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This paper proposes a block bootstrap method for measuring mortality risk under the Lee-Carter
model framework. In order to take account of all sources of risk (the process risk, the parameter
risk, and the model risk) properly, a block bootstrap is needed to cope with the spatial dependence
found in the residuals. As a result, the prediction intervals we obtain for life expectancy are more
accurate than the ones obtained from other similar methods.

1. Introduction

For actuarial pricing and reserving purposes, the mortality table needs to be projected to
allow for improvement in mortality to be taken into account. It is now a well-accepted fact
that mortality development is difficult to predict; therefore, a stochastic mortality modelling
approach has been advocated [1, 2]. For a review of recent developments in stochastic
mortality modelling, interested readers are referred to Pitacco [3] and Cairns et al. [4].

Under the framework of a stochastic mortality model, future mortality rates are
random as are the other quantities derived from the mortality table. In order to manage
the mortality risk properly, we need to assess the uncertainty coming from the mortality
dynamics carefully.

There are three types of risk embedded in adopting a stochastic mortality model
(see [5]):

(a) the “process risk”, that is, uncertainty due to the stochastic nature of a given model;

(b) the “parameter risk”, that is, uncertainty in estimating the values of the parameters;
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(c) the “model risk”, that is, uncertainty in the underlying model (actual trend is not
represented by the proposed model).

It is important to take account of all sources of variability to gain an accurate
understanding of the risk. Since the quantities of interest, such as life expectancies and
annuity premiums, are normally related to the mortality rates at different ages in a nonlinear
format, a theoretical analysis is intractable. In the literature, simulation techniques have been
proposed to measure the mortality risk under such circumstances.

In this paper, we focus on investigating the mortality risk under the framework of
the Lee-Carter model using a block bootstrap method. Lee and Carter [6] proposed to
describe the secular change in mortality via a stochastic time-varying index that is not directly
observable. In this context, future mortality rates (as well as the quantities derived from the
mortality rates) are all influenced by this stochastic index. In the original paper of Lee and
Carter, it was suggested that the variability from the index dominates all the other errors in
forecasting mortality rates and the associated life expectancies, especially when it comes to
long-term forecasting. We are interested in verifying this statement, and in providing accurate
risk assessment by considering all sources of variability.

In particular, we aim at obtaining prediction intervals for forecasted life expectancies
using a residual-based block bootstrap. Recently, various bootstrap methods have been
proposed to measure mortality risk, as seen in Brouhns et al. [7] for the parametric bootstrap,
in Brouhns et al. [8] for the semiparametric bootstrap, and in Koissi et al. [9] for the
ordinary residual bootstrap. In those papers, the implicit assumption is that the residuals
after fitting the model to the data are independent and identically distributed. However,
in our experience, correlations across age and year can be observed in the residuals. When
calculating prediction intervals by bootstrap methods, there may be an underestimation of
the mortality risk if correlations in residuals are not properly handled.

Though it may not be easy to see how different sources of uncertainty may be
correlated with (and affect) one another, the block bootstrap partially retains the underlying
dependence structure in the residuals and generates more realistic resamples [10]. As shown
in Section 5, the prediction intervals we obtained from the block bootstrap are wider and
more accurate than the ones obtained from the aforementioned methods.

This paper is organized as follows. In Section 2, we introduce the data and notation
used in this paper. In Section 3, we describe the Lee-Carter model and the estimation
method. We also discuss the challenges related to measuring mortality risk in the associated
projections. The (block) bootstrap method and its application in mortality risk are provided
in Section 4. Our proposed method is applied to Swedish male mortality data, and the results
are presented in Section 5, followed by a discussion in Section 6.

2. Mortality Data, Definitions, and Notation
2.1. Data Description

As a test case for our proposed technique, we use the mortality data on Swedish males from
1921 to 2007, freely provided by the “Human Mortality Database” [11]. The data from 1921
up to 1960 are used to estimate the model parameters, and the data since 1961 are used to
check if our proposed technique has improved the calibration of mortality risk in the long-
term prediction.
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2.2. Definitions and Notation

The following terminology will be used at various points in this paper. For an individual at
integer age x and calendar time t, we have the following:

(i) Dxt is the number of deaths at integer age x in calendar time t.

(ii) ETRxt is the exposure-to-risk at integer age x in calendar time t, that is, the person-
years lived by people aged x in year t.

(iii) μ(x + s, t), 0 ≤ s ≤ 1 is the force of mortality. This is assumed to be constant within
each year of age, that is, μ(x + s, t) = μxt, 0 ≤ s ≤ 1.

(iv) mxt is the central mortality rate and is defined as Dxt/ETRxt. Under the constant
force of mortality assumption, mxt = μxt.

(v) qx(t) is the probability that an individual aged x in year t dies before reaching age
x+1. px(t) = 1−qx(t). Under the constant force of mortality assumption, px(t) = e−μxt .

(vi) e0 is the life expectancy at birth and is calculated as

e0 =
1
2
+
∞∑

k=1

k−1∏

x=0

px(t). (2.1)

In this paper, we investigate how e0 is influenced by the uncertainty coming from projections
under the Lee-Carter model.

3. The Lee-Carter Modelling Framework

3.1. Model Description

Lee and Carter [6] proposed a two-stage dynamic procedure to describe the secular change
in the logarithm of age-specific central rates:

logmxt = ax + bxkt + εxt, (3.1)

kt = kt−1 + c + ξt with i.i.d. ξt ∼N
(

0, σ2
)
. (3.2)

In the first stage, (3.1) is fit to the historical mortality data (from year 1 to t0, i.e.,
t = 1, . . . , t0) to estimate the parameters ax, bx, and kt. The interpretation of the parameters
is as follows. ax describes the general age shape of the log central rates, while the actual log
rates in a specific year change according to a time-varying mortality index kt modulated by
an age response variable bx. In other words, the profile of bx indicates which rates decline
rapidly and which decline slowly over time in response to changes in kt. εxt contains the
error that is not captured by the model at age x in year t.

In the second stage, the estimated values of kt from the first stage are fit to a random
walk (3.2). According to (3.2), the dynamics of kt follow a random walk with drift parameter
c and normal noise ξt with mean 0 and variance σ2.
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3.2. Estimation of the Parameters

Instead of using least-squares estimation via a singular value decomposition (SVD) to
estimate ax, bx, and kt as in the original Lee and Carter paper, we adopt the methodology
proposed by Brouhns et al. [12]. The main drawback of the SVD method is that the errors
εxt in (3.1) are assumed to be homoscedastic, which is not realistic. In order to circumvent
the problems associated with the SVD method, Brouhns et al. [12] proposed the Poisson
assumption to be applied to the death counts Dxt. That is,

Dxt ∼ Poisson(λxt), (3.3)

with

λxt = ETRxtmxt,

mxt = exp(ax + bxkt).
(3.4)

We now can write the log-likelihood function for the parameters ax, bx, and kt:

l(ax, bx, kt) =
∑

x,t

[
Dxt(ax + bxkt) − ETRxt exp(ax + bxkt)

]
+ constant. (3.5)

Maximizing (3.5) iteratively provides the MLE estimates âx, b̂x, and k̂t [12].

3.3. Uncertainties in the Lee-Carter Mortality Projections

Let âx, b̂x, k̂t, ĉ, and σ̂ represent all the estimated parameters obtained from fitting the Lee-
Carter model to the data (from year 1 to t0). In order to forecast the time-varying index ktn
years ahead given all the data up to time t0, formula (3.2) is extrapolated as

kt0+n = kt0 + ĉ · n +
n∑

j=1

ξj , with i.i.d. ξj ∼N
(

0, σ̂2
)
. (3.6)

Here, ξj represents the uncertainty coming from forecasting kt.
Accordingly, the future central mortality rates mxt in the calendar year tn(= t0 + n) are

given by

logmxtn = âx + b̂xktn , (3.7)

where âx and b̂x remain constant. From these rates, we can construct projected life tables and
calculate the associated life expectancies using the relations given in Section 2.2.

Under the Lee-Carter model, kt follows a stochastic process. Further, according to
model (3.7), all future mortality rates in the same year are affected by the same time-
varying random variable kt, where ξt is the sole error source of the model. Under this
circumstance, the projected life expectancy given in formula (2.1) can be viewed as a sum
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of a sequence of comonotonic variables, since all survival probabilities can be written as
monotone transformations of the same underlying random variable (which is the noise ξt
in this context) so that they are perfectly positively dependent. Comonotonicity allows us to
express the quantiles for projected life expectancies in terms of the quantiles of ξt analytically.
According to Denuit [13], the p-percentile for e0 in the forecast year tn taking account of only
the uncertainty from kt can be computed as

F−1
e0(tn)

(
p
)
=

1
2
+
∑

h≥1

exp

(
−
h−1∑

x=0

exp
(
âx + b̂x

(
kt0 + nĉ + σ̂

√
nΦ−1(1 − p

)))
)
. (3.8)

The Denuit quantile formula (3.8) will be used in this paper as a benchmark to compare with
our simulated prediction intervals.

Of course, uncertainty may also come from errors in parameter estimation and/or
from model discrepancy. If the model is properly specified, it is reasonable to expect that
these other sources of error are minor. Under the assumption that different sources of error at
a given age are uncorrelated and that the error sources other than kt are uncorrelated across
age, Lee and Carter [6, in Appendix B] estimated that these other types of error contribute
less than 2% of the forecast error for life expectancy e0 for forecast horizons greater than 10
years. However, this assertion is not supported by the data; inspection of the residuals reveals
substantial correlations across age and year [9, 14]. In other words, spatial dependence has
been found in the residuals. It has also been found that the actual coverage of the prediction
intervals based solely on the process risk of kt is lower than their nominal level (see [14]). This
indicates the need for appropriate methods to take into account different types of uncertainty.

3.4. The Deviance Residuals

As mentioned above, we need to check the residuals to assess model adequacy. Under
the (Poisson) Lee-Carter model, deviance residuals can be used for this purpose in a
similar manner to how ordinary residuals are used in regression analysis. For reference, see
Maindonald [15]. Deviance residuals are calculated as

rD = sign
(
Dx,t − D̂x,t

)[
Dx,t ln

(
Dx,t

D̂x,t

)
− (Dx,t − D̂x,t)

]1/2

. (3.9)

4. Bootstrap Method

4.1. Ordinary Bootstrap Method

It is not possible to analytically obtain prediction intervals for e0 taking account of all
sources of variability. One numerical method that has been employed for this purpose is
the bootstrap. The basic idea of the bootstrap is to artificially generate resamples of the data
which can be used as a basis for approximating the sampling distribution of model parameter
estimates. Koissi et al. [9] give a brief overview of the bootstrap and also some references in
the context of applying the bootstrap method to the Lee-Carter model. They use an ordinary
deviance residual-based bootstrap for this problem.



6 Journal of Probability and Statistics

Briefly, their approach is to fit the Lee-Carter model to the data and to obtain deviance
residuals. They then sample with replacement from these residuals to obtain resampled
residuals. These resampled residuals are transformed back to get resampled death counts.
The Lee-Carter model parameters are estimated from this artificially generated data set,
and the corresponding kt process is also fit and resimulated. As a result, we obtain a
projected mortality table (see Section 3.3 for projection method). The process is repeated
a large number of times (say, N = 5000) giving a collection of projected mortality tables.
Approximate 90% prediction intervals for e0 are given by the 5% percentile and 95%
percentile of the e0’s derived from these tables. Better bootstrap prediction intervals have
been proposed (see, e.g., [16]), but any improvement in accuracy will depend heavily on
the validity of the Lee-Carter model assumption. See also D’Amato et al. [17] for a stratified
bootstrap sampling method which reduces simulation error.

4.2. Block Bootstrap Method

The ordinary bootstrap is not valid in case of spatial dependence, since it is based on
simple random sampling with replacement from the original sample. In order for the
bootstrap sampling distribution of the statistic of interest to be a valid approximation of
the true sampling distribution, it is thus necessary for the original sample to be a random
sample from the underlying population. Spatial dependence represents a violation of this
assumption; it can cause either a systematic overestimation or systematic underestimation
of the amount of uncertainty in a parameter estimate, depending upon whether negative or
positive dependence dominates.

Confidence and prediction intervals constructed from bootstrap samples in the
presence of positive spatial autocorrelation will thus be too narrow so that their actual
coverage probabilities will be lower than their nominal levels. In the presence of negative
autocorrelation, actual coverage levels will systematically exceed nominal levels.

One remedy for this problem is the block bootstrap, which gives improved
approximate prediction intervals, taking account of the spatial dependence, at least locally.
The basic idea is to resample rectangular blocks of observations, instead of individual
observations one at a time. A full bootstrap resample is obtained by concatenating randomly
sampled blocks of observations. Thus, apart from the “seams” between the blocks, some of
the dependence between neighboring observations will be retained in a bootstrap resample. If
the blocks are taken large enough, then most of the dependence between observations located
near each other will be retained in the bootstrap resample. Of course, block sizes should not
be taken too large; otherwise, the resamples begin to resemble the original sample too closely,
and this will again cause uncertainties to be underestimated. The method provides reasonable
approximations (for large samples) in much the way that the m-dependent central limit
theorem provides a normal distribution approximation for averages of locally dependent
data. It should be noted that the method will fail without adjustment for data with long
memory. A full account of the block bootstrap for time series is given by Davison and
Hinkley [16], and the paper by Nordman et al. [18] describes the spatial block bootstrap
we will employ. See Taylor and McGuire [19] for another actuarial application of bootstrap
for dependent data.

To set up a new artificial set of residuals, we start with an array, which has the same
dimensions as the original matrix of residuals. The empty array is then partitioned into
smaller rectangular blocks. Each block is replaced by a block of the same size, which is
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Figure 1: Parameter âx based on the Swedish male 1921–1960 mortality data.

randomly selected from the original matrix. These random blocks are constructed as follows.
First, uniformly randomly select an element from the original matrix. The associated block
consists of all residuals in the appropriately sized rectangle to the southeast of the chosen
point. In cases where part of the rectangular block falls outside the original matrix, a periodic
extension of the matrix is used to fill out the remaining cells of such a rectangle. As stated
earlier, more details can be found, for example, in Nordman et al. [18].

Nordman et al. [18] give advice on choice of (square) block size for situations where
the parameter of interest is a smooth function of the mean. The optimal block size is based
on a nonparametric plug-in principle and requires 2 initial guesses (see the appendix). Our
parameters of interest do not completely satisfy their assumptions, but we have experimented
with their recommendations. In the absence of firm theoretical guidance, we have found it
useful to plot a correlogram of the original raw residuals and compare with the resampled
residuals. The correlogram is a plot of the spatial autocorrelation against distance. See
Venables and Ripley [20] for more information. If the correlograms match reasonably well,
this gives us confidence in our block choice.

5. Applications to Data

5.1. Fitting Performance on Swedish Males 1921 to 1960

We fit the Lee-Carter model to the Swedish male data. The estimated parameters âx, b̂x, and k̂t
are displayed in Figures 1, 2, and 3. We then computed the deviance residuals. Contour maps
are plotted in Figure 4, while the correlogram plots are given in Figure 5. For comparison
purposes, we put together the results based on the original deviance residuals and the
resampled residuals of different block sizes.

Both plots are highly suggestive of spatial dependence, because of the occurrence of
large patches of large positive and large negative residuals, that is, clustering in Figure 4(a).
Evidence of short range dependence is also seen in the correlogram of the raw residuals.
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Figure 2: Parameter b̂x based on the Swedish male 1921–1960 mortality data.

4035302520151050

(years)

−50

−40

−30

−20

−10

0

10

20

30

40

P
ar

am
et

er
k
t

Figure 3: Parameter k̂t based on the Swedish male 1921–1960 mortality data.

To see if such clustering could be due purely to chance, we simulated from the (Poisson)
Lee-Carter model (three times) and fit the model to the simulated data and plotted the
deviance residuals. The results are shown in Figures 6 and 7. These plots show no sign of
spatial dependence; clusters appear to be much smaller than for the real data. We conclude
that the ordinary bootstrap will not give valid prediction intervals. Thus, we employed a
block bootstrap as described in the previous section.

5.2. Prediction Intervals for e0 Based on Block Bootstrap

We considered a number of block sizes. The theoretical block sizes (suggested by
Nordman et al. [18]) depend on the actual parameter being estimated, and they also depend
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Figure 4: Contour maps for deviance residuals: (a) raw, (b) 1 × 1, (c) 8 × 4, and (d) 15 × 10.

Table 1: The theoretical block sizes for the forecast horizons 1 to 46 years.

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
m1 5 11 11 10 5 6 9 13 12 14 13 12 11 6 5 3
m2 20 19 13 15 17 18 17 18 11 15 18 21 19 17 20 18
t 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
m1 6 8 10 11 13 6 2 3 1 9 10 11 10 9 7 9
m2 16 18 22 21 21 19 17 14 14 11 8 2 11 7 10 15
t 33 34 35 36 37 38 39 40 41 42 43 44 45 46
m1 9 7 1 4 1 7 8 8 12 11 10 11 10 10
m2 16 16 11 4 0 10 10 12 8 12 15 8 9 14

on the initial guesses. The optimal sizes estimated depend on different forecast horizons.
Table 1 gives two sets of block sizes: one (marked as m1) is based on initial guesses of 5 × 5
and 10 × 10, and the other (marked as m2) on 10 × 10 and 20 × 20.

Note that the results vary a lot, depending on the initial guess as well as the forecast
horizon. Thus, it is not clear whether these block sizes are really the best, and we checked
correlograms for some different block sizes including rectangular ones. Figure 5 shows
correlograms for some of the better cases (raw residuals, and 8 × 4, 10 × 5, 15 × 10, and 20 × 12
block sizes). We have chosen to work with 15 × 10 blocks, since that case matches the raw
residuals most closely.
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Figure 5: Correlograms for resampled deviance residuals based on different block sizes.

As further confirmation, revisit the residual plots in Figure 4. These correspond to (a)
raw residuals, (b) 1 × 1, (c) 8 × 4, and (d) 15 × 10 block sizes. Quantitatively, one looks for
the same kind of “patchiness” in the bootstrap residuals as can be seen in the raw residuals.
There are obvious discrepancies when the block size is too small; there are no large patches
of large positive or large negative residuals at the 1 × 1 block size, for the larger block sizes,
we see patterns which are more like the patterns seen in the raw residuals.

Prediction intervals are displayed in Figure 8. We have plotted the 90% pointwise
prediction bands based on the Denuit quantile formula, the ordinary bootstrap and the 15×10
block bootstrap. The observed life expectancy e0 is also shown. We comment on these results
in the next section.

6. Discussion

In Figure 8, we note that the theoretical prediction intervals calculated from the Denuit
quantile formula is the narrowest. This makes sense since those intervals have only accounted
for the uncertainty in forecasting kt’s future random path. With bootstrap methods, sampling
errors in the parameter estimates and partial model uncertainty have also been considered.
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Figure 7: Correlograms for simulated deviance residuals.

Therefore, the prediction intervals from simulations are expected to be wider than the
theoretical ones, which has been confirmed by our results as well.

Secondly, while the prediction intervals from the ordinary bootstrap are only
marginally wider than their theoretical counterparts, we note that the prediction intervals
from the block bootstrap make a substantial difference. This is due to the fact that the
deviance residuals are not pattern-free random noise. When this is the case, the residuals
may carry important information about the correlations among the estimated parameters,
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and/or may indicate some type of model risk. Ordinary bootstrap resampling with
replacement then destroys this information and thereby diminishes the variability. Therefore,
the block bootstrap is needed to obtain accurate prediction intervals. By taking into account
the other types of risk properly, we obtain wider prediction intervals which serve as a better
representation of the uncertainty associated with mortality predictions.

Another observation concerns the importance of the kt as a component of the
variability. Previously, it has been claimed that the uncertainty from kt dominated all other
errors. This is again an argument that is only true under restricted conditions (see Section 3.3
for more details). Figure 9 presents kt’s share in the total forecast error and shows that other
sources of variability are not negligible even when the forecast horizon becomes very long.

Finally, we note that most of the observed life expectancies lie within our prediction
intervals, but some of them (mainly in the later years) fall outside, indicating that there may
still be factors influencing mortality that are not explained by the Lee-Carter model, even with
dependence accounted for. This is certainly a cause for concern: model misspecification is a
problem when we use the Lee-Carter model for long-term mortality prediction. Sometimes
introducing more variables may improve model fitting and remove correlations in the
residuals to some extent. Examples of those models include Renshaw and Haberman [21] that
allows for the cohort period effect and Renshaw and Haberman [22] that adds a second or
even third bilinear term to the Lee-Carter for better fit. However, as shown in Dowd et al. [23]
and Cairns et al. [24], those models may suffer from nonrobustness in parameter estimation
and sometimes generate implausible or unstable predictions. It is our belief that simpler
models are preferable for long-term prediction, since they run less risk of being overfitted.

However, we remark that the block bootstrap is not able to solve the fundamental
problem of model misspecification, which is not the purpose of the paper nor a problem
that can be easily fixed. This paper tackles the problem from a different perspective—we
adopt the Lee-Carter model framework but work on deriving more accurate measures of
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the uncertainty degree in mortality prediction. There are other approaches using a similar
idea—for example, the Bayesian method and MCMC simulation as discussed by Cairns et al.
[25]. The advantage of our proposed block bootstrap method is in that it is distribution-free.
Without knowing the exact form of correlation among errors, we are able to provide more
accurate prediction intervals for mortality predictions.

Appendix

A. Block Size Selection

For completeness, we describe the block selection strategy suggested by Nordman et al. [18].
That approach uses a version of spatial bootstrap based on nonoverlapping blocks, and it is
designed to minimize the asymptotic mean-squared error in the estimation of the variance of
the parameter estimators.

Accordingly, the asymptotically optimal block size is given by

bOL = bNOL
√

1.5, (A.1)

where bNOL is the asymptotically optimal block size for the bootstrap with nonoverlapping
blocks.

Let b1 and b2 be initial guesses at block sizes which are chosen so that b2 ∝ b3/4
1 . Then

the optimal nonoverlapping block size is given by

bNOL =

(
B2

0 row(rD)col(rD)
2σ2(b1)

)1/4

, (A.2)
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where σ2(b) is the sample variance of the bootstrap estimates of the parameter estimates
based on a b × b block, and

B0 = 2b2

(
σ2(b2) − σ2(2b2)

)
. (A.3)

Acknowledgments

This work was supported in part by the Natural Sciences and Engineering Research Council
of Canada. The authors would like to thank Bifeng Xie for his research assistance and two
anonymous referees for their helpful suggestions.

References

[1] R. Willets, “Mortality in the next millenium,” in Proceedings of the meeting of the Staple Inn Actuarial
Society, December 1999.

[2] GAD, “National population projections: review of methodology for projecting mortality,” Tech. Rep.
8, Government Actuary’s Department, 2001, National Statistics Quality Review Series.

[3] E. Pitacco, “Survival models in a dynamic context: a survey,” Insurance: Mathematics & Economics, vol.
35, no. 2, pp. 279–298, 2004.

[4] A. J. G. Cairns, D. Blake, and K. Dowd, “Pricing death: Frameworks for the valuation and
securitization of mortality risk,” ASTIN Bulletin, vol. 36, no. 1, pp. 79–120, 2006.

[5] A. J. G. Cairns, “A discussion of parameter and model uncertainty in insurance,” Insurance:
Mathematics and Economics, vol. 27, no. 3, pp. 313–330, 2000.

[6] R. D. Lee and L. R. Carter, “Modeling and forecasting U.S. mortality,” Journal of the American Stotistical
Association, vol. 87, pp. 659–675, 1992.

[7] N. Brouhns, M. Denuit, and J. Vermunt, “Measuring the longevity risk in mortality projections,”
Bulletin of the Swiss Association of Actuaries, vol. 2, pp. 105–103, 2002.

[8] N. Brouhns, M. Denuit, and I. Keilegom, “Bootstrapping the Poisson log-bilinear model for mortality
forecasting,” Scandinavian Actuarial Journal, vol. 3, pp. 212–224, 2005.

[9] M.-C. Koissi, A. F. Shapiro, and G. Högnäs, “Evaluating and extending the Lee-Carter model for
mortality forecasting: Bootstrap confidence interval,” Insurance: Mathematics and Economics, vol. 38,
no. 1, pp. 1–20, 2006.

[10] B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap, vol. 57 of Monographs on Statistics and
Applied Probability, Chapman and Hall, New York, NY, USA, 1993.

[11] Human Mortality Database, Berkley: University of California and Rostock: Max Planck Institute for
Demographic Research, 2008, http://www.mortality.org/.

[12] N. Brouhns, M. Denuit, and J. K. Vermunt, “A Poisson log-bilinear regression approach to the
construction of projected lifetables,” Insurance: Mathematics and Economics, vol. 31, no. 3, pp. 373–393,
2002.

[13] M. Denuit, “Distribution of the random future life expectancies in log-bilinear mortality projection
models,” Lifetime Data Analysis, vol. 13, no. 3, pp. 381–397, 2007.

[14] R. Lee and T. Miller, “Evaluating the performance of the Lee-Carter method for forecasting mortality,”
Demography, vol. 38, no. 4, pp. 537–549, 2001.

[15] J. H. Maindonald, Statistical Computation, John Wiley & Sons, New York, NY, USA, 1984.
[16] A. C. Davison and D. V. Hinkley, Bootstrap Methods and Their Application, vol. 1 of Cambridge Series in

Statistical and Probabilistic Mathematics, Cambridge University Press, Cambridge, UK, 1997.
[17] V. D’Amato, S. Haberman, and M. Russolillo, “Efficient bootstrap applied to the Poisson Log-Bilinear

Lee Carter model,” in Proceedings of the Applied Stochastic Models and Data Analysis (ASMDA ’09), L.
Sakalauskas, C. Skiadas, and E. K. Zavadskas, Eds., pp. 374–377, 2009.

[18] D. J. Nordman, S. N. Lahiri, and B. L. Fridley, “Optimal block size for variance estimation by a spatial
block bootstrap method,” The Indian Journal of Statistics, vol. 69, no. 3, pp. 468–493, 2007.

[19] G. Taylor and G. McGuire, “A synchronous bootstrap to account for dependencies between lines of
business in the estimation of loss reserve prediction error,” North American Actuarial Journal, vol. 11,
no. 3, pp. 70–88, 2007.



Journal of Probability and Statistics 15

[20] W. Venables and B. Ripley, Modern Applied Statistics Using S, Springer, New York, NY, USA, 4th edition,
2002.

[21] A. E. Renshaw and S. Haberman, “A cohort-based extension to the Lee-Carter model for mortality
reduction factors,” Insurance: Mathematics and Economics, vol. 38, pp. 556–570, 2006.

[22] A. E. Renshaw and S. Haberman, “Lee-Carter mortality forecasting with age-specific enhancement,”
Insurance: Mathematics & Economics, vol. 33, no. 2, pp. 255–272, 2003.

[23] K. Dowd, A. J. Cairns, D. Blake, G. D. Coughlan, D. Epstein, and M. Khalaf-Allah, “Backtesting
Stochastic Mortality Models: An Ex-Post Evaluation of Multi-Period-Ahead Density Forecasts,”
Pensions Institute Discussion Paper PI-0803.

[24] A. J. G. Cairns, B. David, K. Dowd et al., “A quantitative comparison of stochastic mortality models
using data from England and wales and the United States,” North American Actuarial Journal, vol. 13,
no. 1, pp. 1–35, 2009.

[25] A. J. G. Cairns, D. Blake, and K. Dowd, “A two-factor model for stochastic mortality with parameter
uncertainty: Theory and calibration,” Journal of Risk and Insurance, vol. 73, no. 4, pp. 687–718, 2006.


