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This paper details a method for extreme value prediction on the basis of a sampled time series. The method is specifically designed
to account for statistical dependence between the sampled data points in a precisemanner. In fact, if properly used, the newmethod
will provide statistical estimates of the exact extreme value distribution provided by the data in most cases of practical interest. It
avoids the problem of having to decluster the data to ensure independence, which is a requisite component in the application of, for
example, the standard peaks-over-threshold method. The proposed method also targets the use of subasymptotic data to improve
prediction accuracy. The method will be demonstrated by application to both synthetic and real data. From a practical point of
view, it seems to perform better than the POT and block extremes methods, and, with an appropriate modification, it is directly
applicable to nonstationary time series.

1. Introduction

Extreme value statistics, even in applications, are generally
based on asymptotic results. This is done either by assuming
that the epochal extremes, for example, yearly extreme wind
speeds at a given location, are distributed according to the
generalized (asymptotic) extreme value distribution with
unknown parameters to be estimated on the basis of the ob-
served data [1, 2]. Or it is assumed that the exceedances above
high thresholds follow a generalized (asymptotic) Pareto
distribution with parameters that are estimated from the data
[1–4]. The major problem with both of these approaches is
that the asymptotic extreme value theory itself cannot be used
in practice to decide to what extent it is applicable for the
observed data. And since the statistical tests to decide this
issue are rarely precise enough to completely settle this prob-
lem, the assumption that a specific asymptotic extreme value
distribution is the appropriate distribution for the observed
data is based more or less on faith or convenience.

On the other hand, one can reasonably assume that in
most cases long time series obtained from practical measure-
ments do contain values that are large enough to provide

useful information about extreme events that are truly
asymptotic. This cannot be strictly proved in general, of
course, but the accumulated experience indicates that asymp-
totic extreme value distributions do provide reasonable, if not
always very accurate, predictions when based on measured
data. This is amply documented in the vast literature on the
subject, and good references to this literature are [2, 5, 6]. In
an effort to improve on the current situation, we have tried to
develop an approach to the extreme value prediction problem
that is less restrictive and more flexible than the ones based
on asymptotic theory. The approach is based on two separate
componentswhich are designed to improve on two important
aspects of extreme value prediction based on observed data.
The first component has the capability to accurately capture
and display the effect of statistical dependence in the data,
which opens for the opportunity of using all the available data
in the analysis. The second component is then constructed
so as to make it possible to incorporate to a certain extent
also the subasymptotic part of the data into the estimation
of extreme values, which is of some importance for accurate
estimation. We have used the proposed method on a wide
variety of estimation problems, and our experience is that
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it represents a very powerful addition to the toolbox of
methods for extreme value estimation. Needless to say, what
is presented in this paper is by no means considered a closed
chapter. It is a novel method, and it is to be expected that
several aspects of the proposed approach will see significant
improvements.

2. Cascade of Conditioning Approximations

In this section, a sequence of nonparametric distribution
functions will be constructed that converges to the exact
extreme value distribution for the time series considered.This
constitutes the core of the proposed approach.

Consider a stochastic process 𝑍(𝑡), which has been
observed over a time interval, (0, 𝑇) say. Assume that values
𝑋
1
, . . . , 𝑋

𝑁
, which have been derived from the observed

process, are allocated to the discrete times 𝑡
1
, . . . , 𝑡

𝑁
in (0, 𝑇).

This could be simply the observed values of 𝑍(𝑡) at each
𝑡
𝑗
, 𝑗 = 1, . . . , 𝑁, or it could be average values or peak

values over smaller time intervals centered at the 𝑡
𝑗
’s. Our

goal in this paper is to accurately determine the distribution
function of the extreme value𝑀

𝑁
= max{𝑋

𝑗
; 𝑗 = 1, . . . , 𝑁}.

Specifically, we want to estimate 𝑃(𝜂) = Prob(𝑀
𝑁

≤ 𝜂)

accurately for large values of 𝜂. An underlying premise for the
development in this paper is that a rational approach to the
study of the extreme values of the sampled time series is to
consider exceedances of the individual random variables 𝑋

𝑗

above given thresholds, as in classical extreme value theory.
The alternative approach of considering the exceedances by
upcrossing of given thresholds by a continuous stochastic
process has been developed in [7, 8] along lines similar to that
adopted here.The approach taken in the present paper seems
to be the appropriate way to deal with the recorded data time
series of, for example, the hourly or daily largest wind speeds
observed at a given location.

From the definition of 𝑃(𝜂) it follows that

𝑃 (𝜂) = Prob (𝑀
𝑁
≤ 𝜂) = Prob {𝑋

𝑁
≤ 𝜂, . . . , 𝑋

1
≤ 𝜂}

= Prob {𝑋
𝑁
≤ 𝜂 | 𝑋

𝑁−1
≤ 𝜂, . . . , 𝑋

1
≤ 𝜂}

⋅ Prob {𝑋
𝑁−1

≤ 𝜂, . . . , 𝑋
1
≤ 𝜂}

=

𝑁

∏

𝑗=2

Prob {𝑋
𝑗
≤ 𝜂 | 𝑋

𝑗−1
≤ 𝜂, . . . , 𝑋

1
≤ 𝜂}

⋅ Prob (𝑋
1
≤ 𝜂) .

(1)

In general, the variables 𝑋
𝑗
are statistically dependent.

Hence, instead of assuming that all the 𝑋
𝑗
are statistically

independent, which leads to the classical approximation

𝑃 (𝜂) ≈ 𝑃
1
(𝜂) :=

𝑁

∏

𝑗=1

Prob (𝑋
𝑗
≤ 𝜂) , (2)

where :=means “by definition”, the following one-step mem-
ory approximation will, to a certain extent, account for the
dependence between the𝑋

𝑗
’s,

Prob {𝑋
𝑗
≤ 𝜂 | 𝑋

𝑗−1
≤ 𝜂, . . . , 𝑋

1
≤ 𝜂}

≈ Prob {𝑋
𝑗
≤ 𝜂 | 𝑋

𝑗−1
≤ 𝜂} ,

(3)

for 2 ≤ 𝑗 ≤ 𝑁. With this approximation, it is obtained that

𝑃 (𝜂) ≈ 𝑃
2
(𝜂)

:=

𝑁

∏

𝑗=2

Prob {𝑋
𝑗
≤ 𝜂 | 𝑋

𝑗−1
≤ 𝜂}Prob (𝑋

1
≤ 𝜂) .

(4)

By conditioning on one more data point, the one-step mem-
ory approximation is extended to

Prob {𝑋
𝑗
≤ 𝜂 | 𝑋

𝑗−1
≤ 𝜂, . . . , 𝑋

1
≤ 𝜂}

≈ Prob {𝑋
𝑗
≤ 𝜂 | 𝑋

𝑗−1
≤ 𝜂,𝑋

𝑗−2
≤ 𝜂} ,

(5)

where 3 ≤ 𝑗 ≤ 𝑁, which leads to the approximation

𝑃 (𝜂) ≈ 𝑃
3
(𝜂) :=

𝑁

∏

𝑗=3

Prob {𝑋
𝑗
≤ 𝜂 | 𝑋

𝑗−1
≤ 𝜂,𝑋

𝑗−2
≤ 𝜂}

⋅ Prob {𝑋
2
≤ 𝜂 | 𝑋

1
≤ 𝜂}Prob (𝑋

1
≤ 𝜂) .

(6)

For a general 𝑘, 2 ≤ 𝑘 ≤ 𝑁, it is obtained that

𝑃 (𝜂) ≈ 𝑃
𝑘
(𝜂)

:=

𝑁

∏

𝑗=𝑘

Prob {𝑋
𝑗
≤ 𝜂 | 𝑋

𝑗−1
≤ 𝜂, . . . , 𝑋

𝑗−𝑘+1
≤ 𝜂}

⋅

𝑘−1

∏

𝑗=2

Prob {𝑋
𝑗
≤ 𝜂 | 𝑋

𝑗−1
≤ 𝜂 . . . , 𝑋

1
≤ 𝜂}

⋅ Prob (𝑋
1
≤ 𝜂) ,

(7)

where 𝑃(𝜂) = 𝑃
𝑁
(𝜂).

It should be noted that the one-step memory approxi-
mation adopted above is not a Markov chain approximation
[9–11], nor do the 𝑘-step memory approximations lead to
𝑘th-order Markov chains [12, 13]. An effort to relinquish the
Markov chain assumption to obtain an approximate distribu-
tion of clusters of extremes is reported in [14].

It is of interest to have a closer look at the values for 𝑃(𝜂)
obtained by using (7) as compared to (2). Now, (2) can be
rewritten in the form

𝑃 (𝜂) ≈ 𝑃
1
(𝜂) =

𝑁

∏

𝑗=1

(1 − 𝛼
1𝑗
(𝜂)) , (8)
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where 𝛼
1𝑗
(𝜂) = Prob{𝑋

𝑗
> 𝜂}, 𝑗 = 1, . . . , 𝑁. Then the approx-

imation based on assuming independent data can be written
as

𝑃 (𝜂) ≈ 𝐹
1
(𝜂) := exp(−

𝑁

∑

𝑗=1

𝛼
1𝑗
(𝜂)) , 𝜂 → ∞. (9)

Alternatively, (7) can be expressed as,

𝑃 (𝜂) ≈ 𝑃
𝑘
(𝜂) =

𝑁

∏

𝑗=𝑘

(1 − 𝛼
𝑘𝑗
(𝜂))

𝑘−1

∏

𝑗=1

(1 − 𝛼
𝑗𝑗
(𝜂)) , (10)

where 𝛼
𝑘𝑗
(𝜂) = Prob{𝑋

𝑗
> 𝜂 | 𝑋

𝑗−1
≤ 𝜂, . . . , 𝑋

𝑗−𝑘+1
≤ 𝜂}, for

𝑗 ≥ 𝑘 ≥ 2, denotes the exceedance probability conditional on
𝑘 − 1 previous nonexceedances. From (10) it is now obtained
that

𝑃 (𝜂) ≈ 𝐹
𝑘
(𝜂) := exp(−

𝑁

∑

𝑗=𝑘

𝛼
𝑘𝑗
(𝜂) −

𝑘−1

∑

𝑗=1

𝛼
𝑗𝑗
(𝜂)) ,

𝜂 → ∞,

(11)

and 𝐹
𝑘
(𝜂) → 𝑃(𝜂) as 𝑘 → 𝑁with 𝐹

𝑁
(𝜂) = 𝑃(𝜂) for 𝜂 → ∞.

For the cascade of approximations 𝐹
𝑘
(𝜂) to have practical

significance, it is implicitly assumed that there is a cut-off
value 𝑘

𝑐
satisfying 𝑘

𝑐
≪ 𝑁 such that effectively 𝐹

𝑘
𝑐

(𝜂) =

𝐹
𝑁
(𝜂). It may be noted that for 𝑘-dependent stationary data

sequences, that is, for data where𝑋
𝑖
and𝑋

𝑗
are independent

whenever |𝑗 − 𝑖| > 𝑘, then 𝑃(𝜂) = 𝑃
𝑘+1

(𝜂) exactly, and, under
rather mild conditions on the joint distributions of the data,
lim
𝑁→∞

𝑃
1
(𝜂) = lim

𝑁→∞
𝑃(𝜂) [15]. In fact, it can be shown

that lim
𝑁→∞

𝑃
1
(𝜂) = lim

𝑁→∞
𝑃(𝜂) is true for weaker con-

ditions than 𝑘-dependence [16]. However, for finite values of
𝑁 the picture is much more complex, and purely asymptotic
results should be used with some caution. Cartwright [17]
used the notion of 𝑘-dependence to investigate the effect on
extremes of correlation in sea wave data time series.

Returning to (11), extreme value prediction by the con-
ditioning approach described above reduces to estimation of
(combinations) of the 𝛼

𝑘𝑗
(𝜂) functions. In accordance with

the previous assumption about a cut-off value 𝑘
𝑐
, for all 𝑘-

values of interest, 𝑘 ≪ 𝑁, so that ∑𝑘−1
𝑗=1

𝛼
𝑗𝑗
(𝜂) is effectively

negligible compared to∑𝑁
𝑗=𝑘

𝛼
𝑘𝑗
(𝜂). Hence, for simplicity, the

following approximation is adopted, which is applicable to
both stationary and nonstationary data,

𝐹
𝑘
(𝜂) = exp(−

𝑁

∑

𝑗=𝑘

𝛼
𝑘𝑗
(𝜂)) , 𝑘 ≥ 1. (12)

Going back to the definition of 𝛼
1𝑗
(𝜂), it follows that

∑
𝑁

𝑗=1
𝛼
1𝑗
(𝜂) is equal to the expected number of exceedances

of the threshold 𝜂 during the time interval (0, 𝑇). Equation
(9) therefore expresses the approximation that the stream of
exceedance events constitute a (nonstationary) Poisson pro-
cess. This opens for an understanding of (12) by interpreting
the expressions ∑𝑁

𝑗=𝑘
𝛼
𝑘𝑗
(𝜂) as the expected effective number

of independent exceedance events provided by conditioning
on 𝑘 − 1 previous observations.

3. Empirical Estimation of the Average
Conditional Exceedance Rates

The concept of average conditional exceedance rate (ACER)
of order 𝑘 is now introduced as follows:

𝜀
𝑘
(𝜂) =

1

𝑁 − 𝑘 + 1

𝑁

∑

𝑗=𝑘

𝛼
𝑘𝑗
(𝜂) , 𝑘 = 1, 2, . . . . (13)

In general, this ACER function also depends on the number
of data points𝑁.

In practice, there are typically two scenarios for the
underlying process 𝑍(𝑡). Either we may consider to be a
stationary process, or, in fact, even an ergodic process. The
alternative is to view𝑍(𝑡) as a process that depends on certain
parameters whose variation in time may be modelled as an
ergodic process in its own right. For each set of values of the
parameters, the premise is that 𝑍(𝑡) can then be modelled as
an ergodic process. This would be the scenario that can be
used to model long-term statistics [18, 19].

For both these scenarios, the empirical estimation of the
ACER function 𝜀

𝑘
(𝜂) proceeds in a completely analogous

way by counting the total number of favourable incidents,
that is, exceedances combined with the requisite number of
preceding nonexceedances, for the total data time series and
then finally dividing by𝑁− 𝑘 + 1 ≈ 𝑁. This can be shown to
apply for the long-term situation.

A few more details on the numerical estimation of 𝜀
𝑘
(𝜂)

for 𝑘 ≥ 2 may be appropriate. We start by introducing the
following random functions:

𝐴
𝑘𝑗
(𝜂) = 1 {𝑋

𝑗
> 𝜂,𝑋

𝑗−1
≤ 𝜂, . . . , 𝑋

𝑗−𝑘+1
≤ 𝜂} ,

𝑗 = 𝑘, . . . , 𝑁, 𝑘 = 2, 3, . . . ,

𝐵
𝑘𝑗
(𝜂) = 1 {𝑋

𝑗−1
≤ 𝜂, . . . , 𝑋

𝑗−𝑘+1
≤ 𝜂} ,

𝑗 = 𝑘, . . . , 𝑁, 𝑘 = 2, . . . ,

(14)

where 1{A} denotes the indicator function of some eventA.
Then,

𝛼
𝑘𝑗
(𝜂) =

E [𝐴
𝑘𝑗
(𝜂)]

E [𝐵
𝑘𝑗
(𝜂)]

, 𝑗 = 𝑘, . . . , 𝑁, 𝑘 = 2, . . . , (15)

where E[⋅] denotes the expectation operator. Assuming an
ergodic process, then obviously 𝜀

𝑘
(𝜂) = 𝛼

𝑘𝑘
(𝜂) = ⋅ ⋅ ⋅ =

𝛼
𝑘𝑁
(𝜂), and by replacing ensemble means with correspond-

ing time averages, it may be assumed that for the time series
at hand

𝜀
𝑘
(𝜂) = lim

𝑁→∞

∑
𝑁

𝑗=𝑘
𝑎
𝑘𝑗
(𝜂)

∑
𝑁

𝑗=𝑘
𝑏
𝑘𝑗
(𝜂)

, (16)

where 𝑎
𝑘𝑗
(𝜂) and 𝑏

𝑘𝑗
(𝜂) are the realized values of 𝐴

𝑘𝑗
(𝜂) and

𝐵
𝑘𝑗
(𝜂), respectively, for the observed time series.
Clearly, lim

𝜂→∞
E[𝐵
𝑘𝑗
(𝜂)] = 1. Hence, lim

𝜂→∞
𝜀
𝑘
(𝜂)/

𝜀
𝑘
(𝜂) = 1, where

𝜀
𝑘
(𝜂) =

∑
𝑁

𝑗=𝑘
E [𝐴
𝑘𝑗
(𝜂)]

𝑁 − 𝑘 + 1
. (17)



4 Journal of Probability and Statistics

The advantage of using themodified ACER function 𝜀
𝑘
(𝜂) for

𝑘 ≥ 2 is that it is easier to use for nonstationary or long-
term statistics than 𝜀

𝑘
(𝜂). Since our focus is on the values of

the ACER functions at the extreme levels, we may use any
function that provides correct predictions of the appropriate
ACER function at these extreme levels.

To see why (17) may be applicable for nonstationary time
series, it is recognized that

𝑃 (𝜂) ≈ exp(−
𝑁

∑

𝑗=𝑘

𝛼
𝑘𝑗
(𝜂)) = exp(−

𝑁

∑

𝑗=𝑘

E [𝐴
𝑘𝑗
(𝜂)]

E [𝐵
𝑘𝑗
(𝜂)]

)

≃
𝜂→∞

exp(−
𝑁

∑

𝑗=𝑘

E [𝐴
𝑘𝑗
(𝜂)]) .

(18)

If the time series can be segmented into 𝐾 blocks, such that
E[𝐴
𝑘𝑗
(𝜂)] remains approximately constant within each block

and such that ∑
𝑗∈𝐶
𝑖

E[𝐴
𝑘𝑗
(𝜂)] ≈ ∑

𝑗∈𝐶
𝑖

𝑎
𝑘𝑗
(𝜂) for a sufficient

range of 𝜂-values, where𝐶
𝑖
denotes the set of indices for block

no. 𝑖, 𝑖 = 1, . . . , 𝐾, then∑𝑁
𝑗=𝑘

E[𝐴
𝑘𝑗
(𝜂)] ≈ ∑

𝑁

𝑗=𝑘
𝑎
𝑘𝑗
(𝜂). Hence,

𝑃 (𝜂) ≈ exp (− (𝑁 − 𝑘 + 1) 𝜀
𝑘
(𝜂)) , (19)

where

𝜀
𝑘
(𝜂) =

1

𝑁 − 𝑘 + 1

𝑁

∑

𝑗=𝑘

𝑎
𝑘𝑗
(𝜂) . (20)

It is of interest to note what events are actually counted
for the estimation of the various 𝜀

𝑘
(𝜂), 𝑘 ≥ 2. Let us

start with 𝜀
2
(𝜂). It follows from the definition of 𝜀

2
(𝜂) that

𝜀
2
(𝜂) (𝑁 − 1) can be interpreted as the expected number of

exceedances above the level 𝜂, satisfying the condition that an
exceedance is counted only if it is immediately preceded by a
non-exceedance. A reinterpretation of this is that 𝜀

2
(𝜂) (𝑁 −

1) equals the average number of clumps of exceedances
above 𝜂, for the realizations considered, where a clump of
exceedances is defined as a maximum number of consecutive
exceedances above 𝜂. In general, 𝜀

𝑘
(𝜂) (𝑁 − 𝑘 + 1) then

equals the average number of clumps of exceedances above
𝜂 separated by at least 𝑘 − 1 nonexceedances. If the time
series analysed is obtained by extracting local peak values
from a narrow band response process, it is interesting to
note the similarity between the ACER approximations and
the envelope approximations for extreme value prediction
[7, 20]. For alternative statistical approaches to account for
the effect of clustering on the extreme value distribution, the
reader may consult [21–26]. In these works, the emphasis is
on the notion of an extremal index, which characterizes the
clumping or clustering tendency of the data and its effect on
the extreme value distribution. In the ACER functions, these
effects are automatically accounted for.

Now, let us look at the problem of estimating a confidence
interval for 𝜀

𝑘
(𝜂), assuming a stationary time series. If 𝑅

realizations of the requisite length of the time series is
available, or, if one long realization can be segmented into

𝑅 subseries, then the sample standard deviation 𝑠
𝑘
(𝜂) can be

estimated by the standard formula

𝑠
𝑘
(𝜂)
2

=
1

𝑅 − 1

𝑅

∑

𝑟=1

(𝜀
(𝑟)

𝑘
(𝜂) − 𝜀

𝑘
(𝜂))
2

, (21)

where 𝜀(𝑟)
𝑘
(𝜂) denotes the ACER function estimate from real-

ization no. 𝑟, and 𝜀
𝑘
(𝜂) = ∑

𝑅

𝑟=1
𝜀
(𝑟)

𝑘
(𝜂)/𝑅.

Assuming that realizations are independent, for a suitable
number 𝑅, for example, 𝑅 ≥ 20, (21) leads to a good approx-
imation of the 95% confidence interval CI = (𝐶

−
(𝜂), 𝐶

+
(𝜂))

for the value 𝜀
𝑘
(𝜂), where

𝐶
±
(𝜂) = 𝜀

𝑘
(𝜂) ±

1.96 𝑠
𝑘
(𝜂)

√𝑅
. (22)

Alternatively, and which also applies to the non-station-
ary case, it is consistent with the adopted approach to assume
that the stream of conditional exceedances over a threshold
𝜂 constitute a Poisson process, possibly non-homogeneous.
Hence, the variance of the estimator 𝐸

𝑘
(𝜂) of 𝜀

𝑘
(𝜂), where

𝐸
𝑘
(𝜂) =

∑
𝑁

𝑗=𝑘
𝐴
𝑘𝑗
(𝜂)

𝑁 − 𝑘 + 1

(23)

is Var[𝐸
𝑘
(𝜂)] = 𝜀

𝑘
(𝜂).Therefore, for high levels 𝜂, the approx-

imate limits of a 95% confidence interval of 𝜀
𝑘
(𝜂), and also

𝜀
𝑘
(𝜂), can be written as

𝐶
±
(𝜂) = 𝜀

𝑘
(𝜂)(1 ±

1.96

√(𝑁 − 𝑘 + 1) 𝜀
𝑘
(𝜂)

) . (24)

4. Estimation of Extremes for the Asymptotic
Gumbel Case

The second component of the approach to extreme value
estimation presented in this paper was originally derived for
a time series with an asymptotic extreme value distribution
of the Gumbel type, compared with [27]. We have therefore
chosen to highlight this case first, also because the extension
of the asymptotic distribution to a parametric class of extreme
value distribution tails that are capable of capturing to some
extent subasymptotic behaviour is more transparent, and
perhaps more obvious, for the Gumbel case. The reason
behind the efforts to extend the extreme value distributions to
the subasymptotic range is the fact that the ACER functions
allow us to use not only asymptotic data, which is clearly an
advantage since proving that observed extremes are truly
asymptotic is really a nontrivial task.

The implication of the asymptotic distribution being of
the Gumbel type on the possible subasymptotic functional
forms of 𝜀

𝑘
(𝜂) cannot easily be decided in any detail.However,

using the asymptotic form as a guide, it is assumed that
the behaviour of the mean exceedance rate in the tail is
dominated by a function of the form exp{−𝑎(𝜂 − 𝑏)

𝑐
} (𝜂 ≥

𝜂
1
≥ 𝑏), where 𝑎, 𝑏, and 𝑐 are suitable constants, and 𝜂

1
is an
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appropriately chosen tail marker. Hence, it will be assumed
that,

𝜀
𝑘
(𝜂) = 𝑞

𝑘
(𝜂) exp {−𝑎

𝑘
(𝜂 − 𝑏

𝑘
)
𝑐
𝑘

} , 𝜂 ≥ 𝜂
1
, (25)

where the function 𝑞
𝑘
(𝜂) is slowly varying, compared with

the exponential function exp{−𝑎
𝑘
(𝜂 − 𝑏
𝑘
)
𝑐
𝑘} and 𝑎

𝑘
, 𝑏
𝑘
, and 𝑐

𝑘

are suitable constants, that in general will be dependent on 𝑘.
Note that the value 𝑐

𝑘
= 𝑞
𝑘
(𝜂) = 1 corresponds to the asymp-

totic Gumbel distribution, which is then a special case of the
assumed tail behaviour.

From (25) it follows that

− log


log(
𝜀
𝑘
(𝜂)

𝑞
𝑘
(𝜂)

)



= − 𝑐
𝑘
log (𝜂 − 𝑏

𝑘
) − log (𝑎

𝑘
) .

(26)

Therefore, under the assumptions made, a plot of
− log | log(𝜀

𝑘
(𝜂)/𝑞
𝑘
(𝜂))| versus log(𝜂 − 𝑏

𝑘
) will exhibit a

perfectly linear tail behaviour.
It is realized that if the function 𝑞

𝑘
(𝜂) could be replaced

by a constant value, say 𝑞
𝑘
, one would immediately be in a

position to apply a linear extrapolation strategy for deep tail
prediction problems. In general, 𝑞

𝑘
(𝜂) is not constant, but its

variation in the tail region is often sufficiently slow to allow
for its replacement by a constant, possibly by adjusting the tail
marker 𝜂

1
.Theproposed statistical approach to the prediction

of extreme values is therefore based on the assumption that
we can write,

𝜀
𝑘
(𝜂) = 𝑞

𝑘
exp {−𝑎

𝑘
(𝜂 − 𝑏

𝑘
)
𝑐
𝑘

} , 𝜂 ≥ 𝜂
1
, (27)

where 𝑎
𝑘
, 𝑏
𝑘
, 𝑐
𝑘
, and 𝑞

𝑘
are appropriately chosen constants. In

a certain sense, this is aminimal class of parametric functions
that can be used for this purpose which makes it possible to
achieve three important goals. Firstly, the parametric class
contains the asymptotic form given by 𝑐

𝑘
= 𝑞
𝑘
= 1 as a

special case. Secondly, the class is flexible enough to capture,
to a certain extent, subasymptotic behaviour of any extreme
value distribution, that is, asymptotically Gumbel. Thirdly,
the parametric functions agree with a wide range of known
special cases, of which a very important example is the
extreme value distribution for a regular stationary Gaussian
process, which has 𝑐

𝑘
= 2.

The viability of this approach has been successfully dem-
onstrated by the authors formean up-crossing rate estimation
for extreme value statistics of the response processes related
to a wide range of different dynamical systems, compared
with [7, 8].

As to the question of finding the parameters 𝑎, 𝑏, 𝑐, 𝑞
(the subscript 𝑘, if it applies, is suppressed), the adopted
approach is to determine these parameters byminimizing the
followingmean square error function, with respect to all four
arguments,

𝐹 (𝑎, 𝑏, 𝑐, 𝑞) =

𝐽

∑

𝑗=1

𝑤
𝑗


log 𝜀 (𝜂

𝑗
) − log 𝑞 + 𝑎(𝜂

𝑗
− 𝑏)
𝑐

2

, (28)

where 𝜂
1
< ⋅ ⋅ ⋅ < 𝜂

𝐽
denotes the levels where the ACER func-

tion has been estimated, 𝑤
𝑗
denotes a weight factor that

puts more emphasis on the more reliably estimated 𝜀(𝜂
𝑗
).

The choice of weight factor is to some extent arbitrary. We
have previously used 𝑤

𝑗
= (log𝐶+(𝜂

𝑗
) − log𝐶−(𝜂

𝑗
))
−𝜃 with

𝜃 = 1 and 2, combined with a Levenberg-Marquardt least
squares optimization method [28]. This has usually worked
well provided reasonable and initial values for the parameters
were chosen. Note that the form of 𝑤

𝑗
puts some restriction

on the use of the data. Usually, there is a level 𝜂
𝑗
beyondwhich

𝑤
𝑗
is no longer defined, that is, 𝐶−(𝜂

𝑗
) becomes negative.

Hence, the summation in (28) has to stop before that happens.
Also, the data should be preconditioned by establishing the
tail marker 𝜂

1
based on inspection of the empirical ACER

functions.
In general, to improve robustness of results, it is recom-

mended to apply a nonlinearly constrained optimization [29].
The set of constraints is written as

log 𝑞 − 𝑎(𝜂
𝑖
− 𝑏)
𝑐

≤ 0,

0 < 𝑞 < +∞,

min
𝑗

𝑋
𝑗
< 𝑏 ≤ 𝜂

1
,

0 < 𝑎 < +∞,

0 < 𝑐 < 5.

(29)

Here, the first nonlinear inequality constraint is evident, since
under our assumptionwe have 𝜀

𝑘
(𝜂
𝑖
) = 𝑞 exp{−𝑎(𝜂

𝑖
−𝑏)
𝑐
}, and

𝜀
𝑘
(𝜂
𝑖
) < 1 by definition.

A Note of Caution. When the parameter 𝑐 is equal to 1.0 or
close to it, that is, the distribution is close to the Gumbel
distribution, the optimization problem becomes ill-defined
or close to ill-defined. It is seen that when 𝑐 = 1.0, there is
an infinity of (𝑏, 𝑞) values that gives exactly the same value
of 𝐹(𝑎, 𝑏, 𝑐, 𝑞). Hence, there is no well-defined optimum in
parameter space.There are simply toomany parameters.This
problem is alleviated by fixing the 𝑞-value, and the obvious
choice is 𝑞 = 1.

Although the Levenberg-Marquardt method generally
works well with four or, when appropriate, three parameters,
we have also developed a more direct and transparent
optimization method for the problem at hand. It is realized
by scrutinizing (28) that if 𝑏 and 𝑐 are fixed, the optimization
problem reduces to a standard weighted linear regression
problem. That is, with both 𝑏 and 𝑐 fixed, the optimal values
of 𝑎 and log 𝑞 are found using closed form weighted linear
regression formulas in terms of 𝑤

𝑗
, 𝑦
𝑗
= log 𝜀(𝜂

𝑗
) and 𝑥

𝑗
=

(𝜂
𝑗
− 𝑏)
𝑐. In that light, it can also be concluded that the best

linear unbiased estimators (BLUE) are obtained for𝑤
𝑗
= 𝜎
−2

𝑦𝑗
,

where 𝜎2
𝑦𝑗
= Var[𝑦

𝑗
] (empirical) [30, 31]. Unfortunately, this

is not a very practical weight factor for the kind of problem
we have here because the summation in (28) then typically
would have to stop at undesirably small values of 𝜂

𝑗
.
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It is obtained that the optimal values of 𝑎 and 𝑞 are given
by the relations

𝑎
∗
(𝑏, 𝑐) = −

∑
𝑁

𝑗=1
𝑤
𝑗
(𝑥
𝑗
− 𝑥) (𝑦

𝑗
− 𝑦)

∑
𝑁

𝑗=1
𝑤
𝑗
(𝑥
𝑗
− 𝑥)
2

,

log 𝑞∗ (𝑏, 𝑐) = 𝑦 + 𝑎∗ (𝑏, 𝑐) 𝑥,

(30)

where 𝑥 = ∑𝑁
𝑗=1

𝑤
𝑗
𝑥
𝑗
/∑
𝑁

𝑗=1
𝑤
𝑗
, with a similar definition of 𝑦.

To calculate the final optimal set of parameters, one
may use the Levenberg-Marquardt method on the function
𝐹(𝑏, 𝑐) = 𝐹(𝑎

∗
(𝑏, 𝑐), 𝑏, 𝑐, 𝑞

∗
(𝑏, 𝑐)) to find the optimal values

𝑏
∗ and 𝑐∗, and then use (30) to calculate the corresponding
𝑎
∗ and 𝑞∗.
For a simple construction of a confidence interval for

the predicted, deep tail extreme value given by a particular
ACER function as provided by the fitted parametric curve, the
empirical confidence band is reanchored to the fitted curve
by centering the individual confidence intervals CI

0.95
for the

point estimates of the ACER function on the fitted curve.
Under the premise that the specified class of parametric
curves fully describes the behaviour of the ACER functions in
the tail, parametric curves are fitted as described above to the
boundaries of the reanchored confidence band. These curves
are used to determine a first estimate of a 95% confidence
interval of the predicted extreme value. To obtain a more
precise estimate of the confidence interval, a bootstrapping
method would be recommended. A comparison of estimated
confidence intervals by both these methods will be presented
in the section on extreme value prediction for synthetic data.
As a final point, it has been observed that the predicted value
is not very sensitive to the choice of 𝜂

1
, provided it is chosen

with some care. This property is easily recognized by looking
at the way the optimized fitting is done. If the tail marker is
in the appropriate domain of the ACER function, the optimal
fitted curve does not change appreciably by moving the tail
marker.

5. Estimation of Extremes for the General Case

For independent data in the general case, the ACER function
𝜀
1
(𝜂) can be expressed asymptotically as

𝜀
1
(𝜂) ≃
𝜂→∞

[1 + 𝜉 (𝑎 (𝜂 − 𝑏))]
−1/𝜉

, (31)

where 𝑎 > 0, 𝑏, 𝜉 are constants. This follows from the
explicit form of the so-called generalized extreme value
(GEV) distribution Coles [1].

Again, the implication of this assumption on the possible
subasymptotic functional forms of 𝜀

𝑘
(𝜂) in the general case

is not a trivial matter. The approach we have chosen is to
assume that the class of parametric functions needed for
the prediction of extreme values for the general case can be
modelled on the relation between the Gumbel distribution
and the general extreme value distribution. While the exten-
sion of the asymptotic Gumbel case to the proposed class of
subasymptotic distributions was fairly transparent, this is not
equally so for the general case. However, using a similar kind

of approximation, the behaviour of the mean exceedance rate
in the subasymptotic part of the tail is assumed to follow a
function largely of the form [1 + 𝜉(𝑎(𝜂 − 𝑏)

𝑐
)]
−1/𝜉 (𝜂 ≥ 𝜂

1
≥

𝑏), where 𝑎 > 0, 𝑏, 𝑐 > 0, and 𝜉 > 0 are suitable constants,
and 𝜂
1
is an appropriately chosen tail level. Hence, it will be

assumed that [32]

𝜀
𝑘
(𝜂) = 𝑞

𝑘
(𝜂) [1 + 𝜉

𝑘
(𝑎
𝑘
(𝜂 − 𝑏

𝑘
)
𝑐
𝑘

)]
−1/𝜉
𝑘

, 𝜂 ≥ 𝜂
1
, (32)

where the function 𝑞
𝑘
(𝜂) is weakly varying, compared with

the function [1 + 𝜉
𝑘
(𝑎
𝑘
(𝜂 − 𝑏

𝑘
)
𝑐
𝑘)]
−1/𝜉
𝑘 and 𝑎

𝑘
> 0, 𝑏

𝑘
, 𝑐
𝑘
> 0

and 𝜉
𝑘
> 0 are suitable constants, that in general will be

dependent on 𝑘. Note that the values 𝑐
𝑘
= 1 and 𝑞

𝑘
(𝜂) = 1 cor-

responds to the asymptotic limit, which is then a special case
of the general expression given in (25). Another method to
account for subasymptotic effects has recently been proposed
by Eastoe and Tawn [33], building on ideas developed by
Tawn [34], Ledford and Tawn [35] and Heffernan and Tawn
[36]. In this approach, the asymptotic form of the marginal
distribution of exceedances is kept, but it is modified by a
multiplicative factor accounting for the dependence structure
of exceedances within a cluster.

An alternative form to (32) would be to assume that

𝜀
𝑘
(𝜂) = [1 + 𝜉

𝑘
(𝑎
𝑘
(𝜂 − 𝑏

𝑘
)
𝑐
𝑘

+ 𝑑
𝑘
(𝜂))]
−1/𝜉
𝑘

, 𝜂 ≥ 𝜂
1
,

(33)

where the function 𝑑
𝑘
(𝜂) is weakly varying compared with

the function 𝑎
𝑘
(𝜂−𝑏
𝑘
)
𝑐
𝑘 . However, for estimation purposes, it

turns out that the form given by (25) is preferable as it leads to
simpler estimation procedures. This aspect will be discussed
later in the paper.

For practical identification of the ACER functions given
by (32), it is expedient to assume that the unknown function
𝑞
𝑘
(𝜂) varies sufficiently slowly to be replaced by a constant.

In general, 𝑞
𝑘
(𝜂) is not constant, but its variation in the

tail region is assumed to be sufficiently slow to allow for its
replacement by a constant. Hence, as in the Gumbel case, it
is in effect assumed that 𝑞

𝑘
(𝜂) can be replaced by a constant

for 𝜂 ≥ 𝜂
1
, for an appropriate choice of tail marker 𝜂

1
. For

simplicity of notation, in the following we will suppress the
index 𝑘 on the ACER functions, which will then be written as

𝜀 (𝜂) = 𝑞 [1 + 𝑎 (𝜂 − 𝑏)
𝑐

]
−𝛾

, 𝜂 ≥ 𝜂
1
, (34)

where 𝛾 = 1/𝜉, 𝑎 = 𝑎𝜉.
For the analysis of data, first the tail marker 𝜂

1
is

provisionally identified from visual inspection of the log
plot (𝜂, ln 𝜀

𝑘
(𝜂)). The value chosen for 𝜂

1
corresponds to the

beginning of regular tail behaviour in a sense to be discussed
below.

The optimization process to estimate the parameters is
done relative to the log plot, as for theGumbel case.Themean
square error function to be minimized is in the general case
written as

𝐹 (𝑎, 𝑏, 𝑐, 𝑞, 𝛾) =

𝑁

∑

𝑗=1

𝑤
𝑗


log 𝜀 (𝜂

𝑗
) − log 𝑞

+𝛾 log [1 + 𝑎(𝜂
𝑗
− 𝑏)
𝑐

]


2

,

(35)

where 𝑤
𝑗
is a weight factor as previously defined.
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An option for estimating the five parameters 𝑎, 𝑏, 𝑐,
𝑞, 𝛾 is again to use the Levenberg-Marquardt least squares
optimization method, which can be simplified also in this
case by observing that if 𝑎, 𝑏, and 𝑐 are fixed in (28), the
optimization problem reduces to a standard weighted linear
regression problem.That is, with 𝑎, 𝑏, and 𝑐 fixed, the optimal
values of 𝛾 and log 𝑞 are found using closed form weighted
linear regression formulas in terms of 𝑤

𝑗
, 𝑦
𝑗
= log 𝜀(𝜂

𝑗
) and

𝑥
𝑗
= 1 + 𝑎(𝜂

𝑗
− 𝑏)
𝑐.

It is obtained that the optimal values of 𝛾 and log 𝑞
are given by relations similar to (30). To calculate the final
optimal set of parameters, the Levenberg-Marquardt meth-
od may then be used on the function 𝐹(𝑎, 𝑏, 𝑐) =

𝐹(𝑎, 𝑏, 𝑐, 𝑞
∗
(𝑎, 𝑏, 𝑐), 𝛾

∗
(𝑎, 𝑏, 𝑐)) to find the optimal values 𝑎∗,

𝑏
∗, and 𝑐

∗, and then the corresponding 𝛾∗ and 𝑞
∗ can be

calculated. The optimal values of the parameters may, for
example, also be found by a sequential quadratic program-
ming (SQP) method [37].

6. The Gumbel Method

To offer a comparison of the predictions obtained by the
method proposed in this paper with those obtained by other
methods, we will use the predictions given by the two meth-
ods that seem to bemost favored by practitioners, theGumbel
method and the peaks-over-threshold (POT) method, pro-
vided, of course, that the correct asymptotic extreme value
distribution is of the Gumbel type.

The Gumbel method is based on recording epochal
extreme values and fitting these values to a corresponding
Gumbel distribution [38]. By assuming that the recorded
extreme value data are Gumbel distributed, then representing
the obtained data set of extreme values as a Gumbel probabil-
ity plot should ideally result in a straight line. In practice, one
cannot expect this to happen, but on the premise that the data
follow a Gumbel distribution, a straight line can be fitted to
the data. Due to its simplicity, a popular method for fitting
this straight line is the method of moments, which is also
reasonably stable for limited sets of data. That is, writing the
Gumbel distribution of the extreme value𝑀

𝑁
as

Prob (𝑀
𝑁
≤ 𝜂) = exp {− exp (−𝑎 (𝜂 − 𝑏))} , (36)

it is known that the parameters 𝑎 and 𝑏 are related to themean
value 𝑚

𝑀
and standard deviation 𝜎

𝑀
of 𝑀(𝑇) as follows:

𝑏 = 𝑚
𝑀
−0.57722𝑎

−1 and 𝑎 = 1.28255/𝜎
𝑀
[39].The estimates

of 𝑚
𝑀

and 𝜎
𝑀

obtained from the available sample therefore
provides estimates of 𝑎 and 𝑏, which leads to the fitted
Gumbel distribution by the moment method.

Typically, a specified quantile value of the fitted Gumbel
distribution is then extracted and used in a design considera-
tion. To be specific, let us assume that the requested quantile
value is the 100(1 − 𝛼)% fractile, where 𝛼 is usually a small
number, for example, 𝛼 = 0.1. To quantify the uncertainty
associated with the obtained 100(1 −𝛼)% fractile value based
on a sample of size �̃�, the 95% confidence interval of this
value is often used. A good estimate of this confidence
interval can be obtained by using a parametric bootstrapping
method [40, 41]. Note that the assumption that the initial �̃�

extreme values are actually generated with good approxima-
tion fromaGumbel distribution cannot easily be verifiedwith
any accuracy in general, which is a drawback of this method.
Comparedwith the POTmethod, the Gumbelmethodwould
also seem to use much less of the information available in
the data. This may explain why the POT method has become
increasingly popular over the past years, but the Gumbel
method is still widely used in practice.

7. The Peaks-over-Threshold Method

7.1.TheGeneralized ParetoDistribution. ThePOTmethod for
independent data is based on what is called the generalized
Pareto (GP) distribution (defined below) in the following
manner: it has been shown in [42] that asymptotically the
excess values above a high level will follow a GP distribution
if and only if the parent distribution belongs to the domain
of attraction of one of the extreme value distributions. The
assumption of a Poisson process model for the exceedance
times combined with GP distributed excesses can be shown
to lead to the generalized extreme value (GEV) distribution
for corresponding extremes, see below.The expression for the
GP distribution is

𝐺 (𝑦) = 𝐺 (𝑦; 𝑎, 𝑐) = Prob (𝑌 ≤ 𝑦) = 1 − (1 + 𝑐
𝑦

𝑎
)

−1/𝑐

+

.

(37)

Here 𝑎 > 0 is a scale parameter and 𝑐 (−∞ < 𝑐 < ∞) deter-
mines the shape of the distribution. (𝑧)

+
= max(0, 𝑧).

The asymptotic result referred to above implies that
(37) can be used to represent the conditional cumulative
distribution function of the excess 𝑌 = 𝑋−𝑢 of the observed
variates 𝑋 over the threshold 𝑢, given that 𝑋 > 𝑢 for 𝑢 is
sufficiently large [42]. The cases 𝑐 > 0, 𝑐 = 0, and 𝑐 < 0

correspond to Fréchet (Type II), Gumbel (Type I), and
reverseWeibull (Type III) domains of attraction, respectively,
compared with section below.

For 𝑐 = 0, which corresponds to the Gumbel extreme
value distribution, the expression between the parentheses
in (37) is understood in a limiting sense as the exponential
distribution

𝐺 (𝑦) = 𝐺 (𝑦; 𝑎, 0) = exp(−
𝑦

𝑎
) . (38)

Since the recorded data in practice are rarely indepen-
dent, a declustering technique is commonly used to filter the
data to achieve approximate independence [1, 2].

7.2. Return Periods. The return period 𝑅 of a given value 𝑥
𝑅

of 𝑋 in terms of a specified length of time 𝜏, for example,
a year, is defined as the inverse of the probability that the
specified value will be exceeded in any time interval of length
𝜏. If 𝜆 denotes the mean exceedance rate of the threshold 𝑢
per length of time 𝜏 (i.e., the average number of data points
above the threshold 𝑢 per 𝜏), then the return period 𝑅 of the
value of 𝑋 corresponding to the level 𝑥

𝑅
= 𝑢 + 𝑦 is given by

the relation

𝑅 =
1

𝜆Prob (𝑋 > 𝑥
𝑅
)
=

1

𝜆Prob (𝑌 > 𝑦)
. (39)
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Hence, it follows that

Prob (𝑌 ≤ 𝑦) = 1 −
1

(𝜆𝑅)
. (40)

Invoking (1) for 𝑐 ̸= 0 leads to the result

𝑥
𝑅
= 𝑢 −

𝑎 [1 − (𝜆𝑅)
𝑐
]

𝑐
. (41)

Similarly, for 𝑐 = 0, it is found that,

𝑥
𝑅
= 𝑢 + 𝑎 ln (𝜆𝑅) , (42)

where 𝑢 is the threshold used in the estimation of 𝑐 and 𝑎.

8. Extreme Value Prediction for Synthetic Data

In this section, we illustrate the performance of the ACER
method and also the 95%CI estimation.We consider 20 years
of synthetic wind speed data, amounting to 2000 data points,
which is not much for detailed statistics. However, this case
may represent a real situationwhen nothing but a limited data
sample is available. In this case, it is crucial to provide extreme
value estimates utilizing all data available. As we will see, the
tail extrapolation technique proposed in this paper performs
better than asymptotic methods such as POT or Gumbel.

The extreme value statistics will first be analyzed by
application to synthetic data for which the exact extreme
values can be calculated [43]. In particular, it is assumed
that the underlying (normalized) stochastic process 𝑍(𝑡) is
stationary and Gaussian with mean value zero and standard
deviation equal to one. It is also assumed that the mean zero
up-crossing rate 𝜈+(0) is such that the product 𝜈+(0)𝑇 = 10

3,
where 𝑇 = 1 year, which seems to be typical for the wind
speed process.Using the Poisson assumption, the distribution
of the yearly extreme value of 𝑍(𝑡) is then calculated by the
formula

𝐹
1 yr

(𝜂) = exp {−𝜈+ (𝜂) 𝑇} = exp{−103 exp(−
𝜂
2

2
)} ,

(43)

where 𝑇 = 1 year and 𝜈+(𝜂) is the mean up-crossing rate per
year, 𝜂 is the scaled wind speed. The 100-year return period
value 𝜂100 yr is then calculated from the relation𝐹1 yr(𝜂100 yr) =
1 − 1/100, which gives 𝜂100 yr = 4.80.

The Monte Carlo simulated data to be used for the
synthetic example are generated based on the observation
that the peak events extracted from measurements of the
wind speed process, are usually separated by 3-4 days. This is
done to obtain approximately independent data, as required
by the POTmethod. In accordance with this, peak event data
are generated from the extreme value distribution

𝐹
3 d
(𝜂) = exp{−𝑞 exp(−

𝜂
2

2
)} , (44)

where 𝑞 = 𝜈+(0)𝑇 = 10, which corresponds to 𝑇 = 3.65 days,
and 𝐹1 yr(𝜂) = (𝐹3 d(𝜂))100.

Since the data points (i.e., 𝑇 = 3.65 days maxima) are
independent, 𝜀

𝑘
(𝜂) is independent of 𝑘. Therefore, we put 𝑘 =

1. Since we have 100 data from one year, the data amounts to
2000 data points. For estimation of a 95% confidence interval
for each estimated value of the ACER function 𝜀

1
(𝜂) for the

chosen range of 𝜂-values, the required standard deviation in
(22) was based on 20 estimates of the ACER function using
the yearly data. This provided a 95% confidence band on
the optimally fitted curve based on 2000 data. From these
data, the predicted 100-year return level is obtained from
𝜀
1
(𝜂
100 yr

) = 10
−4. A nonparametric bootstrapping method

was also used to estimate a 95% confidence interval based on
1000 resamples of size 2000.

The POT prediction of the 100-year return level was
based on using maximum likelihood estimates (MLE) of the
parameters in (37) for a specific choice of threshold. The
95% confidence interval was obtained from the parametri-
cally bootstrapped PDF of the POT estimate for the given
threshold. A sample of 1000 data sets was used. One of the
unfortunate features of the POTmethod is that the estimated
100 year value may vary significantly with the choice of
threshold. So also for the synthetic data.We have followed the
standard recommended procedures for identifying a suitable
threshold [1].

Note that in spite of the fact that the true asymptotic
distribution of exceedances is the exponential distribution in
(38), the POT method used here is based on adopting (37).
The reason is simply that this is the recommended procedure
[1], which is somewhat unfortunate but understandable.
The reason being that the GP distribution provides greater
flexibility in terms of curve fitting. If the correct asymptotic
distribution of exceedances had been used on this example,
poor results for the estimated return period values would be
obtained.The price to pay for using theGP distribution is that
the estimated parametersmay easily lead to an asymptotically
inconsistent extreme value distribution.

The 100-year return level predicted by the Gumbel meth-
od was based on using themethod of moments for parameter
estimation on the sample of 20 yearly extremes. This choice
of estimation method is due to the small sample of extreme
values. The 95% confidence interval was obtained from the
parametrically bootstrapped PDF of the Gumbel prediction.
This was based on a sample of size 10,000 data sets of 20 yearly
extremes. The results obtained by the method of moments
were compared with the corresponding results obtained by
using the maximum likelihood method. While there were
individual differences, the overall picture was one of very
good agreement.

In order to get an idea about the performance of the
ACER, POT, and Gumbel methods, 100 independent 20-
year MC simulations as discussed above were done. Table 1
compares predicted values and confidence intervals for a
selection of 10 cases together with average values over the 100
simulated cases. It is seen that the average of the 100 predicted
100-year return levels is slightly better for the ACER method
than for both the POT and the Gumbel methods. But more
significantly, the range of predicted 100-year return levels by
the ACER method is 4.34–5.36, while the same for the POT
method is 4.19–5.87 and for the Gumbel method is 4.41–5.71.
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Table 1: 100-year return level estimates and 95% CI (BCI = CI by bootstrap) for A = ACER, G = Gumbel, and P = POT. Exact value = 4.80.

Sim. No. A 𝜂100 ACI ABCI G 𝜂
100 GBCI P 𝜂100 PBCI

1 5.07 (4.67, 5.21) (4.69, 5.42) 4.41 (4.14, 4.73) 4.29 (4.13, 4.52)
10 4.65 (4.27, 4.94) (4.37, 5.03) 4.92 (4.40, 5.58) 4.88 (4.42, 5.40)
20 4.86 (4.49, 5.06) (4.44, 5.19) 5.04 (4.54, 5.63) 5.04 (4.48, 5.74)
30 4.75 (4.22, 5.01) (4.33, 5.02) 4.75 (4.27, 5.32) 4.69 (4.24, 5.26)
40 4.54 (4.20, 4.74) (4.27, 4.88) 4.80 (4.31, 5.39) 4.73 (4.19, 5.31)
50 4.80 (4.35, 5.05) (4.42, 5.14) 4.91 (4.41, 5.50) 4.79 (4.31, 5.34)
60 4.84 (4.36, 5.20) (4.48, 5.19) 4.85 (4.36, 5.43) 4.71 (4.32, 5.23)
70 5.02 (4.47, 5.31) (4.62, 5.36) 4.96 (4.47, 5.53) 4.97 (4.47, 5.71)
80 4.59 (4.33, 4.81) (4.38, 4.98) 4.76 (4.31, 5.31) 4.68 (4.15, 5.27)
90 4.84 (4.49, 5.11) (4.60, 5.30) 4.77 (4.34, 5.32) 4.41 (4.23, 4.64)
100 4.62 (4.29, 5.05) (4.45, 5.09) 4.79 (4.31, 5.41) 4.53 (4.05, 4.88)
Av. 100 4.82 (4.41, 5.09) (4.48, 5.18) 4.84 (4.37, 5.40) 4.72 (4.27, 5.23)

Hence, in this case the ACER method performs consistently
better than both these methods. It is also observed from the
estimated 95% confidence intervals that theACERmethod, as
implemented in this paper, provides slightly higher accuracy
than the other two methods. Lastly, it is pointed out that the
confidence intervals of the 100-year return level estimated
by the ACER method obtained by either the simplified
extrapolated confidence band approach or by nonparametric
bootstrapping are very similar, except for a slight mean shift.
As a final comparison, the 100 bootstrapped confidence inter-
vals obtained for the ACER and Gumbel methods missed
the target value three times, while for the POT method this
number was 18.

An example of the ACER plot and results obtained for
one set of data is presented in Figure 1.The predicted 100-year
value is 4.85 with a predicted 95% confidence interval (4.45,
5.09). Figure 2 presents POT predictions based on MLE for
different thresholds in terms of the number 𝑛 of data points
above the threshold. The predicted value is 4.7 at 𝑛 = 204,
while the 95% confidence interval is (4.25, 5.28). The same
data set as in Figure 1 was used. This was also used for the
Gumbel plot shown in Figure 3. In this case the predicted
value based on themethod ofmoments (MM) is 𝜂100 yrMM = 4.75

with a parametric bootstrapped 95% confidence interval of
(4.34, 5.27). Prediction based on the Gumbel-Lieblein BLUE
method (GL), compared with for example, Cook [44], is
𝜂
100 yr
GL = 4.73with a parametric bootstrapped 95% confidence
interval equal to (4.35, 5.14).

9. Measured Wind Speed Data

In this section, we analyze real wind speed data, measured
at two weather stations off the coast of Norway: at Nordøyan
and at Hekkingen, see Figure 4. Extreme wind speed predic-
tion is an important issue for design of structures exposed to
the weather variations. Significant efforts have been devoted
to the problemof predicting extremewind speeds on the basis
of measured data by various authors over several decades,
see, for example, [45–48] for extensive references to previous
work.
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Figure 1: Synthetic data ACER 𝜀
1
, Monte Carlo simulation (∗);

optimized curve fit (—); empirical 95% confidence band (- -);
optimized confidence band (⋅ ⋅ ⋅). Tail marker 𝜂

1
= 2.3.

Hourly maximum gust wind was recorded during the
13 years 1999–2012 at Nordøyan and the 14 years 1998–
2012 at Hekkingen. The objective is to estimate a 100-year
wind speed. Variation in the wind speed caused by seasonal
variations in the wind climate during the year makes the
wind speed a non-stationary process on the scale of months.
Moreover, due to global climate change, yearly statistics may
vary on the scale of years. The latter is, however, a slow
process, and for the purpose of long-term prediction we
assume here that within a time span of 100 years a quasi-
stationary model of the wind speeds applies. This may not be
entirely true, of course.

9.1. Nordøyan. Figure 5 highlights the cascade of ACER
estimates 𝜀

1
, . . . , 𝜀

96
, for the case of 13 years of hourly data

recorded at theNordøyanweather station.Here, 𝜀
96
is consid-

ered to represent the final converged results. By “converged,”
we mean that 𝜀

96
≈ 𝜀
𝑘
for 𝑘 > 96 in the tail, so that there is no
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Figure 2: The point estimate 𝜂100 yr of the 100-year return period
value based on 20 years synthetic data as a function of the number
𝑛 of data points above threshold. The return level estimate = 4.7 at
𝑛 = 204.
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Figure 3: The point estimate 𝜂100 yr of the 100-year return period
value based on 20 years synthetic data. Lines are fitted by the
method of moments—solid line (—) and the Gumbel-Lieblein
BLUE method—dash-dotted lite (- ⋅ -). The return level estimate
by the method of moments is 4.75, by the Gumbel-Lieblein BLUE
method is 4.73.

need to consider conditioning of an even higher order than
96. Figure 5 reveals a rather strong statistical dependence
between consecutive data, which is clearly reflected in the
effect of conditioning on previous data values. It is also inter-
esting to observe that this effect is to some extent captured
already by 𝜀

2
, that is, by conditioning only on the value of the

previous data point. Subsequent conditioning on more than
one previous data point does not lead to substantial changes
in ACER values, especially for tail values. On the other hand,
to bring out fully the dependence structure of these data, it
was necessary to carry the conditioning process to (at least)
the 96th ACER function, as discussed above.

However, from a practical point of view, the most impor-
tant information provided by theACERplot of Figure 5 is that

Hekkingen Fyr 88690

Nordøyan Fyr 75410

Figure 4: Wind speed measurement stations.

3.5 4 4.5 5 5.5 6 6.5 7

10−1

10−2

10−3

10−4

𝑘 = 1
𝑘 = 2

𝑘 = 4
𝑘 = 24

𝑘 = 48

𝑘 = 72

𝑘 = 96

𝜂/𝜎

AC
ER
𝑘
(𝜂

)

Figure 5: Nordøyan wind speed statistics, 13 years hourly data.
Comparison between ACER estimates for different degrees of con-
ditioning. 𝜎 = 6.01m/s.

for the prediction of a 100-year value, one may use the first
ACER function.The reason for this is that Figure 5 shows that
all the ACER functions coalesce in the far tail. Hence, wemay
use any of the ACER functions for the prediction. Then, the
obvious choice is to use the first ACER function, which allows
us to use all the data in its estimation and thereby increase
accuracy.

In Figure 6 is shown the results of parametric estimation
of the return value and its 95% CI for 13 years of hourly
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Figure 7:The point estimate 𝜂100 yr of the 100-year return level based
on 13 years hourly data as a function of the number 𝑛 of data points
above threshold. 𝜎 = 6.01m/s.

maxima. The predicted 100-year return speed is 𝜂100 yr =

51.85m/s with 95% confidence interval (48.4, 53.1). 𝑅 = 13

years of data may not be enough to guarantee (22), since we
required 𝑅 ≥ 20. Nevertheless, for simplicity, we use it here
even with 𝑅 = 13, accepting that it may not be very accurate.

Figure 7 presents POT predictions for different threshold
numbers based on MLE. The POT prediction is 𝜂100 yr =
47.8m/s at threshold 𝑛 = 161, while the bootstrapped 95%
confidence interval is found to be (44.8, 52.7) m/s based
on 10,000 generated samples. It is interesting to observe the
unstable characteristics of the predictions over a range of
threshold values, while they are quite stable on either side of
this range giving predictions that are more in line with the
results from the other two methods.

Figure 8 presents a Gumbel plot based on the 13 yearly
extremes extracted from the 13 years of hourly data. The
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Figure 8: Nordøyan wind speed statistics, 13 years of hourly
data. Gumbel plot of yearly extremes. Lines are fitted by the
method of moments—solid line (—) and the Gumbel-Lieblein
BLUE method—dash-dotted lite (- ⋅ -). 𝜎 = 6.01m/s.

Table 2: Predicted 100-year return period levels for Nordøyan
Fyr weather station by the ACER method for different degrees of
conditioning, annual maxima, and POT methods, respectively.

Method Spec 𝜂
100 yr, m/s 95% CI (𝜂100 yr), m/s

ACER, various 𝑘

1 51.85 (48.4, 53.1)
2 51.48 (46.1, 54.1)
4 52.56 (46.7, 55.7)
24 52.90 (47.0, 56.2)
48 54.62 (47.7, 57.6)
72 53.81 (46.9, 58.3)
96 54.97 (47.5, 60.5)

Annual maxima MM 51.5 (45.2, 59.3)
GL 55.5 (48.0, 64.9)

POT — 47.8 (44.8, 52.7)

Gumbel prediction based on the method of moments (MM)
is 𝜂100 yrMM = 51.5m/s, with a parametric bootstrapped 95%
confidence interval equal to (45.2, 59.3) m/s, while prediction
based on the Gumbel-Lieblein BLUEmethod (GL) is 𝜂100 yrGL =

55.5m/s, with a parametric bootstrapped 95% confidence
interval equal to (48.0, 64.9) m/s.

In Table 2 the 100-year return period values for the
Nordøyan station are listed together with the predicted 95%
confidence intervals for all methods.

9.2. Hekkingen. Figure 9 shows the cascade of estimated
ACER functions 𝜀

1
, . . . , 𝜀

96
for the case of 14 years of hourly

data. As for Nordøyan, 𝜀
96

is used to represent the final
converged results. Figure 9 also reveals a rather strong sta-
tistical dependence between consecutive data at moderate
wind speed levels.This effect is again to some extent captured
already by 𝜀

2
, so that subsequent conditioning on more than

one previous data point does not lead to substantial changes
in ACER values, especially for tail values.
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Figure 9: Hekkingen wind speed statistics, 14 years hourly data.
Comparison between ACER estimates for different degrees of con-
ditioning. 𝜎 = 5.72m/s.
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Figure 10: Hekkingen wind speed statistics, 14 years hourly data.
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4.02𝜎 (𝜎 = 5.72m/s).

Also, for the Hekkingen data, the ACER plot of Figure 9
indicates that the ACER functions coalesce in the far tail.
Hence, for the practical prediction of a 100-year value, one
may use the first ACER function.

In Figure 10 is shown the results of parametric estimation
of the return value and its 95% CI for 14 years of hourly
maxima. The predicted 100-year return speed is 𝜂100 yr =

60.47m/s with 95% confidence interval (53.1, 64.9). Equation
(22) has been used also for this example with 𝑅 = 14.

Figure 11 presents POT predictions for different threshold
numbers based on MLE. The POT prediction is 𝜂100 yr =

53.48m/s at threshold 𝑛 = 183, while the bootstrapped

Table 3: Predicted 100-year return period levels for Nordøyan
Fyr weather station by the ACER method for different degrees of
conditioning, annual maxima, and POT methods, respectively.

Method Spec 𝜂
100 yr, m/s 95% CI (𝜂100 yr), m/s

ACER, various 𝑘

1 60.47 (53.1, 64.9)

2 62.23 (53.3, 70.0)

4 63.03 (53.0, 74.5)

24 60.63 (51.3, 70.7)

48 60.44 (51.3, 77.0)

72 58.06 (51.2, 66.4)

96 59.19 (52.0, 68.3)

Annual maxima MM 58.10 (50.8, 67.3)

GL 60.63 (53.0, 70.1)

POT — 53.48 (48.9, 57.0)
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Figure 11: The point estimate 𝜂100 yr of the 100-year return level
based on 14 years hourly data as a function of the number 𝑛 of data
points above threshold. 𝜎 = 5.72m/s.

95% confidence interval is found to be (48.9, 57.0) m/s based
on 10,000 generated samples. It is interesting to observe
the unstable characteristics of the predictions over a range of
threshold values, while they are quite stable on either side of
this range giving predictions that are more in line with the
results from the other two methods.

Figure 12 presents a Gumbel plot based on the 14 yearly
extremes extracted from the 14 years of hourly data. The
Gumbel prediction based on the method of moments (MM)
is 𝜂100 yrMM = 58.10m/s, with a parametric bootstrapped 95%
confidence interval equal to (50.8, 67.3)m/s. Prediction based
on the Gumbel-Lieblein BLUE method (GL) is 𝜂100 yrGL =

60.63m/s, with a parametric bootstrapped 95% confidence
interval equal to (53.0, 70.1) m/s.

In Table 3, the 100-year return period values for the
Hekkingen station are listed together with the predicted 95%
confidence intervals for all methods.
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Figure 12: Hekkingen wind speed statistics, 14 years of hourly
data. Gumbel plot of yearly extremes. Lines are fitted by the
method of moments—solid line (—) and the Gumbel-Lieblein
BLUE method—dash-dotted lite (- ⋅ -). 𝜎 = 5.72m/s.

10. Extreme Value Prediction for a Narrow
Band Process

In engineering mechanics, a classical extreme response pre-
diction problem is the case of a lightly damped mechani-
cal oscillator subjected to random forces. To illustrate this
prediction problem, we will investigate the response pro-
cess of a linear mechanical oscillator driven by a Gaussian
white noise. Let 𝑋(𝑡) denote the displacement response; the
dynamic model can then be expressed as, �̈�(𝑡) + 2𝜁𝜔

𝑒
�̇�(𝑡) +

𝜔
2

𝑒
𝑋(𝑡) = 𝑊(𝑡), where 𝜁 = relative damping, 𝜔

𝑒
= undamped

eigenfrequency, and𝑊(𝑡)= a stationaryGaussianwhite noise
(of suitable intensity). By choosing a small value for 𝜁, the
response time series will exhibit narrow band characteristics,
that is, the spectral density of the response process 𝑋(𝑡)
will assume significant values only over a narrow range
of frequencies. This manifests itself by producing a strong
beating of the response time series, which means that the size
of the response peakswill change slowly in time, see Figure 13.
A consequence of this is that neighbouring peaks are strongly
correlated, and there is a conspicuous clumping of the peak
values. Hence the problemwith accurate prediction, since the
usual assumption of independent peak values is then violated.

Many approximations have been proposed to deal with
this correlation problem, but no completely satisfactory
solution has been presented. In this section, we will show
that the ACER method solves this problem efficiently and
elegantly in a statistical sense. In Figure 14 are shown some
of the ACER functions for the example time series. It may
be verified from Figure 13 that there are approximately 32
sample points between two neighbouring peaks in the time
series. To illustrate a point, we have chosen to analyze the
time series consisting of all sample points.Usually, in practice,
only the time series obtained by extracting the peak values
would be used for the ACER analysis. In the present case,
the first ACER function is then based on assuming that all
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Figure 13: Part of the narrow-band response time series of the linear
oscillator with fully sampled and peak values indicated.

the sampled data points are independent, which is obviously
completely wrong. The second ACER function, which is
based on counting each exceedance with an immediately
preceding nonexceedance, is nothing but an upcrossing rate.
Using this ACER function is largely equivalent to assuming
independent peak values. It is now interesting to observe
that the 25th ACER function can hardly be distinguished
from the second ACER function. In fact, the ACER functions
after the second do not change appreciably until one starts to
approach the 32nd, which corresponds to hitting the previous
peak value in the conditioning process. So, the important
information concerning the dependence structure in the
present time series seems to reside in the peak values, which
may not be very surprising. It is seen that the ACER functions
show a significant change in value as a result of accounting
for the correlation effects in the time series. To verify the
full dependence structure in the time series, it is necessary
to continue the conditioning process down to at least the
64th ACER function. In the present case, there is virtually
no difference between the 32nd and the 64th, which shows
that the dependence structure in this particular time series is
captured almost completely by conditioning on the previous
peak value. It is interesting to contrast the method of dealing
with the effect of sampling frequency discussed here with that
of [49].

To illustrate the results obtained by extracting only the
peak values from the time series, which would be the
approach typically chosen in an engineering analysis, the
ACER plots for this case is shown in Figure 15. By comparing
results from Figures 14 and 15, it can be verified that they
are in very close agreement by recognizing that the second
ACER function in Figure 14 corresponds to the first ACER
function in Figure 15, and by noting that there is a factor of
approximately 32 between corresponding ACER functions in
the two figures. This is due to the fact that the time series of
peak values contains about 32 times less data than the original
time series.
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Figure 14: Comparison between ACER estimates for different
degrees of conditioning for the narrow-band time series.
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Figure 15: Comparison between ACER estimates for different
degrees of conditioning based on the time series of the peak values,
compared with Figure 13.

11. Concluding Remarks

This paper studies a newmethod for extreme value prediction
for sampled time series.Themethod is based on the introduc-
tion of a conditional average exceedance rate (ACER), which
allows dependence in the time series to be properly and easily
accounted for. Declustering of the data is therefore avoided,
and all the data are used in the analysis. Significantly, the
proposed method also aims at capturing to some extent the
subasymptotic form of the extreme value distribution.

Results for wind speeds, both synthetic and measured,
are used to illustrate the method. An estimation problem

related to applications in mechanics is also presented. The
validation of the method is done by comparison with exact
results (when available), or other widely used methods for
extreme value statistics, such as the Gumbel and the peaks-
over-threshold (POT) methods. Comparison of the various
estimates indicate that the proposed method provides more
accurate results than the Gumbel and POT methods.

Subject to certain restrictions, the proposed method also
applies to nonstationary time series, but it cannot directly
predict for example, the effect of climate change in the form
of long-term trends in the average exceedance rates extending
beyond the data. This must be incorporated into the analysis
by explicit modelling techniques.

As a final remark, it may be noted that the ACERmethod
as described in this paper has a natural extension to higher
dimensional distributions. The implication is that, it is then
possible to provide estimates of for example, the exact bivari-
ate extreme value distribution for a suitable set of data [50].
However, as is easily recognized, the extrapolation problem is
not as simply dealt with as for the univariate case studied in
this paper.
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