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Portfolio optimization with respect to different risk measures is of interest to both practitioners and
academics. For there to be a well-defined optimal portfolio, it is important that the risk measure be
coherent and quasiconvex with respect to the proportion invested in risky assets. In this paper we
investigate one such measure—conditional capital at risk—and find the optimal strategies under
this measure, in the Black-Scholes continuous time setting, with time dependent coefficients.

1. Introduction

The choice of risk measure has a significant effect on portfolio investment decisions.
Downside risk measures—that focus attention on the downside tail of the distribution of
portfolio returns—have received considerable attention in the financial world. Value at risk
(VaR) is probably the most famous among these measures, having featured heavily in various
regulatory frameworks. It can be defined for a random variable X and a confidence level α by
VaR(X) = E[X] − qα, where qα is the α-quantile of X (see e.g., [1, Equation (1.2)]) (Another
common definition is that the VaR of a loss distribution L is the smallest number xα such
that P[L > xα] = α. This is equivalent to the definition given here if we define the loss of
the portfolio X to be given by L = E[X] − X, and identify xα = VaR(X).). A closely-related
downside risk measure is capital at risk (CaR), defined in [2] (see also [3, 4]) as the difference
between the riskless investment and the quantile qα.

Quantile-based risk measures such as VaR and CaR suffer from several shortcomings.
First, while they measure the best of the worst outcomes at the 100(1 − α)% confidence
level, they do not answer the question of how severe the loss can be. Also, one of the
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most important concerns is that these measures are not in general subadditive; that is,
when used to measure risk, they do not always satisfy the notion that the diversification
should not create more risk [5]. Finally, as illustrated in [6], VaR can exhibit multiple local
extrema.

These issues were addressed in the widely cited article by Artzner at al. [7], where the
authors define coherent risk measures by four conditions that such measures should satisfy.
The article motivated a number of authors [5, 8–13] to propose and investigate different types
of coherent risk measures, all of which are tail mean-based risk measures.

One such measure, that does not suffer from the critical shortcomings of VaR and CaR,
is conditional capital at risk (CCaR). This is defined (in [14]) as the difference between the
riskless investment and the conditional expected wealth, under the condition that the wealth
is smaller than the corresponding quantile, for a given risk level. As such, this measure
provides an indication of the likely severity of the loss in the event that the loss exceeds a
given quantile. In this paper we prove that CCaR is strongly quasiconvex as a function of the
portfolio, which is an essential property for optimization. We investigate conditional capital
at risk in a multiasset Black-Scholes setting, in continuous time, and with time-dependent
coefficients. We generalize and extend the optimization approach of Emmer at al. (see [2, 14])
to the continuous-time setting.

The outline of this paper is as follows. In Section 2, we give the notation and define
the portfolio process and CCaR. Section 3 provides the proof that CCaR is a coherent risk
measure and that it satisfies the property of strong quasiconvexity. In Section 4, we derive an
analytical solution for the minimal CCaR problem, up to a scalar constant which has to be
evaluated numerically. Section 5 is devoted to the derivation of an analytical strategy for the
maximal expected wealth, subject to constrained CCaR. Section 6 provides some numerical
examples, and Section 7 concludes this paper.

2. Preliminaries

We introduce the following notation. The m-dimensional column vector with each
component equal to 1 is denoted by e, the Euclidean norm of a matrix or vector by ‖ · ‖,
and the space of R

n-valued, square-integrable functions defined on [0, t] by L2([0, t], R
n), or

just L2. The natural inner product of this space is denoted by 〈·, ·〉t, and the corresponding
norm by ‖ · ‖t.

We work under the following assumptions.

Assumption 2.1. (i) The securities are perfectly divisible.
(ii) Negative positions in securities are possible.
(iii) Rebalancing of the holdings does not lead to transaction costs.

Assumption 2.2. (i)m + 1 assets are traded continuously over a finite horizon [0, T].
(ii)m of these assets are stocks that follow the generalized Black-Scholes dynamics:

dSi(t) = Si(t)

⎛
⎝bi(t)dt +

m∑
j=1

σij(t)dWj(t)

⎞
⎠, t ∈ [0, T], Si(0) > 0, i = 1, . . . , m, (2.1)

where Wj(t), j = 1, . . . , m, are independent standard Brownian motions.
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(iii) One of the assets is a bond, whose price S0(t), t ≥ 0, evolves according to the
differential equation:

dS0(t) = r(t)S0(t)dt, t ∈ [0, T], S0(0) = S0 > 0, (2.2)

where r(t)(> 0) is the interest rate of the bond. Throughout this work, we assume that
borrowing in the bond is unconstrained.

(iv) The volatility matrix σ(t) (with ijth element σij(t)), its inverse σ−1(t), the drift
vector b(t) := (b1(t), . . . , bm(t))

′, and the interest rate r(t) are deterministic, Borel measurable,
bounded functions over [0, T], so that they belong to the appropriate L2 spaces.

(v) σ(t) satisfies the nondegeneracy condition:

x′σ(t)σ(t)′x ≥ δx′x, ∀t ∈ [0, T], ∀x ∈ R
m, (2.3)

where δ > 0 is a given constant.

We note that, under the above assumptions, the market is complete.
At any time t, Ni(t) shares are held in the asset Si(t), leading to the wealth Xπ(t) =∑

Ni(t)Si(t). The m + 1-dimensional vector-valued function N(t) = (N0(t), . . . ,Nm(t))
′ is

called the trading strategy. We denote the fraction of the wealth Xπ(t) invested into the risky
asset Si(t) by

πi(t) =
Ni(t)Si(t)
Xπ(t)

, i = 1, . . . , m, (2.4)

and call π(t) := (π1(t), . . . , πm(t))
′ ∈ R

m the portfolio. The fraction held in the bond is π0(t) =
1 −π ′(t)e. Under the assumption that the trading strategy is self-financing, the wealth process
follows the dynamics

dXπ(t) = Xπ(t)
((
r(t) + B(t)′π(t)

)
dt + π ′(t)σ(t)dW(t)

)
, X(0) = X0, (2.5)

where X0 is the initial wealth, and the risk premium vector B(t) is defined by

B(t) := b(t) − r(t)e, t ∈ [0, T]. (2.6)

Proceeding as in [3], to ensure a minimal tractability of the optimization problems
which we solve through the following sections, we restrict our attention in this work to
the class Q of portfolios π(·) which are Borel measurable, deterministic, and bounded over
[0, T]. Such portfolios are called admissible. Note that for an admissible portfolio π(·), (2.5) is
guaranteed to have a strong solution Xπ(·) (see [15, Theorem 5.2.9]). Note that, by allowing
for time-dependent coefficients, this generalises the class of portfolios considered in [14].

Under condition (2.3) the market price of risk is uniquely defined by

θ(t) = σ(t)−1B(t). (2.7)
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It will be shown throughout this work that the magnitude of the L2-norm of the market price
of risk is the determining criterion for optimal investment strategies, which turn out to be the
weighted averages of the bond and Merton’s portfolio defined by

πM(t) := (σ(t)σ(t))−1B(t). (2.8)

This result is an illustration of the mutual fund theorem in complete markets.
We now recall the definitions of the quantiles and quantile-based risk measures for

Xπ(t).

Definition 2.3. Suppose that Ft(x) is the cumulative distribution function of the wealth Xπ(t),
at time t ∈ [0, T]. For a risk level α ∈ (0, 0.5), the α-quantile of Xπ(t) is defined as

qα(X0, π, t) := inf {x ∈ R | F(x) ≥ α}. (2.9)

The tail mean or expected shortfall of the wealth process Xπ(t), which we denote by
TMα(Xπ(t)), is the expected value of Xπ(t) conditional on Xπ(t) ≤ qα(X0, π, t), that is,

TMα(Xπ(t)) := E
[
Xπ(t) | Xπ(t) ≤ qα(X0, π, t)

]
. (2.10)

The conditional capital at risk, which we denote by CCaR(X0, π, t), is defined to be the
difference between the riskless investment and the tail mean, that is,

CCaR(X0, π, t) := X0R(t) − TMα(Xπ(t)), (2.11)

where R(t) is defined as

R(t) = exp

(∫ t
0
r(s)ds

)
. (2.12)

Remark 2.4. Note that, with CCaR defined in this way, we get the following.

(i) An investment in a riskless asset corresponds to zero CCaR.

(ii) An increase in the tail mean corresponds to a decrease in CCaR. Thus, negative
CCaR corresponds to the case when the tail mean is above the riskless return, that
is, a desired result, while positive CCaR corresponds to the case when the tail mean
is below the riskless return which we try to reverse by minimizing CCaR.

It was shown in [3] that the α-quantile of the wealth process Xπ(t) can be written as

qα(X0, π, t) = X0R(t) exp
(
〈B,π〉t −

1
2
∥∥σ ′π∥∥2

t − |zα|
∥∥σ ′π∥∥t

)
, (2.13)
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where, for a given risk level α, zα denotes the corresponding α-quantile of the standard
normal distribution (note that this is negative when α < 0.5). In the following, we let ϕ and
Φ denote the density and cumulative distribution functions of the standard normal random
variable. We have the following proposition.

Proposition 2.5. The tail mean of the wealth process Xπ(t) solving (2.5) can be expressed as

TMα(Xπ(t)) = X0R(t)
1
α

exp(〈B,π〉t)Φ
(
−|zα| −

∥∥σ ′π∥∥t
)
, (2.14)

and the expected value is given by

E[Xπ(t)] = X0R(t) exp(〈B,π〉t). (2.15)

The proof is given in the appendix. From Proposition 2.5 we get the following
corollary.

Corollary 2.6. The conditional capital at risk of the solution to (2.5) can be written as

CCaR(X0, π, t) = X0R(t)
(

1 − 1
α

exp(〈B,π〉t)Φ
(
−|zα| −

∥∥σ ′π∥∥t
))
. (2.16)

Throughout the paper we will use the following function:

gα(π, t) := 〈B,π〉t + ln
(
Φ
(
−|zα| −

∥∥σ ′π∥∥t
))
− lnα, (2.17)

which transforms the expression for conditional capital at risk into

CCaR(X0, π, t) = X0R(t)
(
1 − exp

(
gα(π, t)

))
. (2.18)

We now turn our attention to investigating the properties of CCaR.

3. Coherency and Quasiconvexity of CCaR

The notion of coherent risk measures has been widely discussed in the recent literature (see
[5, 7–13] e. g.). Below we recall the definition of coherency, confirm that CCaR is a coherent
risk measure, and prove that it is quasiconvex.

Definition 3.1. Let V be the set of real-valued random processes on a complete probability
space (Ω,F, P), with its natural filtration {Ft}t∈[0,T], satisfying E[S(t)] < ∞ for all S(t) ∈ V ,
and for t ∈ [0, T]. Then ρ : V → R is a coherent risk measure if it satisfies the following
properties.
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(1) Subadditivity: ρ is subadditive if, for all random processes S(t),Y (t) ∈ V ,

ρ(S(t) + Y (t)) ≤ ρ(S(t)) + ρ(Y (t)) for t ∈ [0, T]. (3.1)

(2) Positive Homogeneity: ρ is positive homogeneous if, for all S(t) ∈ V and constant
c > 0,

ρ(cS(t)) = cρ(S(t)) for t ∈ [0, T]. (3.2)

(3) Monotonicity: ρ is monotone if, for all S(t),Y (t) ∈ V , such that S(t) ≥ Y (t) almost
everywhere, and S0 = Y0,

ρ(S(t)) ≤ ρ(Y (t)) for t ∈ [0, T]. (3.3)

(4) Translation Invariance: ρ is translation invariant if, for all S(t) ∈ V and c ∈ R,

ρ(S(t) + c) = ρ(S(t)) for t ∈ [0, T]. (3.4)

To prove that CCaR(X0, π, t) of a wealth process Xπ(t) ∈ V is a coherent risk measure
we refer to [8, Definition 2.6], where the expected shortfall of a random process X(t), with
the corresponding α-quantile qα, is defined as

ESα(X(t)) = −α−1(E[X(t)IX(t)≤qx
]
+ qx
(
α − P

(
X(t) ≤ qx

)))
(3.5)

and is shown to be coherent [8, Proposition 3.1]. We should note that the definition of
coherency used in [8] involves translation invariance in the sense that ρ(X(t)+c) = ρ(X(t))−c,
for all X(t) ∈ V and c ∈ R.

In order to relate the result in [8] to the coherency of CCaR in the sense used here,
we first note that, if X(t) is a random process with a continuous probability distribution,
we have ESα(X(t)) = −TMα(X(t)), so that (with a slight abuse of notation) CCaR(X(t)) =
X0R(t)+ESα(X(t)). If we consider the shifting of the portfolio value by an amount c, we have

CCaR(X(t) + c) = X0R(t) + c + ESα(X(t) + c)

= X0R(t) + c + ESα(X(t)) − c

= X0R(t) + ESα(X(t)) = CCaR(X(t)),

(3.6)

and so we have the following result.

Corollary 3.2. Conditional capital at risk CCaR(X0, π, t) of a wealth process Xπ(t) ∈ V , at time
t ∈ [0, T], for a risk level α ∈ (0, 0.5), is a coherent risk measure.
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Remark 3.3. (i) While properties 2 and 3 are quite natural, subadditivity has the obvious, yet
important consequence that diversification does not create more risk.

(ii) Properties 1 and 2 together are very important as they guarantee the convexity of
the risk measure which is essential for optimization.

(iii) In our definition of a coherent risk measure we say that a risk measure is
translation invariant, if ρ(X(t) + c) = ρ(X(t)), for all X(t) ∈ V , and c ∈ R. While in article
[8], It is said that arisk measure is translation invariant, if ρ(X(t) + c) = ρ(X(t)) − c, for all
X(t) ∈ V and c ∈ R It is our belief that the definition of the translation invariance, as given
in this paper, corresponds more with the intuition behind the notion of translation invariance
than the definition given in [8].

Remark 3.4. In the above remarks we investigated the impact of diversification to the portfolio
risk, as measured by CCaR. We saw that the axiom of subadditivity requires that the risk
of the sum of two risky processes, say two stock price processes, be less than or equal to
the sum of the individual risks associated with these stock price processes. This means that
diversification does not create more risk, as measured by CCaR, and that, as long as we
diversify, we expect risk reduction.

However, if the portfolio consists of all market assets, the diversification is completed.
Then the risk can be further reduced by optimization, that is, by rebalancing the positions
across these assets. We then look at the risk measure CCaR as a function of the portfolio π ,
and prove that it is strongly quasiconvex in π which further implies the uniqueness of the
corresponding optimization problems’ solutions.

We now turn to the notion of strong quasiconvexity, which we note has not been
discussed in the context of portfolio optimization in any of the quoted references except in
[3, 4]. Its usefulness lies in its role in establishing the existence of unique solutions to portfolio
optimization problems.

We first recall (see [16, Definition 3.5.8]) that a function f : U ⊂ R
m → R is said to be

strongly quasiconvex if

f(λπ + (1 − λ)ξ) < max
{
f(π), f(ξ)

}
∀π, ξ ∈ U,π /= ξ, λ ∈ (0, 1). (3.7)

In the following theorem we prove that CCaR has this important property, when viewed as a
function of the portfolio weights.

Theorem 3.5. For all distinct π(·),ξ(·) ∈ Q (where the set {t ∈ [0, T] | π(t)/= ξ(t)} has a positive
Lebesgue measure), and for all λ ∈ (0, 1)

CCaR(X0, λπ + (1 − λ)ξ, T) < max{CCaR(X0, π, T),CCaR(X0, ξ, T)}. (3.8)

Proof of Theorem 3.5. We suppose, without loss of generality, that

CCaR(X0, π, T) > CCaR(X0, ξ, T), (3.9)

in which case, from (2.18), we have

gα(π, T) < gα(ξ, T). (3.10)
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Let λ ∈ (0, 1). We claim that

CCaR(X0, λπ + (1 − λ)ξ, T) < CCaR(X0, π, T), (3.11)

which is equivalent to the statement

gα(λπ + (1 − λ)ξ, T) > gα(π, T). (3.12)

For ease of notation, we define the function

γ(x) := ln(Φ(−|zα| − x)). (3.13)

Since gα(π, T) = 〈B,π〉T − lnα + γ(‖σ ′π‖T ), (3.10) is equivalent to

〈B, ξ − π〉T + γ
(∥∥σ ′ξ∥∥T

)
− γ
(∥∥σ ′π∥∥T

)
> 0, (3.14)

while (3.12) becomes

(1 − λ)〈B, ξ − π〉T + γ
(∥∥σ ′(λπ + (1 − λ)ξ)

∥∥
T

)
− γ
(∥∥σ ′π∥∥T

)
> 0. (3.15)

Clearly, from (3.14), the left-hand side of (3.15) is greater than

γ
(∥∥σ ′(λπ + (1 − λ)ξ)

∥∥
T

)
− λγ

(∥∥σ ′π∥∥T
)
− (1 − λ)γ

(∥∥σ ′ξ∥∥T
)
, (3.16)

and the theorem will be proved if we can establish that this is nonnegative. In order to do
this, we make use of the following lemma, the proof of which is given in the appendix.

Lemma 3.6. The function k(x) = lnΦ(−x) is decreasing and strictly concave for all x > 0.

Since γ(x) = k(|zα| + |x|), one can make use of Lemma 3.6 to establish the following:

γ
(∥∥σ ′(λπ + (1 − λ)ξ)

∥∥
T

)
≥ γ
(
λ
∥∥σ ′π∥∥T + (1 − λ)

∥∥σ ′ξ∥∥T
)

≥ λγ
(∥∥σ ′π∥∥T

)
+ (1 − λ)γ

(∥∥σ ′ξ∥∥T
)
.

(3.17)

The proof is complete.

This theorem has an immediate, important consequence. Namely, from [16, Theorem
3.5.9], if a function f : U ⊂ R

m → R is strongly quasiconvex, then its local minimum is its
unique global minimum. Therefore, the following corollary is true.

Corollary 3.7. If CCaR(X0, π, T) has a local minimum at π∗(·) ∈ Q, then π∗(·) is its unique global
minimum.

This guarantees that minimization of CCaR(X0, π, T) with respect to π gives the
true, global minimum. To illustrate strong quasiconvexity, we give the plot of CCaR for
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Figure 1: The graph of CCaR as a function of the fraction of wealth π invested in the stock, for π ∈ [−5, 5],
T = 16, S(0) = 10, r = 0.05, σ = 0.2, b = 0.15. Observe that, in this case (with a long-time horizon
and constantly high-performing stocks), the global minimum πε lies in the interval [0, 1] and satisfies
CCaR(πε) < 0.

the following example (where the parameters were chosen to represent rather extreme
conditions, for the purposes of illustration).

Example 3.8. We consider a market consisting of one stock following the SDE

dS(t) = S(t)(0.15dt + 0.2dW(t)), t ∈ [0, 16], S(0) = 10, (3.18)

and the bond with the constant interest rate r = 0.05. The graph of CCaR(π) is given in
Figure 1.

4. Minimal Conditional Capital at Risk

The first portfolio selection problem we consider is to minimize risk as measured by CCaR,
that is, to determine its minimal value over all π ∈ Q. The problem can be stated as

min
π∈Q

CCaR(X0, π, T). (4.1)

Using (2.18), problem (4.1) transforms into

min
π∈Q

X0R(T)
(
1 − exp

(
gα(π, T)

))
. (4.2)

Since R(T) is a constant, problem (4.2) is equivalent to

max
π∈Q

gα(π, T). (4.3)
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We now introduce the fundamental dimension reduction procedure, used throughout this
work. Following [2, 14], we project the optimization problems considered in this paper onto
the family of surfaces Qε = {π(·) ∈ L2 : ‖σ ′π‖2

T = ε2}, and note that Q =
⋃
ε≥0Qε.

We denote by gεα the restriction of gα to Qε, so that

gεα(π, T) = 〈B,π〉T + ln(Φ(−|zα| − ε)) − lnα. (4.4)

Taking into account the definition of Qε, problem (4.3) can be stated as

max
ε≥0

max
π∈Qε

gεα(π, T). (4.5)

We deal with this problem in two stages. First, fixing ε reduces the problem to

max
π∈Qε

gεα(π, T). (4.6)

If πε denotes the unique maximising portfolio for this problem, then (4.5) can be solved
through the one-dimensional problem:

max
ε≥0

gεα(πε, T). (4.7)

It remains to solve the subproblem (4.6). Since ε is fixed, we see from (4.4) that (4.6) is
equivalent to the problem

max
π∈Qε
〈B,π〉T , (4.8)

the solution of which is given by the following proposition (the proof of which is given in [6,
Proposition 2.1]).

Proposition 4.1. For a fixed ε, the solution of problem (4.6) is attained by

πε(t) =
ε

‖θ‖T
(
σ(t)σ(t)′

)−1
B(t), (4.9)

where θ denotes the market price of risk, defined in (2.7).

We are now ready to solve problem (4.3), and we have the following theorem.

Theorem 4.2. Let θ(·) be the market price of risk (2.7). gα(π, T) attains its maximum when

π(t) := πε∗(t) = ε∗‖θ‖−1
T

(
σ(t)σ(t)′

)−1
B(t), (4.10)

where, if ‖θ‖T ≥ ϕ(|zα|)/α, ε∗ is defined to be the unique solution of the equation

ϕ(|zα| + ε)
Φ(−|zα| − ε)

= ‖θ‖T , (4.11)
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and, if ‖θ‖T < ϕ(|zα|)/α, ε∗ = 0. The corresponding minimum conditional capital at risk is

CCaR(X0, πε∗ , T) = X0R(T)
(

1 − 1
α

exp(ε∗‖θ‖T )Φ(−|zα| − ε∗)
)

(4.12)

(which is 0 if ε∗ = 0), and the expected wealth is

E[Xπε∗ (T)] = X0R(T) exp(ε∗‖θ‖T ). (4.13)

Proof of Theorem 4.2. Using the definition of θ(t) and substituting (4.9) into (4.5) allows us to
rewrite (4.5) as

max
ε≥0

gεα(πε, T) := ε‖θ‖T + ln(Φ(−|zα| − ε)) − lnα. (4.14)

If we define the function

f(ε) := gεα(πε, T) = ε‖θ‖T + ln(Φ(−|zα| − ε)) − lnα, (4.15)

we get

f ′(ε) = ‖θ‖T −
ϕ(−|zα| − ε)
Φ(−|zα| − ε)

= ‖θ‖T −
ϕ(|zα| + ε)
Φ(−|zα| − ε)

,

f ′(0) = ‖θ‖T −
ϕ(|zα|)
Φ(−|zα|)

= ‖θ‖T −
ϕ(|zα|)
α

,

f ′′(ε) =
ϕ(|zα| + ε)

(Φ(−|zα| − ε))2

(
(1 −Φ(|zα| + ε))(|zα| + ε) − ϕ(|zα| + ε)

)
.

(4.16)

We see that f ′′(ε) has the same form as k′′(x), where k(x) is defined in Lemma 3.6,
with |zα| + ε, instead of x, so that f ′′(ε) ≤ 0. Since f ′(ε) is a decreasing function of ε for ε > 0,
we have two cases.

(i) If f ′(0) ≥ 0, that is, ‖θ‖T ≥ ϕ(|zα|)/α, then the equation

f ′(ε) = ‖θ‖T −
ϕ(|zα| + ε)
Φ(−|zα| − ε)

= 0 (4.17)

has a unique solution which we denote by ε∗. Since f(ε) is a concave function, it
reaches its maximum at ε∗.

(ii) If f ′(0) < 0, that is, ‖θ‖T < ϕ(|zα|)/α, then f ′(ε) < 0 for all ε ≥ 0, and so (4.17) has
no solution. This implies that f(ε) is decreasing for all ε ≥ 0, so that the optimal
solution to problem (4.14) is ε = 0.
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To complete the proof of Theorem 4.2, note that (4.9), with ε = ε∗, is the optimal
solution of problem (4.3). One can then write

〈B,πε∗〉T =
ε∗

‖θ‖T
‖σ−1B‖2

T = ε∗‖θ‖T , ‖σ ′π‖2
t = ε

∗2, (4.18)

leading to

CCaR(X0, πε∗ , T) = X0R(T)
(

1 − 1
α

exp(ε∗‖θ‖T )Φ(−|zα| − ε∗)
)
,

E[Xπε∗ (t)] = X0R(T) exp(ε∗‖θ‖T ).
(4.19)

Remark 4.3. (i) Note that, if ‖θ‖T ≥ ϕ(|zα|)/α, we can deduce by using (A.12) that

‖θ‖T ≥
ϕ(|zα|)
α

=
ϕ(|zα|)

1 −Φ(|zα|)
≥ |zα|. (4.20)

Therefore, the condition ‖θ‖T ≥ ϕ(|zα|)/α, which has to be satisfied for investing into stocks
under conditional capital at risk, is stronger than the condition ‖θ‖T ≥ |zα|. The latter
condition is sufficient in order to include stocks into the optimal strategy using capital at
risk as a risk measure. Otherwise stated, conditional capital at risk is a more conservative risk
measure than capital at risk, which is consistent with its definition.

(ii) Increasing the time horizon T leads to increasing the L2 norm of the market price
of risk, so that, in case (ii), the optimal strategy changes from a pure bond strategy to a mixed
bond-stocks strategy. In case (i), increasing the L2 norm ‖θ‖T leads to increasing the expected
wealth E[Xπ(T)] and decreasing conditional capital at risk CCaR(X0, π, T).

(iii) As was noted in the preliminary remarks, the optimal portfolio is a weighted
average of Merton’s portfolio and the bond, which is an illustration of the two-fund
separation theorem.

We note that the solution provided in Theorem 4.2 is not an explicit analytical solution,
but it is expressed in terms of the solution of the one-dimensional equation (4.11), whose
solution ε∗ can be easily computed. Analytical upper and lower bounds for ε∗ are given in
the following lemma, whose proof is given in the appendix.

Lemma 4.4. The unique solution ε∗ of (4.17) satisfies the inequality

(
‖θ‖T

(
1 − 1

|zα|2

)
− |zα|

)+

≤ ε∗ ≤ ‖θ‖T − |zα|, (4.21)

where a+ := max{a, 0}.
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Remark 4.5. Note that, for α = 0.05, that is, at the 95% confidence level, (1 − 1/|zα|2) ≈ 0.63,
(4.21) approximates the result from [14], which states

(
2
3
‖θ‖T − |zα|

)+

≤ ε∗ ≤ ‖θ‖T − |zα| for α < 0.15. (4.22)

However, at a higher confidence level, that is, α < 0.05, (4.21) gives a better approximation
for ε∗, that is, a smaller interval to which ε∗ belongs.

5. Portfolio Optimization with Respect to Conditional Capital at Risk

We now turn to the problem of maximizing wealth subject to constrained CCaR, that is,

max
π∈Q

E[Xπ(T)] subject to CCaR(X0, π, T) ≤ C. (5.1)

Using (2.18), the above problem can be written in the form

max
π∈Q

X0R(T) exp(〈B,π〉T ) subject to X0R(T)
(
1 − exp

(
gα(π, T)

))
≤ C, (5.2)

which is equivalent to

max
π∈Q
〈B,π〉T subject to exp

(
gα(π, T)

)
≥ 1 − C

X0R(T)
. (5.3)

Since CCaR, from its definition, is smaller than total wealth, to avoid trivial cases we only
consider C such that

C < X0R(T) (5.4)

Under condition (5.4), problem (5.3) can be written as

max
π∈Q
〈B,π〉T subject to gα(π, T) ≥ c, (5.5)

where

c = ln
(

1 − C

X0R(T)

)
. (5.6)

Note that condition (5.4) guarantees that c is well defined. Using the dimension reduction
procedure of [2, 14] (see Section 4), we can write problem (5.5) as a one-parameter
optimization problem:

max
ε≥0

max
π∈Qε
〈B,π〉T subject to gα(π, T) ≥ c. (5.7)
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The solution to (5.7) is given in the following theorem.

Theorem 5.1. Suppose that the constant risk level C satisfies the following condition:

X0R(T)
(

1 − 1
α

exp(ε∗‖θ‖T )Φ(−|zα| − ε∗)
)
≤ C < X0R(T), if ‖θ‖T ≥

ϕ(|zα|)
α

0 ≤ C < X0R(T), if ‖θ‖T <
ϕ(|zα|)
α

,

(5.8)

where ε∗ is defined in Theorem 4.2. Then the optimal solution to problem (5.7) is

πε∗∗(t) =
ε∗∗

‖θ‖T
(
σ(t)σ(t)′

)−1
B(t), (5.9)

where c is defined in (5.6), and ε∗∗ ∈ [ε∗,∞) is the unique solution of the equation

h(ε) := ε‖θ‖T + ln(Φ(−|zα| − ε)) − lnα − c = 0. (5.10)

The corresponding expected wealth is equal to

E[Xπε∗∗ (T)] = X0R(T) exp(ε∗∗‖θ‖T ), (5.11)

with the corresponding conditional capital at risk:

CCaR(X0, πε∗∗ , T) = C. (5.12)

The efficient frontier is given by the following curve, whose first component is an increasing function
of C defined implicitly through (5.6), (5.10), and (5.11):

{(C,E[Xπε∗∗ (T)]) | C satisfies (5.8)}. (5.13)

Proof of Theorem 5.1. Proposition 4.1 states that the problem

max
π∈Qε
〈B,π〉T (5.14)

has the optimal solution

πε(t) =
ε

‖θ‖T
(σ(t)σ

(
t)′
)−1

B(t). (5.15)

Substituting (5.15) into (5.7) transforms it into the problem

max
ε≥0

ε‖θ‖T subject to gα(πε, T) ≥ c. (5.16)
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Using (5.10), the above problem can be written as

max
ε≥0

ε‖θ‖T subject to h(ε) = ε‖θ‖T + ln(Φ(−|zα| − ε)) − ln α − c ≥ 0. (5.17)

Clearly, the problem achieves its optimal solution for maximal ε for which the constraint is
satisfied. The solution to this problem is given in the following lemma, whose proof is given
in the appendix.

Lemma 5.2. Under condition (5.8), the equation h(ε) = 0 has a maximal solution ε∗∗ ∈ [ε∗,∞).
Furthermore, h′(ε) < 0, for ε > ε∗.

We substitute ε∗∗ into (5.15) to get the optimal portfolio

πε∗∗(t) =
ε∗∗

‖θ‖T
(
σ(t)σ(t)′

)−1
B(t), (5.18)

which yields

E[Xπε∗∗ (T)] = X0R(T) exp(ε∗∗‖θ‖T ), CCaR(X0, πε∗∗ , T) = C. (5.19)

Finally, to prove that the expected wealth is an increasing function of the risk constant C, we
rewrite (5.10) in the form

h(ε∗∗) = ε∗∗‖θ‖T + ln(Φ(−|zα| − ε∗∗)) − lnα − ln
(

1 − C

X0R(T)

)
= 0, (5.20)

which defines ε∗∗ as an implicit function of C. Differentiating the above, we get

∂h

∂ε∗∗
dε∗∗

dC
+
∂h

∂C
= 0, (5.21)

so that

dε∗∗

dC
= − ∂h/∂C

∂h/∂ε∗∗
. (5.22)

Since (∂h/∂C) = (1/X0R(T) − C), and since C < X0R(T), it follows that ∂h/∂C > 0. From
Lemma 5.2 it follows that dh/dε < 0, for all ε > ε∗, and hence for ε∗∗, so that dε∗∗/dC > 0.
Thus, ε∗∗ is an increasing function of C. From (5.11), we see that the expected wealth is an
increasing function of ε∗∗, and consequently ofC. This completes the proof of the theorem.

Remark 5.3. If a risk-averse investor decides to take the minimal risk which, in the first case,
means taking for the risk constant

C = X0R(T)
(

1 − 1
α

exp(ε∗‖θ‖T )Φ(−|zα| − ε∗)
)
, (5.23)
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implying

c = − lnα + ε∗‖θ‖T + ln(Φ(−|zα| − ε∗)), (5.24)

then the unique solution of the equation

ε‖θ‖T + ln(Φ(−|zα| − ε)) − ln α − c = 0 (5.25)

is ε∗∗ = ε∗.
In the second case, for a risk averse investor, the minimal risk constant is C = 0, which

implies c = 0, leading to the equation

h(ε) = ε‖θ‖T + ln(Φ(−|zα| − ε)) − lnα = 0, with h(0) = 0, h′(ε) ≤ 0, (5.26)

so that the unique solution of the equation h(ε) = 0 is ε∗∗ = 0.
Therefore, in both cases, choosing the minimal risk constant leads to the optimal

strategies coinciding with the strategies from the previous chapter, in which minimal
CCaR(X0, π, T) was determined.

6. Applications

To illustrate the results from previous sections, we give some numerical examples. We recall
that the system of SDEs that models the stocks’ prices is

dSi(t) = Si(t)

⎛
⎝bi(t)dt +

m∑
j=1

σij(t)dWj(t)

⎞
⎠, Si(0) > 0, i = 1, . . . , m, (6.1)

and that the stocks’ returns variance-covariance matrix, which we denote by Γ(t), is equal to
σ(t)σ(t)′. We also recall that Γ(t) can be decomposed as

Γ(t) = ν(t)Δ(t)ν(t), (6.2)

where Δ(t) is the stocks’ returns correlation matrix, and ν(t) is a diagonal matrix with the
entries equal to the stocks’ returns standard deviations. Therefore, from (6.2) we get

Γ(t) = σ(t)σ(t)′ = ν(t)Δ(t)ν(t). (6.3)

Although, theoretically, we assume that the vector of independent Brownian motions W(t)
is {Ft}t∈[0,T]-adapted, that is, known at time t ∈ [0, T], it is a common practice that we only
observe Γ(t) or, equivalently, ν(t) and Δ(t), but not σ(t). From (6.3) we see that this leads to a
nonunique decomposition of Γ(t) into the product σ(t)σ(t)′. Despite that fact, the Euclidean
norm, and consequently, the L2-norm of the market price of risk, is uniquely determined by

‖θ(t)‖2 =
∥∥∥σ(t)−1B(t)

∥∥∥
2
= B(t)′(σ(t)σ(t))−1B(t), (6.4)
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or, in the terms of the standard deviation and the correlation matrix, as

‖θ(t)‖2 = B(t)′ν(t)−1Δ(t)−1ν(t)−1B(t). (6.5)

To keep the exposition simple we consider the cases where the interest rate r(t), as
well as the volatility matrix, is constant, and the number of stocks is m = 3. In all numerical
computations and the corresponding plots we use an annual time scale for the drifts, standard
deviations, and the correlation matrix Δ(t) of the 3 stocks. We model time dependency in the
drift bi(t) by assuming that it oscillates periodically around a constant level μi. In order to
capture cycles in the economy or in the dynamics of the stocks we model the drifts as

bi(t) = μi + βi cos
(
ϕit
)
, i = 1, 2, 3. (6.6)

We note that the above model for stocks’ drifts was already used in [17], as the amplitude and
frequency coefficients βi and ϕi allow a high degree of flexibility in adjusting the shape of this
time dependency. We also note that, when modeling real market data, it is quite easy to deal
with the above functional form and estimate these two parameters by maximum likelihood
techniques, rather than detrending the data.

We now look at four special cases with the following characteristics.

(i) We let ϕ1 = ϕ2 = ϕ3 = ϕ, with ϕ = 0.75; that is, the economic cycles of all three stocks
are the same. We consider β1 = 0.75β, β2 = 0.5β, β3 = 0.25β, with β = 0.015, which
corresponds to a 1.5% deviation around the constant values μi.

(ii) We assume that the interest rate is r = 0.05 and numerically explore the sensitivity
of the optimal strategies with respect to μi and ρ.

(iii) We assume that the stocks’ returns have constant standard deviations given as
follows:

ν1 = 20%, ν2 = 25%, ν3 = 30%. (6.7)

To emphasize the importance of the diversification effect and, consequently, of the
market price of risk, for the optimal strategies, in Examples 6.2, 6.3, and 6.4 we keep the same
drift and volatility coefficients and change the correlation matrix.

Example 6.1. We assume that μ1 = 0.12, μ2 = 0.10, and μ3 = 0.08, and that the correlation
matrix is

Δ =

⎡
⎢⎢⎣

1.0 −0.6 −0.8

−0.6 1.0 0.5

−0.8 0.5 1

⎤
⎥⎥⎦. (6.8)

In Figure 2, we show (a) the stocks’ drifts over a ten year period, with daily granularity,
and (b) the optimal strategy, under minimal CCaR.

In this example, we see the expected result, that is, stock 1, which has the largest
constant part in the drift, and the smallest volatility is present in the optimal portfolio in
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Figure 2: Plot of the Stock Drifts (a) and portfolio weights (b) for Example 6.1.
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Figure 3: Plot of the Stock Drifts (a) and portfolio weights (b) for Example 6.2.

the highest percentage. However, to assume that just drifts and volatilities determine the
optimal strategy would be misleading, as the following examples show.

Example 6.2. We assume that μ1 = 0.08, μ2 = 0.10, μ3 = 0.12, and that the correlation matrix is
the same as in Example 6.1.

The stocks’ drifts and portfolio weights are given in Figure 3.
We see that, despite the fact that stock 1 has the smallest constant part of the drift,

it is still present in the optimal portfolio in the highest percentage, due to its high negative
correlations with both stocks 2 and 3.
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Figure 4: Portfolio Weights under Minimal CCaR for Example 6.3.

Example 6.3. In this example we assume that μ1 = 0.08, μ2 = 0.10, and μ3 = 0.12; that is, the
stocks have the same constant parts of the drifts as in Example 6.2 but a different correlation
matrix given by

Δ =

⎡
⎢⎢⎣

1.0 −0.3 0.5

−0.3 1.0 −0.9

0.5 −0.9 1

⎤
⎥⎥⎦. (6.9)

The optimal strategy, under minimal CCaR, is given in Figure 4.
In this example, stocks 2 and 3, which are highly negatively correlated, are present

in the optimal portfolio in percentages above 400%, while stock 1 and the bond are being
borrowed.

Example 6.4. In this example, we assume again that the stocks have the same constant parts
of the drifts as in Examples 6.2 and 6.3, while the correlation matrix is

Δ =

⎡
⎢⎢⎣

1.0 0.2 −0.3

0.2 1.0 0.1

−0.3 0.1 1

⎤
⎥⎥⎦. (6.10)

The criterion for investing into stocks, under the minimal CCaR, is ‖θ‖T ≥ ϕ(|zα|)/α.
For α = 0.05, |zα| = 1.645, so that we must have ‖θ‖T ≥ 2.0620, in order to start investing into
stocks. In the case of low correlation coefficients, such as in the above example, the market
price of risk increases very slowly, so that it takes the time horizon of 34 years to invest into
stocks with the risk level of 0.05. For α = 0.01, |zα| = 2.33, so that we must have ‖θ‖T ≥ 2.6424
to start investing into stocks. If we choose the risk level to be 0.01, we have to assume the very



20 Journal of Probability and Statistics

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
×106

0 200 400 600 800

CCaR ($)

Efficient frontier

E
xp

ec
te

d
w

ea
lt

h
($
)

Figure 5: Efficient Frontier for Example 6.1.

Table 1

T 10 20 30 33 34 40 50 56 57
‖θ‖T 1.1420 1.5944 1.9344 2.0302 2.0705 2.2293 2.5030 2. 6424 2.6655

long time horizon, of 57 years, in order to include stocks into the optimal strategy, under
minimal CCaR. The relation between ‖θ‖T and T can be found in Table 1.

Efficient Frontiers

Figure 5 shows the efficient frontier for Example 6.1 created using Theorem 5.1. The theorem
states that the expected wealth is an increasing function of C, which is bounded above by

Cmax = X0R(T). (6.11)

In order to avoid extremely risky strategies as C → Cmax, and for the sake of more
transparency of the graphs, we restrict C to the interval [0, 0.5Cmax]. We note that the efficient
frontiers for the other three examples are of the same exponential form, so that we omit their
graphs.

The graph given in Figure 5 illustrates the fact that the efficient frontiers are an
increasing function of the risk constant C which bounds CCaR.

Time-CCaR-Expected Wealth Surfaces

In Figure 6 we give a three-dimensional plot of the expected wealth as a function of time and
the risk constant C. From Theorem 5.1 we know that the expected wealth increases when the
risk constant C increases. We recall that the expected wealth is also an increasing function
of the time horizon T . The following figure illustrates these facts for Example 6.1. In order
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Figure 6: Time-CCaR-Expected Wealth Surface for Example 6.1.

to avoid extremely risky strategies, and to get a better representation, we restrict the upper
bound for CCaR to the interval [0, 0.5Cmax].

7. Conclusion

In this work we investigated continuous time portfolio selection under the notion of
conditional capital at risk, within the Black-Scholes asset pricing paradigm, with time
dependent coefficients. We showed that conditional capital at risk is a coherent risk measure
and proved that it satisfies an important property of strong quasiconvexity. Based on an
idea from [14], generalized in [3], we introduced the fundamental dimension reduction
procedure which transforms m-dimensional optimization problems into one-dimensional
problems, within the class of admissible portfolios, which are Borel measurable, bounded,
and deterministic. We further developed optimal strategies for portfolio optimization under
constrained conditional capital at risk. It is important to emphasize that we considered time
dependent portfolios, where the methods developed in [14] no longer work. We illustrated
the two-fund separation theorem, by showing that all optimal strategies are the weighted
averages of Merton’s portfolio and the bond, and the weights depend on the investor’s risk
tolerance only. Finding optimal strategies requires solving nonlinear equations which include
the cumulative distribution function of the normal random variable, so that the weights
can be only found numerically. We provide several numerical examples which illustrate
the importance of diversification, given by the correlation matrix. The correlation matrix
significantly impacts the magnitude of the L2 norm of the market price of risk, which, in
turn, is the determining criterion for investment strategies.

Appendix

Proof of Proposition 2.5. Let

μ(t) = r(t) + B(t)′π(t), η(t) = σ(t)′π(t). (A.1)
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Then the differential equation of the wealth process given by (2.5) can be written as

dXπ(t) = Xπ(t)
(
μ(t)dt + η(t)dW(t)

)
, Xπ(0) = X0. (A.2)

For convenience, set Y (t) = lnXπ(t). Applying the multidimensional version of Itô’s Lemma,
it can be shown (see the proof of Proposition 2.1 of [3]) that Y (t) follows the dynamics

dY (t) =
(
μ(t) − 1

2
∥∥η(t)∥∥2

)
dt + η(t)dW(t), Y (0) = ln(X0) = Y0. (A.3)

The α-quantile of Y (t) is equal to

qα(Y0, π, t) = Y0 +
∫ t

0

(
μ(s) − 1

2
∥∥η(s)∥∥2

)
ds − |zα|

√∫ t
0

∥∥η(s)∥∥2
ds, (A.4)

so that the α-quantile of X(t) is equal to qα(X0, π, t) = exp(qα(Y0, π, t)). We will further
simplify the notation by introducing

qx = qα(X0, π, t), qy = qα(Y0, π, t). (A.5)

From

Xπ(t)IXπ≤qx = exp(Y (t))IY≤qy , (A.6)

where I(·) is the corresponding indicator function, and from Bayes’ theorem, we obtain

TMα(Xπ(t)) = α−1E
[
exp(Y (t))IY≤qy

]
. (A.7)

Choose t ∈ [0,T]. We will evaluate (A.7) using the characteristics of the distribution of Y (t),
for fixed t. From (A.3) we have that Y (t) is a normal random variable with the parameters

μy = Y0 +
∫ t

0

(
μ(s) − 1

2
∥∥η(s)∥∥2

)
ds, σy =

√∫ t
0

∥∥η(s)∥∥2
ds. (A.8)

Taking into account (A.7) and (A.8), we can write

TMα(Xπ(t)) = α−1E
[
exp(Y (t))IY≤qy

]
= α−1

∫qy
−∞

exp
(
y
)
ϕ
(
y
)
dy. (A.9)

Using the standard integration techniques, and taking into account that zα < 0, we get

TMα(Xπ(t)) = α−1 exp

(
μy +

σ2
y

2

)
Φ
(
−|zα| − σy

)
. (A.10)
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If we substitute the original notation from (A.8) and (A.1), we get (2.10). This completes the
proof of Proposition 2.5.

Proof of Lemma 3.6. Let x > 0. The function k(x) = lnΦ(−x) is clearly decreasing. To prove
that it is strictly concave, we differentiate twice to get

k′′(x) =
ϕ(x)

(Φ(−x))2

(
(1 −Φ(x))x − ϕ(x)

)
. (A.11)

To evaluate k′′(x), we use the following standard inequality. For x > 0,

1
x
− 1
x3
≤ 1 −Φ(x)

ϕ(x)
≤ 1
x
. (A.12)

Applying the above, we get that k′′(x) ≤ 0 which means that k(x) is concave. To prove that
k(x) is strictly concave we need to show that

x(1 −Φ(x)) < ϕ(x) for x > 0. (A.13)

If we define the function

w(x) := x(1 −Φ(x)) − ϕ(x), (A.14)

it is an easy exercise to prove that w(x) < 0, for all x > 0; that is, the function k(x) is strictly
concave for all x > 0, which ends the proof of Lemma 3.6.

Proof of Lemma 4.4. We prove that the optimal solution ε∗ of (4.17) satisfies (4.21). From (4.17)
we have that

(1 −Φ(|zα| + ε∗))
ϕ(|zα| + ε∗)

=
1
‖θ‖T

. (A.15)

We use again the standard inequality (A.12). From inequality (A.12), with x = |zα| + ε∗, we
have

1
|zα| + ε∗

− 1

(|zα| + ε∗)3
≤ 1
‖θ‖T

=
(1 −Φ(|zα| + ε∗))

ϕ(|zα| + ε∗)
≤ 1
|zα| + ε∗

. (A.16)

The right-hand side of the inequality implies

ε∗ ≤ ‖θ‖T − |zα|. (A.17)

From the left-hand side of the inequality we have

‖θ‖T

(
1 − 1

(|zα| + ε∗)2

)
≤ |zα| + ε∗. (A.18)
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Since

− 1

(|zα| + ε∗)2
≥ − 1

|zα|2
, (A.19)

inequality (A.18) implies

‖θ‖T

(
1 − 1

|zα|2

)
− |zα| ≤ ε∗. (A.20)

The fact that ε∗ ≥ 0 and (A.20) give the desired result, so that Lemma 4.4 is proved.

Proof of Lemma 5.2. In this proof we find a maximal solution of the equation

h(ε) = ε‖θ‖T + ln(Φ(−|zα| − ε)) − ln α − c = 0. (A.21)

Since h′(ε) = f ′(ε), defined by (4.15), we will apply some arguments from the proof of
Theorem 4.2.

(i) Suppose that ‖θ‖T ≥ ϕ(|zα|)/α, which means that h′(0) = f ′(0) ≥ 0. Then the unique
maximum of h(ε) is achieved at ε∗. From condition (5.8) (i) we have that

c = ln
(

1 − C

X0R(T)

)

≤ ln
(

1 −
(

1 − 1
α

exp(ε∗‖θ‖T )
)
Φ(−|zα| − ε∗)

)

= − lnα + ε∗‖θ‖T + ln(Φ(−|zα| − ε∗)).

(A.22)

Hence

h(ε∗) = ε∗‖θ‖T + ln(Φ(−|zα| − ε∗)) − lnα − c

≥ ε∗‖θ‖T + ln(Φ(−|zα| − ε∗)) − lnα

+ lnα − ε∗‖θ‖T − ln(Φ(−|zα| − ε∗)) = 0.

(A.23)

Therefore, h(ε∗) ≥ 0. We further distinguish the following two subcases.

(a) Suppose that C < 0. Then (A.21) implies that h(0) = −c < 0. From the proof
of Theorem 4.2, for ε > ε∗, h′(ε) ≤ 0, h(ε) is concave, and since h(ε∗) ≥ 0, it
follows that the equation h(ε) = 0 has at least one solution, with the bigger
solution ε∗∗ ∈ [ε∗,∞).

(b) For C ≥ 0, h(0) = −c ≥ 0. Using the same arguments as in case (a), we get that
(A.21) has a unique solution ε∗∗ ∈ [ε∗,∞).
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(ii) Suppose ‖θ‖T < ϕ(|zα|)/α, that is, h′(0) < 0. We recall that in this case ε∗ = 0. The
definition of h(ε) yields

h(0) = ln(Φ(−|zα|)) − ln α − c = −c. (A.24)

From condition (5.8) (ii), we have that c ≤ 0, that is, h(0) ≥ 0. Using h′(ε) = f ′(ε), and the
proof of Theorem 4.2, we have

h′′(ε) ≤ 0; h′(0) = ‖θ‖T −
ϕ(|zα|)
α

< 0. (A.25)

Therefore, h′(ε) < 0 for all ε ≥ 0, with h(0) ≥ 0, so that h(ε) = 0 has a unique solution
ε∗∗ ∈ [ε∗,∞). This completes the proof of Lemma 5.2.
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