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We developed a multinomial ordinal probit model with singular value decomposition for testing
a large number of single nucleotide polymorphisms (SNPs) simultaneously for association with
multidisease status when sample size is much smaller than the number of SNPs. The validity
and performance of the method was evaluated via simulation. We applied the method to our real
study sample recruited through theMexican-American CoronaryArtery Disease study.We found 3
genes (SORCS1, AMPD1, and PPARα) to be associated with the development of both IGT and IFG,
while 5 genes (AMPD2, PRKAA2, C5, TCF7L2, and ITR)with the IGTmechanism only and 6 genes
(CAPN10, IL4, NOS3, CD14, GCG, and SORT1)with the IFG mechanism only. These data suggest
that IGT and IFG may indicate different physiological mechanism to prediabetes, via different
genetic determinants.

1. Introduction

Genome-wide association studies (GWASs) examine genetic variants across the entire
genome to improve the understanding of genetic components underlying complex human
disease. With whole-genome genotyping techniques that allow GWAS to involve hundreds
of thousands of single nucleotide polymorphisms (SNPs), many studies have successfully
identified novel genetic components for many diseases or related quantitative traits.
However, the sample size is often limited due to the difficulty of recruiting patients and/or
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the cost of research. This leads to the situation that the number of SNPs (m) is much larger
than the samples (n) available, that is, m � n, and makes the traditional statistical methods
unsuitable for analyzing multiple SNPs simultaneously. Most of current GWASs deal with
this shortcoming by performing single SNP association test, which analyzes one SNP at a
time and results in a huge multiple testing problem. These motivated us to develop methods
that can avoid the multiple testing problem, in other words, methods that can evaluate
multiple SNPs simultaneously when m � n. We first introduced the iterative Bayesian
variable selection (IBVS) method [1], which analyzes all SNPs simultaneously when m � n
and uses the Bayesian variable selection [2] iteratively to find SNPs that are associated
with disease. The method was successfully applied to the simulated rheumatoid arthritis
data provided by the Genetic Analysis Workshop 15 (GAW15). We later introduced the
Bayesian classification with singular value decomposition (BCSVD)method [3]. The method
applies the singular value decomposition (SVD) to the covariate matrix, which is usually
the genotype data in GWAS and reduces the dimension of parameters to be estimated to the
number of samples. This makes the method feasible to handle multiple SNPs simultaneously
when m � n. The validation of the method was demonstrated by applying to the simulated
data provided by GAW16. We now extend our method from binary disease to the analysis of
polytomous ordinal response variables. We propose here a multinomial ordinal probit model
with singular value decomposition method. We show the validity of the newly developed
method by applying it to simulated data sets as well as to a real study sample to identify genes
contributing to two different mechanisms for prediabetes, namely, impaired glucose tolerance
(IGT) and impaired fasting glucose (IFG). With the simulated data sets, we demonstrate that
this new method is superior to single SNP analysis method and, with the real data, identify
different genes for each mechanism.

2. Method and Materials

2.1. Multinomial Probit Model with Singular Value Decomposition

Logit and probit models are statistical models that are widely used for the analysis of
categorical (ordinal/nominal) data. The difference between these two models is the choice
of the link function relating the linear predictor to the expected value; the probit model uses
the inverse normal cumulative distribution, and the logit model uses the logit transformation.
As discussed by Greene [4], in most cases, the choice of the link function is largely a matter
of taste. We utilized the probit model here to analyze data with polytomous ordinal response
variables. In general, the multinomial ordinal probit model can be expressed by latent
(unobserved) continuous variables associated with categorical responses. Let us assume that
responses y1, y2, . . . , yn are observed, where yi takes one of the J-ordered categories and
θ1, . . . , θJ are real numbers of bin boundaries, which satisfy that −∞ = θ1 ≤ · · · ≤ θJ = ∞. As
discussed by Albert and Chib [5], we denote that z1, z2, . . . , zn are latent continuous random
variables. We assume that the latent variable (zi) associated with a categorical outcome (yi)
can be explained in terms of an underlying linear model, and that the observed response yi

has category j if and only if zi falls between θj−1 and θj . Themultinomial ordinal probit model
is equivalent to the following model:

zi = xiβ + εi, εi ∼ N(0, 1), i = 1, . . . , n,

yi = j ⇐⇒ θj−1 < zi ≤ θj , j = 1, . . . , J,
(2.1)
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where xi is a 1 × m vector of the explanatory variables for the ith sample, and β is a m × 1
vector of parameters to be estimated. In vector-matrix notation, we can have the multinomial
ordinal probit model

z = Xβ + ε, (2.2)

where z is the n×1 vector of latent variables,X is the n×mmatrix of the explanatory variables,
β is the m × 1 vector of unknown regression coefficients, and ε follows an independent
standard multivariate normal distribution, ε ∼ N(0, In). By applying SVD to the matrix X
in (2.2), when rank(X) = n, the matrix can be expressed as X′ = ADF ′, where A is the
m × n singular value factor loading matrix with orthonormal columns so that A′A = In, F
is the n × n SVD orthogonal factor matrix with F ′F = FF ′ = In, and D = diag(d1, . . . , dn),
the diagonal matrix of positive singular values, ordered as d1 ≥ · · · ≥ dn > 0. When
rank(X) = r < n, the smallest n − r singular values in D are replaced with 0, that is,
d1 ≥ · · · ≥ dr > dr+1 = · · · = dn = 0. Therefore, in the product X′ = ADF ′, the last n − r
columns of both A and F for which dr+1 = · · · = dn = 0 are ignored since they interact with
the block of zeros in D. Hence, this leads to another form of SVD, X′ = ArDrF

′
r , that is, the

product of the first r columns of A, the upper r × r block of D, and the first r columns of F.
Since the difference between the both scenario is only in dimension of matrices in SVD, we
assume that rank(X) = n in the rest part of the paper for convenience. Thus, the model in
(2.2) with the SVD of X can be written as follows:

z = Xβ + ε =
(
ADF ′)′β + ε = FDA′β + ε = Lγ + ε, (2.3)

where L = FD and γn×1 = A′
n×mβm×1. Therefore, z, the n × 1 vector of latent variables in

(2.3), has a multivariate normal distribution, that is, z ∼ N(Lγ, In). As shown in (2.3), γ is
expressed by a linear combination of the original parameters (β). Hence, we call γ as the
vector of superfactors. The model in (2.3) represents a massive dimension reduction from m
to n parameters. The regression model withm parameters reduced to that with n parameters
derived from the SVD of the covariate matrix X. Therefore, the statistical inference on the
original parameter turns into the superfactors. Let pi = (pi1, . . . , piJ ) denote the vector of
probabilities associated with the assignment of the ith sample into categories 1, . . . , J , where
pij denote the probability that a sample falls into category j. From (2.1) and (2.3), it follows
that

pij =
∫θj

θj−1
φ
(
z − liγ

)
dz = Pr

(
θj−1 < Zi < θj

)
= Φ
(
θj − liγ

) −Φ
(
θj−1 − liγ

)
, (2.4)

where φ(·) and Φ(·) denote the probability density function and the cumulative density
function of the standard normal distribution, respectively, and li is the ith row of matrix
L = FD. Let y = (y1, . . . , yn) denote the vector of responses observed for all samples. Then,
the probability of observing data y is given as follow:

Pr
(
y | pi

)
=

n∏

i=1

J∏

j=1

p
I{yi=j}
ij . (2.5)
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From (2.4) and (2.5), the log likelihood function for (γ, θ) can be written as

lnL
(
γ, θ
)
=

n∑

i=1

J∑

j=1

I
{
yi = j

}
ln
[
Φ
(
θj − liγ

) −Φ
(
θj−1 − liγ

)]
. (2.6)

2.2. Model Fitting with Maximum Likelihood Estimation

The maximum likelihood estimates (MLEs) of the superfactors, γ , in (2.3) can be obtained
by the iteratively reweighted least squares (IRLSs) procedure [6] using the log likelihood
function for (γ, θ) in (2.6). The procedure can be briefly described as follows. Let η denote
the vector of all model parameters, that is, η = (θ2, . . . , θJ−1, γ1, . . . , γn−J+2). Note that θ1 and θJ
are not included in this vector because their values are assumed to be 0 and ∞, respectively,
for the purpose of model identifiability. Also note that the (J − 2) smallest singular values
together with their corresponding factors are dropped from the parameters since the number
of parameters must not exceed the number of samples. Assuming that J = 4, define that

Ci =

⎡

⎢⎢⎢⎢⎢
⎣

1 0 0

−1 1 0

0 −1 1

0 0 −1

⎤

⎥⎥⎥⎥⎥
⎦
, Li =

⎡

⎢⎢
⎣

1 0 0 −li
0 1 0 −li
0 0 1 −li

⎤

⎥⎥
⎦, (2.7)

and Hi = diag(fi1, . . . , fiJ−1), where fij denotes the derivative of the standard normal
cumulative distribution function at θj − liγ . TakeWi = diag(pi), where pi is the J × 1 vector of
probabilities that the ith individual falls in each category, that is, pi = (pi1, . . . , piJ )

′, and letNi

be a J × 1 vector of observation, that is, Ni = (I{yi = 1}, . . . , I{yi = J})′. After initialization of
all elements, the iteration s + 1 (s = 1, 2, . . .) can be written as

ηs+1 = ηs +

(
n∑

i=1

L′
iH(s)

i C′
iW

−1(s)
i CiH(s)

i Li

)−1 n∑

i=1

L′
iH(s)

i C′
iW

−1(s)
i

(
Ni − p

(s)
i

)
. (2.8)

The MLE of η can be found by performing the process recursively until the change between
ηs+1 and ηs is negligible.

2.3. General Solution for the Original Parameters

We have discussed how to estimate the superfactor (γ) in (2.3) thus far. Since the primary
interest is to find SNPs that are significantly associated with a disease, it is necessary to
transform the superfactor (γ) to the original parameters (β) in (2.1). The equation γ = A′β
in (2.3) can be utilized for the transformation even though A is m × n nonsquare matrix. As
discussed by Graybill [7], the unique solution for β can be achieved by taking the generalized
inverse matrix ofA′ asA sinceA′A = In. Therefore, the unique solution for SNP effect (β) can
be calculated by β = Aγ .
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2.4. Selection of Significant SNPs

Finding significant SNPs is the same as testing if each SNP effect (βi, i = 1, . . . , m) is
statistically significant, that is, testing the hypothesis:H0: βi = 0 versusH1: βi /= 0, i = 1, . . . , m.
The simple method is to use Wald’s test statistic, which forms (β̂ − β)/se(β̂) and assumes
a normal distribution. However, when m � n, it is hard to calculate se(β̂) directly from
the data. We therefore utilized permutation test to select significant SNPs. The rationale
behind the test is that, under the null hypothesis, the estimate of β obtained from the raw
(unpermuted) data is similar to the estimate of β obtained from the permuted data. That
is, the difference between two estimates is closed to zero under H0. With this idea, we can
construct Wald’s test statistic as follows. Let β̂i (i = 1, . . . , m) be the estimate of the ith SNP
effect from the raw data and β̂ki (k = 1, . . . , K) be the estimate of the ith SNP effect from the
kth-permuted data. Let us define βdk

i as the difference between β̂i and β̂ki , that is, β
dk

i = β̂i − β̂ki .
Then, Wald’s test statistic can be as follows:

Λi =
β
d

i

se
(
β
d

i

) , i = 1, . . . , m, (2.9)

where β
d

i is the sample mean of βdk

i ’s, which is β
d

i =(1/K)
∑K

k=1 β
dk

i , and se(β
d

i ) is the standard

error of β
d

i . Under the null hypothesis, the statistic Λi defined in (2.9) follows approximately
standard normal distribution when k is large. P value for rejecting the null hypothesis at a
significance level α = 0.05 can be utilized to identify significant SNPs.

2.5. Application of the Multinomial Probit Model with SVD

2.5.1. Simulated Multinomial Ordinal Data

The validity of the proposed method was evaluated using simulated data sets. The procedure
of data generation was composed of three steps: generating genotype data with certain
genetic model, generating the latent variable, and defining the disease status variable by
applying the predefined bin boundaries. The brief scheme of each step is as follows: we first
generated 10 sets of the simulated genotype data under an additive genetic model, each set
consists of 100 samples and 1000 SNPs. From (2.1), we can notice that the latent variable (zi)
consists of two parts: the expected value (xiβ) and the random error (εi). In order to generate
the expected value, we assumed that, for each sample, 9 out of the 1000 SNPs (every 101th
SNP, except the last one) contribute to disease status xiβ = β1 · SNP101 + β2 · SNP201 + · · · +
β1 · SNP801 + β2 · SNP901, where β1 and β2 are set as −1 and 1, respectively. Hence, the latent
variable can be obtained from the sum of the expected values (xiβ) and the random error
generated from standard normal distribution. We then generated disease status variable (yi)
assuming 3 disease development stages. Therefore, when applying the proposed method to
the simulated data sets, we would expect 9 strong signals corresponding to each of the 9
disease-associated SNPs. We also compared results obtained from the proposed method with
that from single SNP analysis with multinomial ordinal probit model.
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(a) Estimates of SNP effects by the proposed method
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Figure 1: Analysis of the simulated data sets with multinomial ordinal probit model with SVD.

2.6. Mexican-American Coronary Artery Disease (MACAD) Study

We also applied the proposed method to study sample recruited through the Mexican-
American Coronary Artery Disease (MACAD) study [8, 9]. The study population consists of
probands who are Mexican American aged between 45 and 75 with coronary artery disease:
spouses of probands, adult offspring (≥18), and their spouses. For the offspring generation,
we performed oral glucose tolerance test and genotyped 132 SNPs in 32 genes selected based
on a prior relationship to insulin physiology. The goal of the study herein was to identify
genes involved in the development of IGT and/or IFG, where IGT was defined as a 2 hr
glucose level between 140 and 199mg/dL and IFG defined as a fasting glucose level between
100 and 125mg/dL. In order to identify and compare genes affecting the development of
IGT and/or IFG, we generated two study samples, for which each sample has 3 disease
stages (D1) both 2 hr and fasting glucoses normal (N/N)(n1 = 60), IGT only (IGT/N)
(n2 = 31) and IGT and IFG (IGT/IFG) (n3 = 15) (D2) both 2 hr and fasting glucoses normal
(N/N)(n1 = 60), IFG only (N/IFG) (n′

2 = 34) and IGT and IFG (IGT/IFG) (n3 = 15).

3. Results and Discussion

3.1. Simulated Multinomial Data

Figure 1 summarizes the results of association analyses when applying the multinomial
ordinal probit model with SVD to the simulated data sets. All numbers shown in the figures
are the average of the estimates obtained from the 10 simulated data sets. As mentioned pre-
viously, we expected 9 strong signals corresponding to the 9 SNPs designed to be associated
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Figure 2: Analysis of the simulated data sets with single SNP analysis.

with disease development when generating the simulated data sets, and 9 were observed
in our analysis. Similar results from the single SNP analysis were shown in Figure 2.

Figure 1(a) summarizes MLEs of SNP effects calculated with the multinomial ordinal
probit model with SVD. The figure shows that almost all MLEs except 9 were between −0.1
and 0.1, while there were 9 large MLEs (4 around 0.3, 5 around −0.3) corresponding to the 9
SNPs contributed to disease status. Figure 1(b) gives P values in −log10 scale for testing SNP
effects. The line in Figure 1(b) corresponds to significance level α = 0.05. 9 SNPs were clearly
separated from the rest and had −log10(P value) > 1.3.

Figure 2(a) summarizes MLEs of SNP effects obtained by the single SNP analysis and
shows that no signal was strong enough to be distinguished from all other signals. The P
values are given in Figure 2(b) in −log10 scale. SNP501 in the middle of the figure had a
relatively strong signal compared to all others. However, the −log10(P value) was much less
than 1.3, which corresponds to significance level α = 0.05. Thus, no SNPs were identified
as statistically significant from the single SNP analysis method. In contrast to the fact that
no SNP was identified as statistically significant by the single SNP analysis, the multinomial
ordinal probit model with SVDmethodwas able to identify all 9 SNPs contributing to disease
status as statistically significant at significance level α = 0.05. These results indicated that the
proposed method should be reliable for the analysis of large-scale genome-wide association
data that have polytomous ordinal responses when m � n.

3.2. Mexican-American Coronary Artery Disease (MACAD) Study

We analyzed the data sets D1 and D2 (see methods) generated from a subsample of subjects
recruited through a coronary artery disease proband in the Mexican-American Coronary
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Figure 3: Analysis of genes for IGT/IFG through IGT pathway (Data Set D1) with single-SNP analysis.

Artery Disease Project as described in the method section, using both the multinomial ordinal
probit model with SVD method and the single SNP analysis method.

Figure 3 summarizes the analysis results with the data D1 (N/N-IGT/N-IGT/IFG)
using the single SNP analysis. Figure 3(a) gives MLEs of SNP effects. Figure 3(b) plots P
values of association analysis in −log10 scale. With Sidak correction, which is often used to
correct multiple testing problem, the adjusted significance level should be 1 − (1 − α)1/m,
where α is significance level, and m represents the number of tests. Thus, the corrected
−log10(P value) threshold for significance level α = 0.05 is 3.4, which corresponds to the
line in Figure 3(b). We applied the adjusted significance level to the P values in Figure 3(b)
since the P values are before correcting multiple testing problem. No SNP was identified as
statistically significant (Figure 3(b)).

The data set D2 (N/N-N/IFG-IGT/IFG) was analyzed with the same method, and
analysis results are given in Figure 4. Figure 4(a) plotsMLEs of the SNP effects. Since P values
in Figure 4(b) are before the themultiple testing correction, we used 3.4 as the −log10(P value)
threshold corresponding to 0.05 significance level after the multiple testing correction. Two
SNPs corresponding to SORC1 and SORT1 were found significant.

We then also analyzed D1 andD2with themultinomial ordinal probit model with SVD
method. Figure 5 summarizes the analysis results for data D1. Figure 5(a) plots MLEs of SNP
effects. Figure 5(b) plots P values in −log10 scale for testing SNP effects. The multiple testing
correction does not need to be applied now since the method tests all SNPs simultaneously.
With the 1.3 P value threshold, which corresponds to 0.05 significance level, we identified that
8 out of the 32 candidate genes (SORCS1, AMPD1, PPARα, AMPD2, PRKAA2, C5, TCF7L2,
and ITR)were associated with the disease path defined in D1.

The multinomial ordinal probit model with SVD method was applied to data set D2
as well. The results are shown in Figure 6. In Figure 6(a), MLEs of the SNP effects were
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Figure 4: Analysis of genes for IGT/IFG through IFG pathway (Data Set D2)with single SNP-analysis.
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Figure 5: Analysis of Genes for IGT/IFG through IGT pathway (Data Set D1) with multinomial ordinal
probit model with SVD.
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Figure 6: Analysis of genes for IGT/IFG through IFG pathway (Data Set D2) with multinomial ordinal
probit model with SVD.
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summarized. Figure 6(b) plots the P values in −log10 scale for testing the SNP effects. It
showed that 11 SNPs corresponding to 9 out of 32 candidate genes (SORCS1, AMPD1,
PPARα, CAPN10, IL4, NOS3, CD14, GCG, and SORT1) have −log10(P value) greater than
the 1.3 P value threshold. From the analyses of D1 and D2, we found that SNPs in 3 genes
(SORCS1, AMPD, and PPARα) were associated with both IGT and IFG; SNPs in 5 genes
(AMPD2, PRKAA2, C5, TCF7L2, and ITR) were associated with IGT only; SNPs in 6 genes
(CAPN, IL4, NOS3, CD14, GCG, and SORT1) were associated with IFG only. These results
suggest that IGT and IFG may indicate different pathways to diabetes, with different genetic
determinants.

Thus, using both simulated data and a real study sample, we demonstrated that
multinomial ordinal probit model with SVD method can be utilized to identify associated
markers involved in disease development when multidisease stages are considered. For
relatively small size of data set used in the paper, which is 100 samples and 1000 SNPs for the
simulation study, the computation took about less than 10 minutes to complete. However, the
computation time might be a concern when applying this method to large data set, such as
GAWS with millions of SNPs and thousands of samples.
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