. A striking feature of the formula is the
presence of local terms, k(0) and nC(0). We believe that the formula will gives a reliable
way to account for various interesting nonperturbative effects such as (multi)fractality or
“prelocalized states” in the conductivity. Our derivation is algebraic, so that the result can be
extended to other universality classes described by supermatrix NL-σ models [24].

Appendices

A. Notational Conventions

We introduce c × c supermatrices and define the even/odd grading |i| = 0 (1) for a bosonic
(fermionic) component. We define the superparity(=grading) matrix kij = (−1)|i|δij , and the
supertrace by STr[M] = Tr[kM]. The general linear superalgebra gl(m | n) is a generic
supermatrix with the dimension of (m+n)×(m+n). The orthosymplectic algebra osp(2m | 2n)
is a time-reversal invariant subspace of gl(2m | 2n). We define the time-reversal matrix C
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to conform to the standard definition of osp(n | n) in literatures by introducing the time-
reversal operation X ≡ −C−1XtC. Note C2 = ±k for the orthogonal/symplectic class. The
supermatrix fieldQ is defined as the adjoint representation of g, isomorphic to the symmetric
spaceG/(K×K), where g = gl(2 | 2),G = GL(2 | 2) andK = GL(1 | 1) for the unitary universal
class; g = osp(2 | 2), G = OSp(2 | 2) and K = OSp(1 | 1) for the orthogonal/symplectic
universality class.

B. Symmetrization Procedures

B.1. Symmetrization of gl(n)

For conventional Lie algebras, the symmetrization is completed simply by the Fierz identity
(the Casimir relation). For actual calculations, we find it advantageous to work on the
standard basis (eab)ij := δaiδbj for gl(n) rather than any particular choice of orthogonal basis
Xi. The Fierz identity for gl(n) on the standard basis can be checked by a direct calculation as

∑

a,b,c,d

gab,cd(eab)ij(ecd)kl = δilδjk, (B.1)

where gab,cd := Tr[eabecd] = δadδbc is a metric and gab,cd is the inverse of it. Note that
gab,cd is not the Cartan metric defined by the Killing form, but the one associated with the
invariant bilinear form B(X,Y ) = Tr[XY ]. In replica formulations, we can utilize the above
Fierz identity for symmetrizing as

∑

a,b,c,d

gab,cdTr[eabA] Tr[ecdB] = Tr[AB],

∑

a,b,c,d

gab,cdTr[eabAecdB] = Tr[A]Tr[B].
(B.2)

B.2. Symmetrization of gl(m | n)
We next extend the Fierz identity above to Lie superalgebras gl(m | n). We can achieve
it by substituting the invariant bilinear form B(X,Y ) = STr[XY ] and taking account of
anticommuting properties correctly. In doing so, we need to bookkeep a component i by the
even/odd grading |i|. For a standard basis (eab)ij = δaiδbj of gl(m | n), an explicit calculation
leads to

∑

a,b,c,d

gab,cd (eab)ij(ecd)kl = (−1)|j|δilδjk, (B.3)

where the (nonsymmetric) metric is defined by

gab,cd = STr[eabecd] = (−1)|a|δadδbc,

gab,cd =
(

gab,cd
)−1 = (−1)|b|δadδbc.

(B.4)



Journal of Probability and Statistics 11

B.3. Symmetrization of Lie Algebras with the Grassmann Structure

Finally we investigate the symmetrization for Lie algebras with the Grassmann structure,
which is needed for (4.3) and (4.4). Instead of using a bosonic/fermionic eab satisfying the Lie
superalgebra, we use a new base Eab = λabeab including a corresponding bosonic/fermionic
Grassmann parameter λab. Note that Eab satisfies the Lie algebra with a usual bracket, and
the fieldA = Xi in (4.3) belongs to the algebra generated by Eab rather than the superalgebra
itself.

Now let us consider the symmetrization

STr[EabA]STr[EcdB], (B.5)

which is a counterpart of (4.3) in the standard basis. We see that terms with the grading
|Eab||Ecd| = 1 have an antisymmetry in exchanging Eab and Ecd, so that a correct
symmetrization is

∑

a,b,c,d

(−1)|Eab ||Ecd |gab,cdSTr[EabA]STr[EcdB]. (B.6)

A straightforward calculation using (B.3) leads to

∑

a,b,c,d

(−1)|Eab ||Ecd |gab,cdSTr[EabA]STr[EcdB]

=
∑

i,j

(−1)|j|λijλji(Ak)ji(Bk)ij = STr[AkBk],
(B.7)

where λijλji = 1 in the last equality.
Equation (4.4) can be derived similarly by considering

∑

a,b,c,d

(−1)|Eab ||Ecd |gab,cdSTr[EabAEcdB]. (B.8)

Orthosymplectic Algebras

Since the orthosymplectic algebras osp(2m | 2n) is a T-invariant subspace of gl(2m | 2n),
the only modification needed is to restrict all the basis onto the invariant subspace satisfying
Xi = Xi. We can construct those T-invariant bases εab from eab ∈ gl(2m | 2n) as

εab =
1
2
(eab + eab),

eab = −(−1)|a||b|kC−1ebaC.

(B.9)

We can follow the same steps for osp(2m | 2n) as for the gl(m | n), obtaining the
symmetrization.
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