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Consider the multiple testing problem of testing m null hypotheses H1, . . . ,Hm, among which m0
hypotheses are truly null. Given the P-values for each hypothesis, the question of interest is how to
combine the P-values to find out which hypotheses are false nulls and possibly to make a statistical
inference onm0. Benjamini and Hochberg proposed a classical procedure that can control the false
discovery rate (FDR). The FDR control is a little bit unsatisfactory in that it only concerns the
expectation of the false discovery proportion (FDP). The control of the actual random variable FDP
has recently drawnmuch attention. For any level 1−α, this paper proposes a procedure to construct
an upper prediction bound (UPB) for the FDP for a fixed rejection region. When 1 − α = 50%, our
procedure is very close to the classical Benjamini and Hochberg procedure. Simultaneous UPBs
for all rejection regions’ FDPs and the upper confidence bound for the unknown m0 are presented
consequently. This new proposed procedure works for finite samples and hence avoids the slow
convergence problem of the asymptotic theory.

1. Introduction

In this paper, we consider the problem of testingm null hypothesesH1, . . . ,Hm, amongwhich
m0 hypotheses are truly null. We shall assume that P -values are available for individual
hypotheses. In a seminal paper, Benjamini and Hochberg [1] proposed the false discovery
rate (FDR) as an alternative to the classically defined family-wise error rate (FWER). The
proposed FDR achieves a good balance between the P -value itself and the FWER correction
[2]; the former may give too many false positives, and the latter may give too many false
negatives. However, the control of the FDR is a little bit unsatisfactory in that it only concerns
the expectation of the false discovery proportion (FDP). In practice, researchers may be
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interested in more detailed statistical inference on the actual random variable FDP, not just
its expectation. The goal of this paper is to provide a simple procedure to control the FDP.

Let us first introduce some notation. Givenm hypothesesH1, . . . ,Hm, let the complete
index set be M = {1, . . . , m}, M0 the unknown subset of M for which the null hypotheses
are true, and M1 = M \ M0 the subset for which null hypotheses are false. Denote that
m0 = |M0|, m1 = |M1|, where | · | denotes the cardinality of a set. The P -values for testing
the m hypotheses are P1, . . . , Pm. A fixed rejection region for the P -values can conveniently be
taken as [0, t] (0 < t < 1). The value of t could be 0.05, for example. Define the number Rt of
all rejected hypotheses and the number Vt of falsely rejected hypotheses, respectively,

Rt =
m∑

i=1

I(Pi ≤ t), Vt =
∑

i∈M0

I(Pi ≤ t). (1.1)

Following the notation of Korn et al. [3], and Genovese and Wasserman [4], Lehmann and
Romano [5], the false discovery proportion is defined to be the proportion of falsely rejected null
hypotheses among the rejected ones,

Qt =
Vt

Rt
, (1.2)

where the ratio is defined to be zero when the denominator is zero. For a given fixed rejection
region [0, t], Rt, Vt, andQt are random variables. R, V , andQwill be shorthand for Rt, Vt, and
Qt respectively, when the rejection region [0, t] is clear from the context. The false discovery rate
of Benjamini and Hochberg [1] is

FDR = E(Q). (1.3)

A good understanding of Q will lead investigators to pick an appropriate rejection region
[0, t] of P -values. As Q is an unobservable random variable depending on the observed P -
values and the rejection region [0, t], the quantity FDR just describes the expectation of this
random variable Q. One way to have a more detailed statistical inference on the random
variable Q is to derive its distribution, which is very difficult unless a strong assumption can
be imposed on the P -values from the false null hypotheses. A conservative approach is to
compute an upper prediction bound for Q so that we can safeguard against excessive type I
errors. In Section 2, for a fixed rejection region [0, t], we can compute an upper prediction bound
(UPB) Q1−α(t) for Qt such that

pr
(
Qt ≤ Q1−α(t)

)
≥ 1 − α. (1.4)

If Q1−α(t) had been a nonrandom variable, then it should be always no less than the 1 − α
quantile of the random variable Qt. When 1 − α = 50%, our procedure is very close to the
classical BH procedure of Benjamini and Hochberg [1]. In other words, the BH procedure
gives us an approximate 50% upper prediction bound (UPB) for Q. With different degrees
of being conservative, one should take 1 − α at 0.9, 0.95, and 0.99 to ensure high coverage of
the false discovery proportion. We also describe how to compute an upper confidence bound
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(UCB) for m0, the number of true null hypotheses. The UCB for m0 can be used to improve
the estimate Q1−α(t). In practice, the rejection region [0, t] needs to be adapted to the actual
dataset. In Section 3, we give a procedure to construct an upper prediction band forQt for all
t ∈ (0, 1), and this upper prediction band can be used to pick a data-defined rejection region
[0, τ] of P -values such that the false discovery proportion Q can be controlled at target level
γ with prediction accuracy 1 − α, that is,

pr
(
Qτ ≤ γ

) ≥ 1 − α. (1.5)

Thus with probability at least 1 − α, the value of Q is γ or less. For the independent true
null P -values, Genovese and Wasserman [4], Meinshausen and Rice [6] also worked on
the control of the FDP in the sense of the above equation. However, their results are based
on asymptotic theory, while our focus is on the finite-sample results and avoids the slow
convergence problem of the asymptotic theory. Other works such as Lehmann and Romano
[5], Romano and Shaikh [7, 8], and van der Laan et al. [9] proposed procedures that allow
dependence in the P -values but have potentially lost statistical power as the dependence
information is not exploited. Section 4 presents a focused statistical inference by restricting
the rejection regions onto {[0, t] : t ∈ [t0, t′0]}, which unifies the results of Sections 2 and 3.
Section 5 generalizes the results from independent data to less-independent situations, and
Section 6 gives our discussion.

2. Finding a 1 − α UPB for the False Discovery Proportion for
a Fixed Rejection Region

For the sake of simplicity, we will first assume that the P -values from the true null hypotheses
are following mutually independently uniform distribution U[0, 1]. We have no further
assumptions on the P -values from false null hypotheses. This assumption is the same as in
Benjamini and Hochberg [1]. In Section 5 we will generalize the result to less independent
situations. For a fixed rejection region [0, t] of the P -values, we would like to find the 1 − α
upper prediction bound (UPB) for the false discovery proportion Qt. As we mentioned in
Section 1, the distribution of Qt is unknown. However, for any given experimental data, the
total number of rejections, Rt, can be easily obtained by (1.1). Under the assumption that
true null P -values are independently distributed as U[0, 1], Vt has a binomial distribution
Bin(m0, t). Let Ui, i = 1, . . . , m be random variables mutually independently distributed as
U[0, 1], and Nm0,t =

∑m0
i=1 I(Ui ≤ t) distributed as Bin(m0, t), hence,

Vt
d= Nm0,t. (2.1)

The 1 − α quantile for Vt is the 1 − α quantile C1−α(m0, t) of the distribution Bin(m0, t). Here
C1−α(m0, t) is defined as

C1−α(m0, t) = min
{
k : pr(Nm0,t ≤ k) ≥ 1 − α

}
. (2.2)
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As Rt can be computed from the observed data, a 1 − α UPB for Qt can be estimated by

Q1−α(m0, t) =
C1−α(m0, t)

Rt
. (2.3)

Lemma 2.1. For any given 0 ≤ m1 ≤ m2 ≤ m,

(a) C1−α(m1, t) ≤ C1−α(m2, t),

(b) m1 − C1−α(m1, t) ≤ m2 − C1−α(m2, t), and

(c) let g(k) = C1−α(k, t) and h(k) = k − C1−α(k, t). The values that g(k + 1) − g(k) and
h(k + 1) − h(k) take can only be zero or one.

Proof. By noting that Nm1,t ≤ Nm2,t when m1 ≤ m2, we have pr(Nm1,t ≤ k) ≥ pr(Nm2,t ≤ k).
Applying the definition of C1−α, we obtain the result for part (a).

Note that

C1−α(m1, t) = min
{
k : pr(Nm1,t ≤ k) ≥ 1 − α

}

= min
{
k : pr(m1 −Nm1,t ≥ m1 − k) ≥ 1 − α

}

= m1 −max
{
k′ : pr

(
m1 −Nm1,t ≥ k′) ≥ 1 − α

} (
use k′ to replace m1 − k

)
.

(2.4)

Therefore,

m1 − C1−α(m1, t) = max
{
k′ : pr

(
m1 −Nm1,t ≥ k′) ≥ 1 − α

}
. (2.5)

Similarly, we can obtain that

m2 − C1−α(m2, t) = max
{
k′ : pr

(
m2 −Nm2,t ≥ k′) ≥ 1 − α

}
. (2.6)

By noting that

m1 −Nm1,t =
m1∑

i=1

I(Ui > t) ≤
m2∑

i=1

I(Ui > t) = m2 −Nm2,t, (2.7)

we have

pr
(
m1 −Nm1,t ≥ k′) ≤ pr

(
m2 −Nm2,t ≥ k′). (2.8)

Combining this with (2.5) and (2.6) leads to the result for part (b).
Parts (a) and (b), respectively, say that g(k) and h(k) are both increasing functions of k.

Simple algebra can establish that {g(k+1)−g(k)}+{(h(k+1)−h(k)} = 1. Both {g(k+1)−g(k)}
and {h(k + 1) − h(k)} are nonnegative due to the increasing property of functions g(k) and
h(k), and hence 0 ≤ g(k + 1) − g(k) ≤ 1 and 0 ≤ h(k + 1) − h(k) ≤ 1. The only values that
{g(k + 1) − g(k)} and {h(k + 1) − h(k)} take can only be zero and one as functions g(k) and
h(k) only take integer values. Thus, we complete the proof for part (c).
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Lemma 2.2. For any given t, 0 < t < 1, Q1−α(m0, t) of (2.3) is a 1 − α UPB for the false discovery
proportion Qt, that is,

pr
(
Qt ≤ Q1−α(m0, t)

)
≥ 1 − α. (2.9)

The proof is straightforward by using the fact that Vt
d= Nm0,t. We have

pr
(
Qt ≤ Q1−α(m0, t)

)
= pr

(
Vt

Rt
≤ C1−α(m0, t)

Rt
, Rt > 0

)
+ pr(Rt = 0)

= pr(Vt ≤ C1−α(m0, t), Rt > 0) + pr(Rt = 0)

= pr(Vt ≤ C1−α(m0, t))

≥ 1 − α.

(2.10)

In the third line, we have used the fact that {Vt ≤ C1−α(m0, t) and Rt = 0} is the same as the
set {Rt = 0}, which is obtained by noting that Vt must be zero when Rt = 0. Following this
proof, we can easily see that

{
Qt ≤ Q1−α(m0, t)

}
= {Vt ≤ C1−α(m0, t)}. (2.11)

The basic construction of Q1−α(m0, t) in (2.3) is the idea central to formulating prediction
inference for Qt. In practice, m0 is an unknown parameter. The most conservative approach
is to replace m0 with m, in which case we obtain a conservative 1 − α UPB for Qt. The
independence assumption among true null P -values can be used to give a confidence
inference form0; thus, we can find a better estimate of the UPB forQt. For any given 0 < λ < 1,
a 1 − α UCB for m0 is given by

m0,1−α(λ) =

⎧
⎨

⎩
max

k=0,...,m−1
{k : h(k) = m − Rλ}

m

if h(m) < m − Rλ,

otherwise,
(2.12)

where h(k) = k − C1−α(k, λ) as defined in Lemma 2.1(c). Since h(0) = 0 and h(k + 1) − h(k)
takes value of only zero and one, there exists at least one k, k ∈ {0, . . . , m − 1} such that
h(k) = m − Rλ when h(m) < m − Rλ. Therefore, m0,1−α(λ) in (2.12) is well defined. The
parameter λ in (2.12) is used to construct a UCB for m0; more discussion about it can be seen
in Remark 2.6 of the following theorem.

Theorem 2.3. (a) m0,1−α(λ) is a conservative 1 − α UCB for m0, that is,

pr(m0 ≤ m0,1−α(λ)) ≥ 1 − α. (2.13)

(b) Especially, if λ takes the same value as t in the P -value rejection region, then

pr
(
Qt ≤ Q1−α(m0,1−α(t), t), m0 ≤ m0,1−α(t)

)
≥ 1 − α. (2.14)
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Proof. Use m0 as a shorthand of m0,1−α(λ) in this proof. We want to establish that

{m0 ≤ m0} = {h(m0) ≤ h(m0)}. (2.15)

The fact that function h(k) is increasing in k leads to {m0 ≤ m0} ⊆ {h(m0) ≤ h(m0)}. On the
other hand, if m0 > m0, then m0 is strictly less than m, and we must have h(m0) = m − Rλ

according to (2.12). m0 is the maximum of k such that h(k) = m − Rλ, and hence h(m0)/=m −
Rλ = h(m0) as m0 > m0. The increasing property of h(k) leads to h(m0) ≥ h(m0). Combining
this with h(m0)/=h(m0), we obtain that h(m0) > h(m0); therefore, we conclude

{m0 > m0} ⊆ {h(m0) > h(m0)} (2.16)

and complete the proof of (2.15).
Note that

{h(m0) ≤ h(m0)} = {h(m0) ≤ m − Rλ,m0 < m} ∪ {h(m0) ≤ h(m), m0 = m}
= {h(m0) ≤ m − Rλ ,m0 < m} ∪ {m0 = m} (

h(m0) ≤ h(m) always holds
)

⊇ {h(m0) ≤ m − Rλ},
(2.17)

we have

pr(m0 ≤ m0) = pr
(
h(m0) ≤ h(m0) ≥ pr(m0 − C1−α(m0, λ) ≤ m − Rλ)

)

≥ pr(m0 − C1−α(m0, λ) ≤ m0 − Vλ)
(
using m − Rλ ≥ m0 − Vλ

)

= pr(Vλ ≤ C1−α(m0, λ))

≥ 1 − α
(
Note that Vλ

d= Nm0,λ

)
.

(2.18)

Hence, we have the proof of part (a). When λ is set to be t, we have that the set
{m0 ≤ m0,1−α(t)} contains {Vt ≤ C1−α(m0, t)} from the above derivation, and that {Qt ≤
Q1−α(m0, t)} = {Vt ≤ C1−α(m0, t)} from the derivation of Lemma 2.2. Therefore,

{
Qt ≤ Q1−α(m0,1−α(t), t), m0 ≤ m0,1−α(t)

}
⊇
{
Qt ≤ Q1−α(m0, t), m0 ≤ m0,1−α(t)

}

⊇ {Vt ≤ C1−α(m0, t)}.
(2.19)

Thus, we have the proof of part (b) of this theorem.

Remark 2.4. Theorem 2.3 gives researchers a good sense of the total number m0 of true null
hypotheses. Other papers, for example, Storey et al. [10], Benjamini and Hochberg [11], and
Langaas et al. [12], gave only point estimates ofm0 or π0 = m0/m. Part (a) gives a confidence
inference for m0, and part (b) gives a simultaneous statement for the Qt and m0, which is
more interesting. Meinshausen [13] gives a confidence for m0 by using resampling methods,
while ours exploited the independence information so that it works for finite samples.
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Remark 2.5. Theorem 2.3 of Göb [14] implies that for a binomial distribution, the difference
between the median and mean is less than 1, that is, |C0.5(m0, t) − m0t| < 1. From (2.3), we
know the 50%UPB for theQt can be estimated byC0.5(m0, t)/Rt. This UPB forQt is very close
to m0t/Rt with a difference smaller than 1/Rt. Replacing m0 by m in m0t/Rt is equivalent to
the classical BH procedure. For a very large Rt, the term 1/Rt can be ignored, and the BH
procedure offers an approximate estimate of the 50% UPB for Qt.

Remark 2.6. When k is large, the distribution Bin(k, λ) can be closely approximated by
N(kλ, kλ(1 − λ)). Let z1−α be the 1 − α quantile of a standard normal distribution. After some
algebraic manipulations, we obtain a 1 − α UCB for m0

m0,1−α(λ) ≈
{

1
2(1 − λ)

(
z1−α
√
λ(1 − λ) +

√
z21−αλ(1 − λ) + 4(m − Rλ)(1 − λ)

)}2

. (2.20)

Taking 1 − α = 0.5, we have (m −Rλ)/(1 − λ), which is equivalent to (2.3) of Storey et al. [10].
For most practical applications, one can set the value of λ = 0.5. Fine tuning of the parameter
λwill be discussed in Section 3.3.

When the rejection region [0, t] is small, the UCB for m0 obtained from part (b) of
Theorem 2.3 may be too conservative. It may be advantageous to have separate values for λ
and t. Part (a) of Theorem 2.3 implies the following.

Corollary 2.7. Replacing m0 by its the upper confidence bound m0,1−α2(λ) and α by α1 in (2.3), we
define

Q1−α1,1−α2
(t, λ) =

C1−α1(m0,1−α2(λ), t)
Rt

. (2.21)

Then,Q1−α1,1−α2
(t, λ) is a conservative 1 − α (α = α1 + α2) UPB for the false discovery proportionQt.

3. Upper Prediction Bounds and Simultaneous Inferences

3.1. The Setup

In Section 2, the UPBs for Q are only valid for a fixed rejection region [0, t] of P -values. In
practice, researchers will not fix the rejected region [0, t] but adapt it to the actual data. The
logic is the same as with single hypothesis testing. In single hypothesis testing with nested
rejection regions {Γα : 0 < α < 1}, for an observed statistic T , one will find the rejection region
that contains the observed statistic with the smallest type I error α, that is,

P -value(T) = min{α : T ∈ Γα}. (3.1)

The same logic can be applied to our false discovery proportion. In this case, we will try to
find the largest rejection region [0, t] such that the false discovery proportion Q is not more
than γ , say 10%, with probability 1 − α. Define

τ = max
{
t : Q1−α1,1−α2

(t, λ) ≤ γ
}
. (3.2)
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We then reject any hypothesis whose P -value is no greater than τ . If τ is independent of Q
and Q, then we can expect that

pr
(
Qτ ≤ γ

) ≥ pr
(
Qτ ≤ Q1−α1,1−α2

(τ, λ)
)
≥ 1 − α. (3.3)

Asymptotically, τ and (Q,Q) may be independent: this question is open for future research.
To overcome the independence assumption of τ and (Q,Q), we seek an alternative approach:
to find simultaneous UPBs for all rejection regions [0, t], t ∈ (0, 1), that is, to find an upper
prediction band Qt such that

pr
(
Qt ≤ Qt for t ∈ (0, 1)

)
≥ 1 − α. (3.4)

Hence we have the simultaneous inferences on Qt for each rejection region [0, t], t ∈ (0, 1).
Following the definition of C1−α(n, t) in (2.2) to construct the UPB for Qt, we want to define
the simultaneous critical values of Nn,t. Using the distribution of maxt∈(0,1)Nn,t is unwise as
maxt∈(0,1)Nn,t = Nn,1, which takes value nwith probability one. A better approach is to center
Nn,t, that is,

sup
t∈(0,1)

(Nn,t − nt). (3.5)

This leads to a test statistic related to the Kolmogorov-Smirnov test statistic, which gives
an upper confidence band for a cumulative distribution function F(x). It turns out that this
method leads to very high UPBs when t is close to zero or one. Therefore, we normalizeNn,t,
that is,

Z̃n =
supt∈(0,1)(Nn,t − nt)

nt(1 − t)
. (3.6)

Note that Z̃n is continuously distributed even though each Nn,t is discretely distributed. Let
z̃1−α(n) be the 1 − α quantile of Z̃n, that is,

pr
(
Z̃n ≤ z̃1−α(n)

)
= 1 − α. (3.7)

We can then redefine Q as

Q̃1−α(m0, t) =
m0t + z̃1−α(m0)

√
m0t(1 − t)

Rt
. (3.8)

Corresponding to Lemma 2.2 and Corollary 2.7, we have similar results below.
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Corollary 3.1. For any given 0 < t < 1, Q̃1−α(m0, t) of (3.8) is an exactly 1 − α upper prediction
band for the false discovery proportion Qt, that is,

pr
(
Qt ≤ Q̃1−α(m0, t) ∀t ∈ (0, 1)

)
= 1 − α. (3.9)

Corollary 3.2. Denote that m0 = m0,1−α2(λ). Define

Q̃1−α1,1−α2(t, λ) =
m0t + z̃1−α1(m0)

√
m0t(1 − t)

Rt
. (3.10)

Let α = α1 + α2. Then Q̃1−α1,1−α2(t, λ) is a conservative 1 − α upper prediction band for the false
discovery proportion Qt, that is,

pr
(
Qt ≤ Q̃1−α1,1−α2(t, λ) ∀t ∈ (0, 1)

)
≥ 1 − α. (3.11)

Remark 3.3. Using the same idea as in the proof of Lemma 2.2, the proof of the above
corollaries is straightforward after converting the comparison between Q and Q̃ to the
comparison between Vt andm0t+ z̃1−α(m0)

√
m0t(1 − t). This conversion provides a powerful

tool for understanding the false discovery proportion.

Remark 3.4. The formulation of Q̃1−α(m0, t) in (3.8) is motivated by the normal approximation
ofNn,t. But our definition of Q̃1−α(m0, t) gives exact UPBs simultaneously for all t ∈ (0, 1) due
to the exactness of the quantile z̃1−α.

Remark 3.5. Meinshausen and Rice [6] and Donoho and Jin [15] also utilize the empirical
process Z̃n. However, they focus on the asymptotic theory for Z̃n, which may face the slow
convergence problem described in the next section. Our focus is on the finite sample control.

Remark 3.6. Let f(t) = (k − nt)/
√
nt(1 − t). After some simplifications, we have f ′(t) ·

(
√
nt(1 − t))3 = −n2t(1 − t) − 1/2 · (k − nt)[n(1 − 2t)] = −n/2 · [k(1 − t) + (n − k)t], and

then f(t) is a decreasing function in t, 0 < t < 1 for 0 ≤ k ≤ n. Equation (3.6) can be simplified
to be

max
k=1,...,n

sup
t∈[U(k),U(k+1))

k − nt
√
nt(1 − t)

= max
k=1,...,n

k − nU(k)√
nU(k)

(
1 −U(k)

) , (3.12)

where U(k) is the kth smallest ordered one among the n samples of U[0, 1] distribution. This
formulation facilitates the computation of the distribution of Z̃n byMonte Carlomethods. The
standard error associated with the Monte Carlo simulations in computing the probability in
(3.7) is no greater than

√
α(1 − α)/B, where B is the number of simulations.
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Figure 1: Plot of the probability pr(Z̃n ≤ z̃) for 1 ≤ z̃ ≤ 20 with n = 105. The x-axis is plotted on a log scale.
The black solid curve is computed from 106 Monte Carlo simulations. The red-dashed curve is based on
(3.13). The green dot-dashed curve is computed from (3.14).

3.2. Computing the Distribution of Z̃n

In order to make simultaneous inferences, we need to know the distribution of Z̃n defined in
(3.6). Example 1 of Jaeschke [16] showed that asymptotically, for any x,

lim
n→∞

pr
(
Z̃n ≤ x + 2 lnlnn + (1/2)lnlnlnn − (1/2) lnπ√

2 lnlnn

)
= exp

[− exp(−x)]. (3.13)

This implies that Z̃n/
√
2 lnlnn converges to 1 in probability as n goes to ∞. Jaeschke [16]

claimed that this probability convergence is of almost no practical use. This is where we
need to be cautious using asymptotic results. Figure 1 shows the poor approximation of the
asymptotic result, even for a very large n = 105. Noe and Vandewiele [17] gave an iterative
algorithm to compute the exact probability pr(Z̃n ≤ z̃). Their algorithm is only good for very
small n due to the computational time and propagation of precision errors in representing
real numbers in computer. Equation (24) of their paper gives an approximate formula for
n = 1, . . . , 100,

pr
(
Z̃n ≤ z̃

)
≈ 1 − (z̃)−2 −

(
2 − 3n−1

)
(z̃)−4 −

(
10 − 57n−1 + 48n−2

)
(z̃)−6

−
(
74 − 1021n−1 + 2743n−2 − 1797n−3

)
(z̃)−8

−
(
706 − 19123n−1 + 111905n−2 − 213619n−3 + 120132n−4

)
(z̃)−10.

(3.14)

This approximation is very good for z̃ ≥ 4 but is away from the true probability when z̃ < 4.
For our applications, the 50% quantile (median) of Z̃ is very useful, but the approximation of
(3.14) is poor there.
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Figure 2: Plot of the probability pr(Z̃n ≤ z̃) for 1 ≤ z̃ ≤ 20. The probability is computed with 106 Monte
Carlo simulations. The curves from the top to the bottom correspond to n = 1, 10, 102, 103, 104, and 105.
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Figure 3: A blowup of Figure 2. This shows the part of the probability pr(Z̃n ≤ z̃) that is close to 1 as 1−P
is drawn on a log scale for the y-axis.

In order to overcome the above poor approximation, we propose to use the Monte
Carlo method to obtain the probability pr(Z̃ ≤ z̃). Figures 2 and 3 give the probability for
z̃ ∈ [1, 20] with 106 simulations for n = 1, 10, 102, 103, 104, and 105. The Monto Carlo method
generated quantiles z̃ for n = 1, . . . , 100 are almost the same as those quantiles that were able
to be computed by the exact algorithm in Noe and Vandewiele [17]. Our two figures show
that the distribution of Z̃n does not change dramatically from n = 1, . . . , 105. This property is
beneficial for a multiple testing problem with large number of hypotheses, as it will not be
overpenalized. Table 1 gives the quantiles of Z̃n with n = 105.
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Table 1: The quantiles of Z̃n of Figure 3, where n = 105. This table is estimated by 106 Monto Carlo simula-
tions. The column 1 − α gives the probabilities, and the column z̃ gives the quantiles of Z̃n.

1 − α z̃ 1 − α z̃ 1 − α z̃ 1 − α z̃

0.5 2.37 0.69 2.76 0.88 3.52 0.9675 5.74
0.51 2.39 0.7 2.78 0.89 3.61 0.97 5.95
0.52 2.41 0.71 2.81 0.9 3.7 0.9725 6.19
0.53 2.42 0.72 2.84 0.905 3.75 0.975 6.47
0.54 2.44 0.73 2.86 0.91 3.81 0.9775 6.78
0.55 2.46 0.74 2.89 0.915 3.88 0.98 7.23
0.56 2.48 0.75 2.92 0.92 3.96 0.9825 7.73
0.57 2.5 0.76 2.95 0.925 4.05 0.985 8.31
0.58 2.52 0.77 2.99 0.93 4.15 0.9875 9.04
0.59 2.54 0.78 3.02 0.935 4.26 0.99 10.04
0.6 2.56 0.79 3.06 0.94 4.4 0.9925 11.56
0.61 2.58 0.8 3.09 0.945 4.55 0.995 14.24
0.62 2.6 0.81 3.13 0.95 4.73 0.9955 14.87
0.63 2.62 0.82 3.18 0.9525 4.84 0.996 15.75
0.64 2.64 0.83 3.22 0.955 4.95 0.9965 16.6
0.65 2.66 0.84 3.27 0.9575 5.08 0.997 17.97
0.66 2.69 0.85 3.32 0.96 5.22 0.9975 19.69
0.67 2.71 0.86 3.39 0.9625 5.36
0.68 2.73 0.87 3.45 0.965 5.55

3.3. More about the Upper Confidence Bound for m0

In computing the UCB for m0 and consequently the UPB for Qt, we rely on the unspecified
parameter λ. A conventional choice of λ is 0.5. It is tempting to use minλ∈(0,1)m0,1−α(λ) as the
best UCB for m0. This approach should be avoided as it may lead to an overoptimistic UCB.
We can use the same idea in computing the simultaneous upper prediction bounds for Qt to
find an UCB form0. Equation (2.20) motivates to the following theorem.

Theorem 3.7. Define m̃0,1−α(λ) as

{
1

2(1 − λ)

(
z̃1−α(m)

√
λ(1 − λ) +

√(
z̃1−α(m)

)2
λ(1 − λ) + 4(m − Rλ)(1 − λ)

)}2

, (3.15)

where

z̃1−α(m) = max
n=1,...,m

z̃1−α(n). (3.16)

Let

m̃0,1−α = min
λ∈(0,1)

m̃0,1−α(λ). (3.17)
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Using m̃0,1−α to replacem0 in (3.8) results in Q̃1−α(m̃0,1−α, t). We have

pr
(
m0 ≤ m̃0,1−ff, Qt ≤ Q̃1−ff(m̃0,1−ff, t) ∀t ∈ (0, 1)

)
≥ 1 − ff. (3.18)

Thus simultaneously m̃0,1−α is a 1 − α UCB for m0 and Q̃ is a 1 − α upper prediction band.

Proof. Note that when x > 0,

x(1 − λ) − √
xz̃1−α(m)

√
λ(1 − λ) − (m − Rλ) ≤ 0 (3.19)

if and only if

x ≤
{

1
2(1 − λ)

(
z̃1−α(m)

√
λ(1 − λ) +

√(
z̃1−α(m)

)2
λ(1 − λ) + 4(m − Rλ)(1 − λ)

)}2

. (3.20)

Therefore,

{m0 ≤ m̃0,1−α} = {m0 ≤ m̃0,1−α(λ) ∀λ ∈ (0, 1)}

=
{
m0(1 − λ) − √

m0z̃1−α(m)
√
λ(1 − λ) − (m − Rλ) ≤ 0 ∀λ ∈ (0, 1)

}

=

{
max
λ∈(0,1)

m0(1 − λ) − (m − Rλ)√
m0λ(1 − λ)

≤ z̃1−α(m)

}

⊇
{
max
λ∈(0,1)

Vλ −m0λ√
m0λ(1 − λ)

≤ z̃1−α(m0)

}
.

(3.21)

The last step follows: (i) z̃1−α(m) is no less than z̃1−α(n) for any n ≤ m, and (ii)m−Rλ ≥ m0−Vλ.
The fact (ii) gives

m0(1 − λ) − (m − Rλ) ≤ m0(1 − λ) − (m0 − Vλ) = Vλ −m0λ. (3.22)

Following the same idea as in the proof of Theorem 2.3 part (b), we can show that the set
{m0 ≤ m̃0,1−α and Qt ≤ Q̃1−α(m̃0,1−α, t) for all t ∈ (0, 1)} is a superset of {maxt∈(0,1)(Vt −
m0t)/

√
m0t(1 − t) ≤ z̃1−α(m0)}. Therefore,

pr
(
m0 ≤ m̃0,1−α, Qt ≤ Q̃1−α(m̃0,1−α, t) ∀t ∈ (0, 1)

)

≥ pr

(
max
t∈(0,1)

Vt −m0t√
m0t(1 − t)

≤ z̃1−α(m0)

)

= 1 − α
(
Note that Vt

d= Nm0,t

)
.

(3.23)
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For any given α and γ ,
(1) Compute m̃0,1−α(λ) of (3.15) for some pre-specified λi’s, say λi = i/1000, for i = 1, . . . , 999.
(2) Compute m̃0,1−α = minim̃0,1−α(λi). This m̃0,1−α is the 1 − α UCB for m0.

If m̃0,1−α exceedsm, replace it bym.
(3) Sort the observed P -values such that P(1) ≤ · · · ≤ P(m), and use (3.8) to compute the 1 − α

simultaneous UPBs for the false discovery proportion Q, that is, for i = 1, . . . , m,

Q̃1−α(P(i)) = (1/i) (m̃0,1−αP(i) + z̃1−α(m̃0,1−α)
√
m̃0,1−αP(i)(1 − P(i))).

If Q̃1−α(P(i)) exceeds 1, replace it by 1.
(4) Compute τ = max{P(i) : Q̃1−α(P(i)) ≤ γ},

reject the hypotheses whose P -values are no greater than τ ,
which ensures that the false discovery proportion Q is not exceeding γ with probability 1 − α.

Algorithm 1: Compute the simultaneous UPBs for the false discovery proportion and the UCB for m0.

Readers should note that the maximum quantile z̃1−α(m) defined in (3.16) is only used to
construct m̃0,1−α, The construction of Q̃1−α(m̃0,1−α, t) itself does not use the maximum but
the quantile z̃1−α(m), while Q̃1−α(m̃0,1−α, t) still depends on the maximum quantiles indirectly
through m̃0,1−α.

3.4. The Algorithm

Putting all these pieces together, we describe the procedure to compute the upper prediction
band for Qt and the UCB for m0 in Algorithm 1. Note that we have to compute the quantile
z̃1−α(m) and z̃1−α(m̃0,1−α). This is very time consuming for large m, which is typically from
thousands to tens of thousands. The computationally time can be reduced by the following
strategies.

(1) After careful study of the two equations (3.8) and (3.15), we find that if we replace
all z̃1−α(n) and z̃1−α(n) by z̃1−α(N), where N ≥ n, the conclusions of Corollaries 3.1
and 3.2 and Theorem 3.7 still hold.

(2) The quantile z̃1−α(n) is an increasing function of n, as shown by the Monte Carlo
simulations in Figures 2 and 3. The rigorous mathematical proof of this finding is
open to future research. For practical applications, we can first use Monte Carlo
simulations to verify this property for the range of n that is related to the project
and then replace all z̃1−α(n) by z̃1−α(n).

(3) Figure 2 shows that z̃1−α(n) is very close to z̃1−α(N) if n is close to a large N, say
more than 100. Therefore, in practical computations, we can first compute and
store a representative sequences of the quantiles z̃1−α(n) for n = n1, . . . , nI , and
consequently we can get an upper bound for z̃1−α(n) for n = 1, . . . , m. In computing
the quantiles z̃1−α(n), we recommend to have at least 104 Monte Carlo simulations
in order to get an accurate quantile computation for tail part. Even with 106

simulations, we still see a small amount of random noise in the tail part in Figure 3.
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4. A Focused Inference on Q and m0: A Unified Approach

In many applications, it may be unnecessary to compute the simultaneous UPBs forQt for all
t in (0, 1) and using m̃1−α(λ) for all λ in (0, 1) to derive a 1−αUCB form0. In most applications,
it may be reasonable to restrict the rejections onto {[0, t] : t ∈ [t0, t′0]}. The t0 can take value
of 0.01/m based on Bonferroni FWER control at level 0.01. It is rare to consider a smaller
rejection region than this. The t′0 can take value of 0.05 as it is rare to consider a larger rejection
region than [0, 0.05] even in a single hypothesis testing problem. For the same reason, we can
also restrict λ onto [λ0, λ′0] in (3.17). The interval [λ0, λ′0] can be taken as a region close to one
as the minimum of m̃0,1−α(λ) is reached when λ is close to 1 [18], but if λ is too close to 1,
m̃0,1−α(λ) is not stable. One good choice of λ0 can be 0.8, and λ′0 can be 0.95.

The above scenario is a focused inference on Q and m0. The z̃ in Section 3.2 will be a
little bit more conservative for us. We can redefine Z̃∗

n as in the following:

Z̃∗
n = max

(
supt∈[t0,t′0](Nn,t − nt)

√
nt(1 − t)

,
supλ∈[λ0,λ′0](Nn,λ − nλ)

√
nλ(1 − λ)

)
. (4.1)

From this Z̃∗
n we can define the 1 − α quantile z̃∗1−α(n), and derive results similar to

Theorem 3.7. Figure 4 shows quantiles z̃∗1−α(n) for n = 1, . . . , 105 for [t0, t′0] = [0.01/n, 0.05]
and [λ0, λ′0] = [0.8, 0.95]. Table 2 gives the numerical values of z̃∗1−α(n) for n = 105. It clearly
shows that z̃∗1−α(n) is around 10% smaller than the unrestricted quantiles z̃∗1−α(n). For small
values of α, say that α ≤ 0.01, the former is at least 25% smaller than the latter.

Corollary 4.1. Define m̃∗
0,1−α(λ) as

{
1

2(1 − λ)

(
z̃
∗
1−α(m)

√
λ(1 − λ) +

√(
z̃
∗
1−α(m)

)2
λ(1 − λ) + 4(m − Rλ)(1 − λ)

)}2

, (4.2)

where z̃
∗
1−α(m) = maxmn=1z̃

∗
1−α(n). Let

m̃∗
0,1−α = min

(
min

λ∈[λ0,λ′0]
m̃∗

0,1−α(λ), min
λ∈[t0,t′0]

m̃∗
0,1−α(λ)

)
. (4.3)

Define Q̃∗

Q̃∗
1−α(m0, t) =

m0t + z̃∗1−α(m0)
√
m0t(1 − t)

Rt
. (4.4)

Replacing m0 by m̃∗
0,1−α results in Q̃∗

1−α(m̃
∗
0,1−α, t). We have that m̃∗

0,1−α is a 1 − α UCB for m0, and

Q̃∗ is a 1 − α upper prediction band for Q for t ∈ [t0 · t′0], that is,

pr
(
m0 ≤ m̃∗

0,1−α, Qt ≤ Q̃∗
1−α
(
m̃∗

0,1−α, t
)
∀t ∈ [t0, t′0

]) ≥ 1 − α. (4.5)
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Table 2: The quantiles of Z̃∗
n of Figure 4, where n = 105. The column 1 − α gives the probabilities, and the

column z̃∗ gives the quantiles of Z̃∗
n.

1 − α z̃∗ 1 − α z̃∗ 1 − α z̃∗ 1 − α z̃∗

0.5 2.1 0.69 2.55 0.88 3.38 0.9675 5.15

0.51 2.12 0.7 2.58 0.89 3.47 0.97 5.28

0.52 2.14 0.71 2.61 0.9 3.57 0.9725 5.43

0.53 2.16 0.72 2.64 0.905 3.62 0.975 5.58

0.54 2.18 0.73 2.67 0.91 3.68 0.9775 5.78

0.55 2.21 0.74 2.7 0.915 3.74 0.98 5.99

0.56 2.23 0.75 2.73 0.92 3.82 0.9825 6.2

0.57 2.25 0.76 2.77 0.925 3.89 0.985 6.48

0.58 2.27 0.77 2.8 0.93 3.97 0.9875 6.82

0.59 2.3 0.78 2.84 0.935 4.06 0.99 7.23

0.6 2.32 0.79 2.88 0.94 4.18 0.9925 7.73

0.61 2.35 0.8 2.92 0.945 4.3 0.995 8.37

0.62 2.37 0.81 2.96 0.95 4.43 0.9955 8.52

0.63 2.39 0.82 3.01 0.9525 4.52 0.996 8.63

0.64 2.42 0.83 3.06 0.955 4.61 0.9965 8.77

0.65 2.44 0.84 3.11 0.9575 4.7 0.997 8.94

0.66 2.47 0.85 3.17 0.96 4.79 0.9975 9.12

0.67 2.5 0.86 3.23 0.9625 4.89

0.68 2.52 0.87 3.3 0.965 5.02

Note that the 1−αUCB form0 takes not only the minimum of m̃∗
0,1−α(λ) for λ ∈ [λ0, λ′0],

but also the minimum of m̃∗
0,1−α(t) for t ∈ [t0, t′0]. This advantage is due to the construction

of the Z̃∗
n, which takes maximum over these two intervals. The details of the calculation are

summarized in Algorithm 2. The proof of this corollary is the same as that in Theorem 3.7.
By setting λ0 = λ′0 = t and t0 = t′0 = t, this corollary is equivalent to Theorem 2.3 through

some algebra manipulations, while Theorem 2.3 uses the exact confidence bound from the
binomial distribution without relying on the quantiles of Z̃∗

n. Furthermore, Theorem 3.7 is
exact a special case of Corollary 4.1 by setting λ0 = 0, λ′0 = 1, and t0 = 0, t′0 = 1 and by
considering open intervals rather close intervals. The focused inference thus unifies both
the fixed rejection approach and simultaneous approach. We should be cautious of selecting
[t0, t′0] and [λ0, λ′0] based on the observed data, which may result in overoptimistic false
discovery proportions. These settings have to be decided before the data are generated. A
careful study of choosing appropriate values for [t0, t′0] and [λ0, λ′0] is open for future research.

5. Generalizing the Results to Less-Independent Situations

The results of Sections 2, 3, and 4 are based on the assumption that the true null P -values are
independently distributed asU[0, 1]. Given this, we need no further assumptions concerning
the false null P -values. This independence assumption can be weakened as in the following:
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Figure 4: The probability distribution of Z̃∗
n is computed with 106 Monte Carlo simulations. The interval

[t0, t′0] takes value of [0.01/n, 0.05], and interval [λ0, λ′0] takes value of [0.80, 0.95]. The curves from the top
to the bottom correspond to n = 1, 10, 102, 103, 104, and 105.

For any given α and γ , choose t0 = 0.01/m, t′0 = 0.05, λ0 = 0.8, λ′0 = 0.95.
(1) Compute m̃∗

0,1−α(λ) of (4.2) for some pre-specified λi’s in the region (λ0, λ′0)
and pre-specified ti’s in the region (t0, t′0),
say λi = λ0 + (λ′0 − λ0)i/1000, ti = t0 + (t′0 − t0)i/1000 for i = 0, . . . , 1000.

(2) Compute m̃∗
0,1−α = min(minim̃

∗
0,1−α(λi),minim̃

∗
0,1−α(ti)).

This m̃∗
0,1−α is the 1 − α UCB form0. If m̃∗

0,1−α exceedsm, replace it bym.
(3) Sort the observed P -values such that P(1) ≤ · · · ≤ P(m),

and use (4.4) to compute the 1 − α UPB for the false discovery proportion Q,
that is, for P(i) ∈ [t0, t′0]
Q̃∗

1−α(P(i)) = (1/i)(m̃∗
0,1−αP(i) + z̃∗1−α(m̃

∗
0,1−α)

√
m̃∗

0,1−αP(i)(1 − P(i))).

If Q̃∗
1−α(P(i)) exceeds 1, replace it by 1.

(4) Compute τ = max{P(i) ∈ [t0, t′0] : Q̃
∗
1−α(P(i)) ≤ γ},

reject the hypotheses whose P -values are no greater than τ ,
which ensures that the false discovery proportion Q is not exceeding γ with
probability 1 − α.

Algorithm 2: Focused simultaneous inferences on the UPBs for the false discovery proportion and the UCB
form0.

Binomial Dominant Condition: One has Vt

d≤ Nm0,t for 0 < t < 1.

The notation X
d≤ Y means that random variable X is stochastically no greater than

random variable Y , that is, pr(X ≤ x) ≥ pr(Y ≤ x) for any x. Replacing the independence
assumption by the binomial dominant condition, the results corresponding to Lemma 2.2,
Theorem 2.3, and Corollary 2.7 in Section 2 still hold for a fixed rejection region. For the
simultaneous UPBs in Sections 3 and 4, we need a stronger assumption than the binomial
dominant condition as the joint distribution of {Vt, t ∈ (0, 1)} needs to be specified. We can
replace the binomial dominant condition by the following.
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Joint Binomial Dominant Condition: (Vt1 , . . . , Vtk)
d≤ (Nm0,t1 , . . . ,Nm0,tk) for any k =

1, 2, . . . , and t1, . . . , tk ∈ (0, 1). Here Nm0,t =
∑m0

i=1 I(Ui ≤ t), and Ui, i = 1, . . . , m0 are mutually

independently distributed as distribution U[0, 1]. The notation (X1, . . . , Xk)
d≤ (Y1, . . . , Yk)

means for any x1, . . . , xk, pr(X1 ≤ x1, . . . , Xk ≤ xk) ≥ pr(Y1 ≤ x1, . . . , Yk ≤ xk).
Replacing the independence assumption by this joint binomial dominant condition,

the results in Sections 3 and 4 are still valid for the upper prediction band for Q and the
UCB for m0. A special case for this joint binomial dominant condition is that when the true
null P -values are independent with distribution stochastically no smaller than U[0, 1]. This
happens when the null hypothesis is composite or the statistic to test the null hypothesis is
not a continuous random variable.

More generally, we would like the construction of upper prediction band for Q not
to rely on the independence assumption or any kind of weak dependence assumption (the
binomial dominant condition or the joint binomial dominant condition). The method of
Romano and Shaikh [7, 8] can be applied without any assumptions on the dependence, but
may potentially have lost power due to that the correlation structure of the data has not been
exploited. A resampling procedure [13, 19] has been proposed to address this limitation.

6. Discussion

The method of this paper applies to data where true null P -values are independent, or
to slightly dependent data where the joint binomial dominant condition is satisfied. This
assumption does not rely on any specification for the false null P -values. In this paper we
used the idea of considering a fixed rejection region to construct a UPB for Qt and a UCB
for m0. By utilizing the normalized empirical process Z̃n = supt∈(0,1)(Nn,t − nt)/

√
nt(1 − t),

we find simultaneous UPBs for Qt for all t ∈ (0, 1) and can further modify the construction
of the UCB for m0. The result of Theorem 3.7 gives the joint statement about the UCB for
m0 and the simultaneous UPBs for the false discovery proportions Q. A focused approach
in Corollary 4.1 unifies the result of the fixed rejection region method and the simultaneous
approach.

The method in this paper is based on finite samples and avoids the slow convergence
problem of the asymptotic theory for the empirical process Z̃n. The Monte Carlo simulations
give very accurate estimates of the quantiles for Z̃n. The standard error associated with the
Monte Carlo simulations in computing the probability in (3.7) is no greater than

√
α(1 − α)/B,

where B is the number of simulations.
In the dataset where the test statistics are not independent or do not satisfy joint

binomial dominant condition, the method in this paper may not be guaranteed to work. One
can alternatively use the methods proposed in Romano and Shaikh [7, 8], Meinshausen [13],
Ge et al. [19]. The method proposed in this paper can be potentially extended to dependent
data by using resamplings, and this work is open for future research.
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