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We extend the notion of dissipative dynamical systems to formalize the concept of the
nonlinear analog of strict positive realness and strict bounded realness. In particular,
using exponentially weighted system storage functions with appropriate exponentially
weighted supply rates, we introduce the concept of exponential dissipativity. The pro-
posed results provide a generalization of the strict positive real lemma and the strict
bounded real lemma to nonlinear systems. We also provide a nonlinear analog to the
classical passivity and small gain stability theorems for state space nonlinear feedback
systems. These results are used to construct globally stabilizing static and dynamic out-
put feedback controllers for nonlinear passive systems that minimize a nonlinear non-
quadratic performance criterion.

1. Introduction

One of the most basic issues in system theory is the stability of feedback interconnections.
Two of the most fundamental results concerning stability of linear feedback systems are
the positivity and small gain theorems [1, 11, 16, 21]. The positivity theorem states that
if G and Gc are (square) positive real transfer functions, one of which is strictly positive
real, then the negative feedback interconnection of G and Gc is asymptotically stable.
Alternatively, the small gain theorem implies that if G and Gc are asymptotically stable
finite-gain transfer functions, one of which is strictly finite gain so that |||G|||∞|||Gc|||∞ <
1, then the negative feedback interconnection of G and Gc is asymptotically stable.

In an attempt to generalize the above feedback interconnection stability results to non-
linear state space systems, Hill and Moylan [9] introduced the novel concepts of input
strict passivity, output strict passivity, and input-output strict passivity using notions of
storage functions with appropriate supply rates from dissipativity theory for nonlinear
dynamical systems [19]. In particular, Hill and Moylan [9] show that if the nonlinear
dynamical systems � and �c are both input strictly passive, are both output strictly pas-
sive, or � is passive and �c is input-output strictly passive, then the negative feedback
interconnection of � and �c is asymptotically stable. However, these nonlinear feedback
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stability results do not represent an exact nonlinear extension to the positivity and small
gain theorems discussed above. Specifically, specializing the notions of input strict pas-
sivity, output strict passivity, and input-output strict passivity to linear systems yields
stronger conditions than strict positive realness and strict bounded realness.

In this paper, we extend the notion of dissipative dynamical systems to formalize the
concept of the nonlinear analog of strict positive realness and strict bounded realness. In
particular, using exponentially weighted system storage functions with appropriate ex-
ponentially weighted supply rates, we introduce the concept of exponential dissipativity.
Furthermore, we develop nonlinear Kalman-Yakubovich-Popov conditions for exponen-
tially dissipative dynamical systems with quadratic supply rates. In the special cases where
the system dynamics are linear and the quadratic supply rates correspond to the net sys-
tem power and the weighted input and output system energy, the Kalman-Yakubovich-
Popov conditions specialize to the strict positive real lemma [18] and strict bounded
real lemma [2]. Furthermore, using exponential dissipativity concepts, we present sev-
eral stability results for nonlinear feedback systems that provide a nonlinear analog to
the classical positivity and small gain theorems for linear feedback systems. In the special
case where we consider a quadratic supply rate corresponding to the net system power,
our notion of exponential dissipativity (with minor additional assumptions on the sys-
tem storage) collapses to the notion of exponential passivity introduced in [4]. However,
it is important to note that results developed in [4] predominantly focus on passivity,
feedback equivalence, and stabilizability of exponentially minimum phase systems. In
contrast, the results of the present paper develop nonlinear extensions to the Kalman-
Yakubovich-Popov conditions for exponential dissipativity as well as stability results for
feedback interconnections of dissipative and exponentially dissipative systems. For an ex-
cellent treatment of passivity and minimum phase systems, the reader is referred to [3].

Using the extended Kalman-Yakubovich-Popov conditions for exponentially passive
systems, we extend the H2-based positive real controller synthesis methods developed
in [6, 14] to nonlinear passive dynamical systems. Specifically, globally stabilizing static
and dynamic exponentially passive output feedback nonlinear controllers are constructed
for nonlinear passive systems that additionally minimize a nonlinear nonquadratic per-
formance criterion involving a nonlinear nonquadratic, nonnegative-definite function
of the state and a quadratic positive-definite function of the control. In particular, by
choosing the nonlinear nonquadratic weighting functions in the performance criterion
in a specified manner, the resulting static and dynamic controllers are guaranteed to be
exponentially passive. In the dynamic output feedback case, we show that the linearized
controller for the linearized passive system is H2 optimal.

2. Exponentially dissipative dynamical systems

In this section, we extend the notion of dissipative dynamical systems to formalize the
concept of the nonlinear analog of strict positive realness and strict bounded realness.
In particular, using exponentially weighted system storage functions with appropriate
exponentially weighted supply rates, we introduce the concept of exponential dissipativ-
ity. First, however, we establish a standard notation used throughout the paper. Specifi-
cally, let R and C denote the real and complex numbers, Rn the set of n× 1 real column
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vectors, Rm×n the set of m×n real matrices, Sn the set of n×n symmetric matrices, (·)T
and (·)∗ transpose and complex conjugate transpose, respectively, and In or I the n× n
identity matrix. Furthermore, we write ‖ · ‖ for the Euclidean vector norm, σmax(·) (resp.,
σmin(·)) for the maximum (resp., minimum) singular value, V ′(x) for the Fréchet deriv-
ative of V at x, and M ≥ 0 (resp., M > 0) to denote the fact that the Hermitian matrix M
is nonnegative (resp., positive) definite. Let

G(s)∼
[

A B

C D

]
(2.1)

denote a state-space realization of a transfer function G(s); that is, G(s)= C(sI −A)−1B+

D. The notation min∼ is used to denote a minimal realization. Finally, let C0 denote the set
of continuous functions and Cn the set of functions with n continuous derivatives.

In this paper, we consider nonlinear dynamical systems � of the form

ẋ(t)= f
(
x(t)

)
+G

(
x(t)

)
u(t), x

(
t0
)= x0, t ≥ t0, (2.2a)

y(t)= h
(
x(t)

)
+ J
(
x(t)

)
u(t), (2.2b)

where x ∈ Rn, u ∈ Rm, y ∈ Rl, f : Rn → Rn, G : Rn → Rn×m, h : Rn → Rl, and J : Rn →
Rl×m. We assume that f (·), G(·), h(·), and J(·) are continuously differentiable mappings
and f (·) has at least one equilibrium so that, without loss of generality, f (0) = 0 and
h(0) = 0. Furthermore, for the nonlinear dynamical system �, we assume that the re-
quired properties for the existence and uniqueness of solutions are satisfied; that is, u(·)
satisfies sufficient regularity conditions such that the system (2.2a) has a unique solution
forward in time. For the dynamical system � given by (2.2), a function r : Rm×Rl → R

such that r(0,0) = 0 is called a supply rate [19] if it is locally integrable; that is, for all
input-output pairs u ∈ Rm and y ∈ Rl, r(·,·) satisfies

∫ t2
t1 |r(u(s), y(s))|ds < ∞, where

t1, t2 ≥ 0. The following definition introduces the notion of exponential dissipativity.

Definition 2.1. A dynamical system � of the form (2.2) is exponentially dissipative with
respect to the supply rate r(u, y) if there exists a constant ε > 0 such that the dissipation
inequality

0≤
∫ t

t0
eεsr
(
u(s), y(s)

)
ds (2.3)

is satisfied for all t ≥ t0 with x(t0)= 0. A dynamical system � of the form (2.2) is dissipa-
tive with respect to the supply rate r(u, y) [19] if the dissipation inequality (2.3) is satisfied
with ε= 0.

Next, we give an extension of the notion of an available storage introduced in [19].
Specifically, define the available exponential storage Va(x0) of the nonlinear dynamical
system � by

Va
(
x0
)
�− inf

u(·),T≥0

∫ T

0
eεtr
(
u(t), y(t)

)
dt, (2.4)
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where x(t), t ≥ 0, is the solution to (2.2a) with x(0)= x0 and admissible input u(·). Note
that Va(x)≥ 0 for all x ∈Rn since Va(x) is the supremum over a set of numbers contain-
ing the zero element (T = 0). It follows from (2.4) that the available exponential storage
of a nonlinear dynamical system � is the maximum amount of exponential storage which
can be extracted from � at any time T .

Remark 2.2. Note that if we define the available storage as the time-varying function

V̂a
(
x0, t0

)=− inf
u(·),T≥t0

∫ T

t0
eεtr
(
u(t), y(t)

)
dt, (2.5)

where x(t), t ≥ t0, is the solution to (2.2a) with x(t0) = x0 and admissible input u(·), it
follows that, since � is time-invariant,

V̂a
(
x0, t0

)=−eεt0 inf
u(·),T≥0

∫ T

0
eεtr
(
u(t), y(t)

)
dt = eεt0Va

(
x0
)
. (2.6)

Hence, an alternative expression for available storage function Va(x0) is given by

Va
(
x0
)=−e−εt0 inf

u(·),T≥t0

∫ T

t0
eεtr
(
u(t), y(t)

)
dt. (2.7)

Recall that V̂a(x0, t0) given by (2.5) defines the available storage function for nonstation-
ary (time-varying) dynamical systems [10, 19]. As shown above, in the case of exponen-
tially time-invariant dissipative systems, V̂a(x0, t0)= eεt0Va(x0).

Next, we establish an analogous result to dissipative systems given in [19] for expo-
nentially dissipative systems. Specifically, we show that the available exponential storage
given by (2.4) is finite if and only if � is exponentially dissipative. In order to state this
result, we require two additional definitions.

Definition 2.3. Consider the nonlinear dynamical system � given by (2.2). Assume that �
is exponentially dissipative with respect to a supply rate r(u, y). A continuous nonnegative
definite function Vs : Rn→R satisfying

eεtVs
(
x(t)

)≤ eεt0Vs
(
x
(
t0
))

+
∫ t

t0
eεsr
(
u(s), y(s)

)
ds, t ≥ t0, (2.8)

for all t0, t ≥ 0, where x(t), t ≥ t0, is the solution of (2.2a) with u ∈ Rm, is called an
exponential storage function for �. A continuous nonnegative definite function Vs : Rn→
R satisfying (2.8) with ε = 0 is called a storage function for � [19].

Definition 2.4 [9]. A dynamical system � is zero-state observable if for all x ∈Rn, u(t)≡ 0
and y(t) ≡ 0 imply x(t) ≡ 0. A dynamical system � is completely reachable if for all xi ∈
Rn, there exist a finite time ti ≤ 0, square integrable input u(t) defined on [ti,0] such that
the state x(t), t ≥ ti, can be driven from x(ti)= 0 to x(0)= xi.
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Theorem 2.5. Consider the nonlinear dynamical system � given by (2.2) and assume that
� is completely reachable. Then � is exponentially dissipative with respect to the supply
rate r(u, y) if and only if the available exponential system storage Va(x0) given by (2.4) is
finite for all x0 ∈Rn. Moreover, if Va(x0) is finite for all x0 ∈Rn, then Va(x), x ∈Rn, is an
exponential storage function for �. Finally, all exponential storage functions Vs(x), x ∈Rn,
for � satisfy Va(x)≤Vs(x), x ∈Rn.

The proof is similar to the proof given in [19] for dissipative systems.
The following corollary is immediate from Theorem 2.5 and shows that a system � is

exponentially dissipative with respect to the supply rate r(u, y) if and only if there exists
a continuous exponential storage function Vs(·) satisfying (2.8).

Corollary 2.6. Consider the nonlinear dynamical system � given by (2.2) and assume that
� is completely reachable. Then � is exponentially dissipative with respect to the supply rate
r(u, y) if and only if there exists a continuous exponential storage function Vs(x), x ∈ Rn,
satisfying (2.8).

The following theorem provides conditions for guaranteeing that all exponential stor-
age functions of a given exponentially dissipative nonlinear dynamical system are positive
definite.

Theorem 2.7. Consider the nonlinear dynamical system � given by (2.2) and assume that
� is completely reachable and zero-state observable. Furthermore, assume that � is ex-
ponentially dissipative with respect to the supply rate r(u, y), and there exists a function
κ : Rl → Rm such that κ(0) = 0 and r(κ(y), y) < 0, y �= 0. Then all the exponential storage
functions Vs(x), x ∈Rn, for � are positive definite; that is, Vs(0)= 0 and Vs(x) > 0, x ∈Rn,
x �= 0.

The proof is identical to the proof given in [8] for dissipative systems.

Remark 2.8. If Vs(·) is continuously differentiable in Corollary 2.6, then an equivalent
statement for exponential dissipativeness of � with respect to the supply rate r(u, y) is

V̇s
(
x(t)

)
+ εVs

(
x(t)

)≤ r
(
u(t), y(t)

)
, t ≥ 0, (2.9)

where V̇s(·) denotes the total derivative of Vs(x) along the state trajectories x(t), t ≥ 0, of
(2.2a). Furthermore, note that exponential dissipativity implies strict dissipativity; that is,
V̇s(x(t)) < r(u(t), y(t)), t ≥ 0, but the converse does not necessarily hold.

Remark 2.9. The notion of exponential dissipativity introduced in this paper is more
general than the notion of exponential passivity introduced in [4]. Specifically, in [4],
a nonlinear dynamical system � is exponentially passive if it is strictly passive; that is,
there exist an r-continuously differentiable storage function Vs(·) and a positive-definite
function S(·) such that

Vs
(
x(t)

)−Vs
(
x(0)

)= ∫ t

0
uT(s)y(s)ds−

∫ t

0
S
(
x(s)

)
ds, (2.10)
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and there exist positive scalars α1, α2, and α3 such that

α1‖x‖2 ≤Vs(x)≤ α2‖x‖2, (2.11)

α3‖x‖2 ≤ S(x). (2.12)

In the case where there exists an r-continuously differentiable storage function Vs(·) with
supply rate r(u, y)= uT y such that (2.11) is satisfied, our notion of exponential dissipa-
tivity specializes to the notion studied in [4].

3. Specialization to exponentially dissipative systems
with quadratic supply rates

In this section, we present a result which shows that exponential dissipativeness of a sys-
tem of the form (2.2) can be characterized in terms of the system functions f (·), G(·),
h(·), and J(·). For the following result, we consider the special case of exponentially dissi-
pative systems with quadratic supply rates. Specifically, let Q ∈ Sl, R∈ Sm, and S∈Rl×m

be given and assume r(u, y)= yTQy + 2yTSu+uTRu. Furthermore, we assume that there
exists a function κ : Rl → Rm such that κ(0) = 0, r(κ(y), y) < 0, y �= 0, and there exists a
continuously differentiable available storage Va(x), x ∈Rn, for the dynamical system �.

Theorem 3.1. Let Q ∈ Sl, S ∈ Rl×m, and R ∈ Sm, and let � be zero-state observable and
completely reachable. Then � is exponentially dissipative with respect to the quadratic sup-
ply rate r(u, y) = yTQy +2yTSu + uTRu if and only if there exist functions Vs : Rn → R,
� : Rn → Rp, and � : Rn → Rp×m and a scalar ε > 0 such that Vs(·) is continuously differ-
entiable and positive definite, Vs(0)= 0, and, for all x ∈Rn,

0=V ′
s (x) f (x) + εVs(x)−hT(x)Qh(x) + �T(x)�(x),

0= 1
2
V ′
s (x)G(x)−hT(x)

(
QJ(x) + S

)
+ �T(x)�(x),

0= R+ STJ(x) + JT(x)S+ JT(x)QJ(x)−�T(x)�(x).

(3.1)

If, alternatively,

�(x) � R+ STJ(x) + JT(x)S+ JT(x)QJ(x) > 0, x ∈R
n, (3.2)

then � is exponentially dissipative with respect to the quadratic supply rate r(u, y)= yTQy
+2yTSu+uTRu if and only if there exists a continuously differentiable function Vs : Rn→R

and a scalar ε > 0 such that Vs(·) is positive definite, Vs(0)= 0, and, for all x ∈Rn,

0≥V ′
s (x) f (x) + εVs(x)−hT(x)Qh(x)

+
[

1
2
V ′
s (x)G(x)−hT(x)

(
QJ(x) + S

)]
·�−1(x)

[
1
2
V ′
s (x)G(x)−hT(x)

(
QJ(x) + S

)]T
.

(3.3)
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Proof. The proof of equivalence between exponential dissipativity of � and (3.1) is sim-
ilar to the proof given in [8] for dissipative systems with quadratic supply rates. To show
(3.3), note that (3.1) can be equivalently written as

[
�(x) �(x)

�T(x) �(x)

]
=−

[
�T(x)

�T(x)

][
�(x) �(x)

]
≤ 0, x ∈R

n, (3.4)

where

�(x) �V ′
s (x) f (x) + εVs(x)−hT(x)Qh(x),

�(x) � 1
2
V ′
s (x)G(x)−hT(x)

(
QJ(x) + S

)
,

�(x) �−(R+ STJ(x) + JT(x)S+ JT(x)QJ(x)
)
.

(3.5)

Now, for all invertible � ∈ R(m+1)×(m+1), (3.4) holds if and only if �T(3.4)� holds.
Hence, the equivalence of (3.1) to (3.3) in the case when (3.2) holds follows from the
(1,1) block of �T(3.4)�, where � �

[ 1 0
−�−1(x)�T (x) I

]
. �

Remark 3.2. The assumption of complete reachability in Theorem 3.1 is needed to es-
tablish the existence of a nonnegative-definite exponential storage function Vs(·) while
the zero-state observability assures that Vs(·) is positive definite. In the case where the
existence of a continuously differentiable positive-definite exponential storage function
Vs(·) is assumed for �, then � is exponentially dissipative with respect to the quadratic
supply rate r(u, y) with exponential storage function Vs(·) if and only if conditions (3.1)
are satisfied.

Remark 3.3. Note that if � with a continuously differentiable positive-definite, radially
unbounded storage function Vs(·) is exponentially dissipative with respect to the qua-
dratic supply rate r(u, y)= yTQy + 2yTSu+uTRu, Q ≤ 0, and u(t)≡ 0, it follows that

V̇s
(
x(t)

)≤−εVs
(
x(t)

)
+ yT(t)Qy(t)≤−εVs

(
x(t)

)
, t ≥ 0. (3.6)

Hence, the undisturbed (u(t) ≡ 0) nonlinear dynamical system (2.2a) is asymptotically
stable. If, in addition, there exists scalars α,β > 0 and p ≥ 1 such that α‖x‖p ≤ Vs(x) ≤
β‖x‖p, x ∈ Rn, then the undisturbed (u(t) ≡ 0) nonlinear dynamical system (2.2a) is
exponentially stable.

Next, we specialize Theorem 3.1 to passive and finite-gain dynamical systems. To state
these results, two key definitions of nonlinear dynamical systems which are exponentially
dissipative with respect to supply rates of a specific form are needed.

Definition 3.4. A dynamical system � of the form (2.2) with m= l is exponentially passive
if � is exponentially dissipative with respect to the supply rate r(u, y)= 2uT y.

Definition 3.5. A dynamical system � of the form (2.2) is exponentially finite gain if �
is exponentially dissipative with respect to the supply rate r(u, y)= γ2uTu− yT y, where
γ > 0 is given.
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The following results present the nonlinear versions of the Kalman-Yakubovich-Popov
strict positive real lemma and strict bounded real lemma for exponentially passive and
finite-gain systems, respectively.

Corollary 3.6. Let � be zero-state observable and completely reachable. Then � is expo-
nentially passive if and only if there exist functions Vs : Rn→R, � : Rn→Rp, and � : Rn→
Rp×m and a scalar ε > 0 such that Vs(·) is continuously differentiable and positive definite,
Vs(0)= 0, and, for all x ∈Rn,

0=V ′
s (x) f (x) + εVs(x) + �T(x)�(x), (3.7a)

0= 1
2
V ′
s (x)G(x)−hT(x) + �T(x)�(x), (3.7b)

0= J(x) + JT(x)−�T(x)�(x). (3.7c)

If, alternatively, J(x) + JT(x) > 0, x ∈Rn, then � is exponentially passive if and only if there
exist a continuously differentiable function Vs : Rn→R and a scalar ε > 0 such that Vs(·) is
positive definite, Vs(0)= 0, and, for all x ∈Rn,

0≥V ′
s (x) f (x) + εVs(x)

+
[

1
2
V ′
s (x)G(x)−hT(x)

][
J(x) + JT(x)

]−1
[

1
2
V ′
s (x)G(x)−hT(x)

]T
.

(3.8)

Proof. The result is a direct consequence of Theorem 3.1 with l =m, Q = 0, S= Im, and
R= 0. Specifically, with κ(y)=−y, it follows that r(κ(y), y)=−2yT y < 0, y �= 0, so that
all the assumptions of Theorem 3.1 are satisfied. �

Corollary 3.7. Let � be zero-state observable and completely reachable. Then � is ex-
ponentially finite gain if and only if there exist functions Vs : Rn → R, � : Rn → Rp, and
� : Rn→Rp×m and a scalar ε > 0 such that Vs(·) is continuously differentiable and positive
definite, Vs(0)= 0, and, for all x ∈Rn,

0=V ′
s (x) f (x) + εVs(x) +hT(x)h(x) + �T(x)�(x),

0= 1
2
V ′
s (x)G(x) +hT(x)J(x) + �T(x)�(x),

0= γ2Im− JT(x)J(x)−�T(x)�(x).

(3.9)

If, alternatively, γ2Im− JT(x)J(x) > 0, x ∈Rn, then � is exponentially finite gain if and only
if there exist a continuously differentiable function Vs : Rn →R and a scalar ε > 0 such that
Vs(·) is positive definite, Vs(0)= 0, and, for all x ∈Rn,

0≥V ′
s (x) f (x) + εVs(x) +hT(x)h(x) +

[
1
2
V ′
s (x)G(x) +hT(x)J(x)

]
· [γ2Im− JT(x)J(x)

]−1
[

1
2
V ′
s (x)G(x) +hT(x)J(x)

]T
.

(3.10)
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Proof. The result is a direct consequence of Theorem 3.1 with Q = −Il, S = 0, and R =
γ2Im. Specifically, with κ(y)=−(1/2γ)y, it follows that r(κ(y), y)=−(3/4)yT y < 0, y �=
0, so that all the assumptions of Theorem 3.1 are satisfied. �

Finally, we present a key result on linearization of exponentially dissipative systems.
For this result, we assume that there exists a function κ : Rl → Rm such that κ(0) = 0,
r(κ(y), y) < 0, y �= 0, and the available storage Va(·) belongs to C3.

Theorem 3.8. Let Q ∈ Sl, S ∈ Rl×m, and R ∈ Sm and suppose that � given by (2.2) is
completely reachable and exponentially dissipative with respect to the quadratic supply rate
r(u, y)= yTQy + 2yTSu+uTRu. Then, there exist matrices P ∈Rn×n, L∈Rp×n, and W ∈
Rp×m, with P nonnegative definite, and a scalar ε > 0 such that

0=ATP +PA+ εP−CTQC+LTL,

0= PB−CT(QD+ S) +LTW,

0= R+ STD+DTS+DTQD−WTW,

(3.11)

where

A= ∂ f

∂x

∣∣∣∣
x=0

, B =G(0), C = ∂h

∂x

∣∣∣∣
x=0

, D = J(0). (3.12)

If, in addition, (A,C) is observable, then P > 0.

The proof is similar to the proof of [7, Theorem 2.1] and hence is omitted.

4. Connections to strict positive real and strict bounded
real dynamical systems

In this section, we specialize the results of Section 3 to the case of linear systems and
provide connections for the frequency domain versions of exponential passivity and ex-
ponential finite gain. Specifically, we consider linear systems

� =G(s)∼
[

A B

C D

]
(4.1)

with a state-space representation

ẋ(t)= Ax(t) +Bu(t), x(0)= 0, t ≥ 0,

y(t)= Cx(t) +Du(t),
(4.2)

where x ∈Rn, u∈Rm, y ∈Rl, A∈Rn×n, B ∈Rn×m, C ∈Rl×n, and D ∈Rl×m. To present
the main results of this section, we first give several standard definitions.

Definition 4.1. A square transfer function G(s) is called positive real [2] if (i) all elements
of G(s) are analytic in Re[s] > 0, (ii) G(s) +G∗(s)≥ 0, Re[s] > 0. A square transfer func-
tion G(s) is strictly positive real [18] if there exists ε > 0 such that G(s− ε) is positive real.
Finally, a square transfer function G(s) is called strongly positive real [5] if it is strictly
positive real and D+DT > 0, where D �G(∞).
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Definition 4.2. A transfer function G(s) is called bounded real [2] if (i) all elements of
G(s) are analytic in Re[s] ≥ 0, (ii) γ2Im −G∗(s)G(s) ≥ 0, Re[s] ≥ 0, where γ > 0. (Note
that a transfer function G(s) is bounded real if and only if all elements of G(s) are analytic
in Re[s] ≥ 0 and |||G(s)|||∞ ≤ γ.) A transfer function G(s) is strictly bounded real [2] if
there exists ε > 0 such that G(s− ε) is bounded real. Finally, a transfer function G(s) is
called strongly bounded real [5] if it is strictly bounded real and γ2Im −DTD > 0, where
D �G(∞).

Now, we present the key results of this section connecting the nonlinear notion of
exponential passivity and exponential finite gain to strict positive realness and strict
bounded realness, respectively, of a linear dynamical system.

Theorem 4.3. Consider the dynamical system

G(s) min∼
[

A B

C D

]
(4.3)

with input u(·) and output y(·). Then the following statements are equivalent:

(i) G(s) is strictly positive real;
(ii) G(s) is exponentially passive; that is,

∫ T
0 2eεtuT(t)y(t)dt ≥ 0, T ≥ 0;

(iii) there exist matrices P ∈ Rn×n, L ∈ Rp×n, and W ∈ Rp×m, with P positive definite,
and a scalar ε > 0 such that

0= ATP +PA+ εP +LTL, (4.4a)

0= PB−CT +LTW, (4.4b)

0=D+DT −WTW. (4.4c)

Furthermore, G(s) is strongly positive real if and only if there exists n× n positive-definite
matrices P and R such that

0= ATP +PA+
(
BTP−C

)T(
D+DT

)−1(
BTP−C

)
+R. (4.5)

Proof. The equivalence of (i) and (iii) is standard; see [12] for a proof. The fact that (iii)
implies (ii) follows from Corollary 3.6 with f (x) = Ax, G(x) = B, h(x) = Cx, J(x) = D,
Vs(x)= xTPx, �(x)= Lx, and �(x)=W . To show that (ii) implies (iii), note that if G(s)
is exponentially passive, then it follows from Theorem 3.8 with f (x) = Ax, G(x) = B,
h(x) = Cx, J(x) = D, Q = 0, S = Im, and R = 0 that there exist matrices P ∈ Rn×n, L ∈
Rp×n, and W ∈Rp×m, with P positive definite, such that (4.4) are satisfied. Finally, with
the linearization given above, it follows from (3.8) that G(s) is strongly positive real if and
only if there exists a scalar ε > 0 and a positive-definite matrix P ∈Rn×n such that

0≥ ATP +PA+ εP +
(
BTP−C

)T(
D+DT

)−1(
BTP−C

)
. (4.6)

Now, if there exists a scalar ε > 0 and a positive-definite matrix P ∈Rn×n such that (4.6)
is satisfied, then there exists an n×n positive-definite matrix R such that (4.5) is satisfied.
Conversely, if there exists an n× n positive-definite matrix R such that (4.5) is satisfied,
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then, with ε = σmin(R)/σmax(P), (4.5) implies (4.6). Hence, G(s) is strongly positive real if
and only if there exists n×n positive-definite matrices P and R such that (4.5) is satisfied.

�

Remark 4.4. Note that the proof of Theorem 4.3 relies on Theorem 3.8 which a priori
assumes that the exponential storage function Vs(·) belongs to C3. However, for linear
dynamical systems, it was shown in [20] that there always exists a smooth (i.e., belonging
to C∞) storage function and hence a smooth exponential storage function.

Remark 4.5. The dual version of Theorem 4.3 can be obtained by replacing A by AT

and B by CT . In particular, G(s) is strictly positive real if and only if there exist matrices
Q ∈Rn×n, L̂∈Rn×q, and Ŵ ∈Rm×q, with Q positive definite, and a scalar ε > 0 such that

0=AQ+QAT + εQ+ L̂L̂T , (4.7)

0=QCT −B+ L̂ŴT , (4.8)

0=D+DT − ŴŴT. (4.9)

Next, we present an analogous result for strictly bounded real systems.

Theorem 4.6. Consider the dynamical system

G(s) min∼
[

A B

C D

]
(4.10)

with input u(·) and output y(·). Then the following statements are equivalent:

(i) G(s) is strictly bounded real;
(ii) G(s) is exponentially finite gain; that is,

∫ T

0
eεt yT(t)y(t)dt ≤ γ2

∫ T

0
eεtuT(t)u(t)dt, T ≥ 0; (4.11)

(iii) there exist matrices P ∈ Rn×n, L ∈ Rp×n, and W ∈ Rp×m, with P positive definite,
and a scalar ε > 0 such that

0= ATP +PA+ εP +CTC+LTL,

0= PB+CTD+LTW,

0= γ2Im−DTD−WTW.

(4.12)

Furthermore, G(s) is strongly bounded real if and only if there exist n× n positive-definite
matrices P and R such that

0= ATP +PA+
(
BTP +DTC

)T(
γ2Im−DTD

)−1(
BTP +DTC

)
+R. (4.13)

The proof is analogous to that of Theorem 4.3 and hence is omitted.
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5. Stability of feedback interconnections of exponentially
dissipative dynamical systems

In this section, we consider stability of feedback interconnections of exponentially dissi-
pative dynamical systems. The treatment here parallels that of Hill and Moylan [9] with
the key difference in that we do not use the notions of input strict passivity, output strict
passivity, and input-output strict passivity. Alternatively, using the notion of exponen-
tially dissipative dynamical systems, with appropriate exponential storage functions and
supply rates, we construct Lyapunov functions for interconnected dynamical systems by
appropriately combining storage functions for each subsystem. We begin by considering
the nonlinear dynamical system � given by (2.2) with the nonlinear feedback system �c

given by

ẋc(t)= fc
(
xc(t)

)
+Gc

(
uc(t),xc(t)

)
uc(t), xc(0)= xc0, t ≥ 0,

yc(t)= hc
(
uc(t),xc(t)

)
+ Jc
(
uc(t),xc(t)

)
uc(t),

(5.1)

where xc ∈Rnc , uc ∈Rmc , yc ∈Rlc , fc : Rnc →Rnc and satisfies fc(0)= 0, Gc : Rmc ×Rnc →
Rnc×mc , hc : Rmc ×Rnc →Rlc and satisfies hc(0,0)=0, and Jc : Rmc ×Rnc →Rlc×mc , mc = l,
lc =m. Note that the feedback interconnection is given by uc = y and yc = −u. Here we
assume that the feedback interconnection of � and �c is well posed; that is, det[Im +
Jc(y,xc)J(x)] �= 0 for all y, x, and xc. The following results give sufficient conditions for
Lyapunov stability, asymptotic stability, and exponential stability of the feedback inter-
connection given above.

Theorem 5.1. Consider the closed-loop system consisting of the nonlinear dynamical sys-
tems � and �c with input-output pairs (u, y) and (uc, yc), respectively, and with uc = y
and yc = −u. Assume that � and �c are zero-state observable and dissipative with re-
spect to the supply rates r(u, y) and rc(uc, yc) and with continuously differentiable posi-
tive definite, radially unbounded storage functions Vs(·) and Vsc(·), respectively, such that
Vs(0) = 0 and Vsc(0) = 0. Furthermore, assume that there exists a scalar σ > 0 such that
r(u, y) + σrc(uc, yc)≤ 0. Then the following statements hold.

(i) The negative feedback interconnection of � and �c is Lyapunov stable.
(ii) If �c is exponentially dissipative with respect to the supply rate rc(uc, yc) and

rank[Gc(uc,0)] = m, uc ∈ Rmc , then the negative feedback interconnection of � and �c

is globally asymptotically stable.
(iii) If � and �c are exponentially dissipative with respect to the supply rates r(u, y) and

rc(uc, yc), respectively, and Vs(·) and Vsc(·) are such that there exist constants α,αc,β,βc > 0
such that

α‖x‖2 ≤Vs(x)≤ β‖x‖2, x ∈R
n,

αc
∥∥xc∥∥2 ≤Vsc

(
xc
)≤ βc

∥∥xc∥∥2
, xc ∈R

nc ,
(5.2)

then the negative feedback interconnection of � and �c is globally exponentially stable.

Proof. The proof follows from standard Lyapunov stability and invariant set theorem
arguments using the Lyapunov function candidate V(x,xc)=Vs(x) + σVsc(xc). �
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Theorem 5.2. Let Q∈ Sl, S∈Rl×m, R∈ Sm, Qc ∈ Slc , Sc ∈Rlc×mc , and Rc ∈ Smc . Consider
the closed-loop system consisting of the nonlinear dynamical systems � given by (2.2) and �c

given by (5.1) and assume that � and �c are zero-state observable. Furthermore, assume that
� is dissipative with respect to the quadratic supply rate r(u, y) = yTQy + 2yTSu+ uTRu
and has a continuously differentiable radially unbounded storage function Vs(·), and �c is
dissipative with respect to the quadratic supply rate rc(uc, yc)= yTc Qc yc + 2yTc Scuc +uTc Rcuc
and has a continuously differentiable radially unbounded storage function Vsc(·). Finally,
assume that there exists σ > 0 such that

Q̂ �
[

Q+ σRc −S+ σSTc
−ST + σSc R+ σQc

]
≤ 0. (5.3)

Then the following statements hold.
(i) The negative feedback interconnection of � and �c is Lyapunov stable.
(ii) If �c is exponentially dissipative with respect to the supply rate rc(uc, yc) and

rank[Gc(uc,0)] = m, uc ∈ Rmc , then the negative feedback interconnection of � and �c

is globally asymptotically stable.
(iii) If � and �c are exponentially dissipative with respect to the supply rates r(u, y) and

rc(uc, yc), respectively, and Vs(·) and Vsc(·) are such that there exist constants α,αc,β,βc > 0
such that (5.2) holds, then the negative feedback interconnection of � and �c is globally
exponentially stable.

Proof. The result is a direct consequence of Theorem 5.1 by noting that

r(u, y) + σrc
(
uc, yc

)= [ y
yc

]T

Q̂

[
y
yc

]
, (5.4)

and hence r(u, y) + σrc(uc, yc)≤ 0. �

Remark 5.3. Note that Theorem 5.2 is a generalization of the results given in [9] to expo-
nentially dissipative systems.

The following corollary is a direct consequence of Theorem 5.2. For this result, note
that if a nonlinear dynamical system � is dissipative (resp., exponentially dissipative) with
respect to the supply rate r(u, y)= 2uT y, then, with κ(y)=−ky, where the scalar k > 0,
it follows that r(u, y)=−kyT y < 0, y �= 0. Alternatively, if a nonlinear dynamical system
� is dissipative (resp., exponentially dissipative) with respect to the supply rate r(u, y)=
γ2uTu− yT y, where γ > 0, then, with κ(y)= 0, it follows that r(u, y)=−yT y < 0, y �= 0.
Hence, if � is zero-state observable, it follows from Theorem 3.1 that all storage functions
(resp., exponential storage functions) of � are positive definite.

Corollary 5.4. Consider the closed-loop system consisting of the nonlinear dynamical sys-
tems � given by (2.2) and �c given by (5.1), and assume that � and �c are zero-state observ-
able and completely reachable with continuously differentiable storage functions Vs(·) and
Vsc(·), respectively. Then the following statements hold.

(i) If � is passive, �c is exponentially passive, and rank[Gc(uc,0)]=m, uc ∈ Rmc , then
the negative feedback interconnection of � and �c is asymptotically stable.
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(ii) If � and �c are exponentially passive with exponential storage functions Vs(·) and
Vsc(·), respectively, such that (5.2) holds, then the negative feedback interconnection of �
and �c is exponentially stable.

(iii) If � is finite gain with gain γ > 0, �c is exponentially finite gain with gain γc > 0,
rank[Gc(uc,0)] =m, uc ∈ Rmc , and γγc ≤ 1, then the negative feedback interconnection of
� and �c is asymptotically stable.

(iv) If � and �c are exponentially finite gain with exponential storage functions Vs(·)
and Vsc(·), respectively, such that (5.2) holds, and with gains γ > 0 and γc > 0, respectively,
such that γγc ≤ 1, then the negative feedback interconnection of � and �c is exponentially
stable.

Proof. The proof is a direct consequence of Theorem 5.2. Specifically, (i) and (ii) follow
from Theorem 5.2 with Q = Qc = 0, S = Sc = (1/2)Im, and R = Rc = 0; while (iii) and
(iv) follow from Theorem 5.2 with Q =−Il, S= 0, R= γ2Im, Qc =−Ilc , Sc = 0, and Rc =
γ2
c Imc . �

6. Optimal static output feedback control for passive systems

In this section, we construct globally optimal, stabilizing static output feedback control-
lers for nonlinear passive dynamical systems. In order to address this problem, consider
the nonlinear system given by (2.2a) with the nonlinear nonquadratic performance cri-
terion

J
(
x0,u(·))�

∫∞
0

[
L1
(
x(t)

)
+uT(t)R2u(t)

]
dt, (6.1)

where L1 : Rn→R and R2 ∈Rm×m are such that L1(x)≥ 0, x ∈Rn, and R2 > 0. The opti-
mal nonlinear feedback controller u=−φ(x) that minimizes the nonlinear nonquadratic
performance criterion (6.1) is given in [17]. For the statement of this result, define the set
of regulation controllers, for x0 ∈Rn, by

�
(
x0
)
�
{
u(·) : u∈R

n and x(·) given by (2.2a) satisfies x(t)−→ 0 as t −→∞}. (6.2)

Theorem 6.1 [15, 17]. Consider the nonlinear dynamical system (2.2a) with performance
functional (6.1). Assume that there exists a continuously differentiable radially unbounded
function V : Rn→R such that V(0)= 0, V(x) > 0, x ∈Rn, x �= 0, and

0= L1(x) +V ′(x) f (x)− 1
4
V ′(x)G(x)R−1

2 GT(x)V
′T(x), x ∈R

n. (6.3)

Furthermore, with h(x)= L1(x), assume that the nonlinear dynamical system (2.2) is zero-
state observable. Then the zero solution x(t)≡ 0 of the closed-loop system

ẋ(t)= f
(
x(t)

)−G
(
x(t)

)
φ
(
x(t)

)
, x(0)= x0, t ≥ 0, (6.4)

is globally asymptotically stable with the negative feedback control law

u=−φ(x)=−1
2
R−1

2 GT(x)V
′T(x), (6.5)
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and the performance functional (6.1) is minimized in the sense that

J
(
x0,φ

(
x(·)))= min

u(·)∈�(x0)
J
(
x0,u(·)), x0 ∈R

n. (6.6)

Finally, J(x0,φ(x(·)))=V(x0), x0 ∈Rn.

The following result gives globally stabilizing static output feedback controllers for
nonlinear passive dynamical systems that additionally minimize a nonlinear nonqua-
dratic performance functional of the form given by (6.1).

Theorem 6.2. Consider the nonlinear dynamical system � given by (2.2) with J(x) ≡ 0.
Assume that � is passive, zero-state observable, and completely reachable with a continuously
differentiable radially unbounded storage function Vs : Rn → R. Furthermore, let V : Rn →
R be a continuously differentiable radially unbounded function such that V(0)= 0, V(x) >
0, x ∈Rn, x �= 0, and (6.3) is satisfied with L1(x)= �T(x)�(x) + hT(x)R−1

2 h(x), where �(·)
satisfies (3.7a) with ε = 0. Then the zero solution x(t)≡ 0 to (2.2) is globally asymptotically
stable with the nonlinear output feedback control law

u(t)=−φ(y(t)
)=−R−1

2 y(t), (6.7)

and the performance functional

J
(
x0,u(·))= ∫∞

0

[
�T
(
x(t)

)
�
(
x(t)

)
+ yT(t)R−1

2 y(t) +uT(t)R2u(t)
]
dt (6.8)

is minimized in the sense that

J
(
x0,φ

(
x(·)))= min

u(·)∈�(x0)
J
(
x0,u(·)), x0 ∈R

n. (6.9)

Finally, J(x0,φ(x(·)))=V(x0), x0 ∈Rn.

Proof. Since � is passive, zero-state observable, and completely reachable, it follows from
Corollary 3.6 that there exists a continuously differentiable, positive-definite storage func-
tion Vs(·) such that (3.7a) and (3.7b) hold with ε = 0. Now, substituting �T(x)�(x) +
hT(x)R−1

2 h(x) for L1(x), x ∈ Rn, in (6.3) and using (3.7a) and (3.7b), it follows that
V(x)= Vs(x) is a solution to (6.3). Next, since � is zero-state observable, it follows that
� is zero-state observable with h(x) replaced by L1(x), x ∈Rn, so that all the conditions
of Theorem 6.1 are satisfied. Hence, it follows from Theorem 6.1 and (3.7b) that the zero
solution x(t)≡ 0 to (2.2) with the nonlinear output feedback control law

φ(x)= 1
2
R−1

2 GT(x)V
′T(x)= 1

2
R−1

2 GT(x)V
′T
s (x)= R−1

2 h(x)= R−1
2 y (6.10)

is globally asymptotically stable and the performance functional (6.8) is minimized. �

Remark 6.3. Although the equivalence between passivity and state feedback optimality
discussed in [15] would lead one to surmise that the result of Theorem 6.2 is immedi-
ate, this is not the case since Theorem 6.2 gives an optimal output feedback controller.
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Of course, since � is assumed to be passive, any u=−Ky, K > 0, will be a stabilizing con-
troller. However, (6.7) additionally minimizes the nonlinear nonquadratic performance
functional (6.8).

It is interesting to note that in the case where � is a linear passive system, it follows
from Theorem 6.2 that the optimal output feedback controller is characterized by a sin-
gle Riccati equation as opposed to the coupled modified Riccati and Lyapunov equa-
tions characterizing optimal static output feedback controllers [13]. Specifically, it follows
from Theorem 6.2 with f (x)= Ax, G(x)= B, h(x)= Cx, and L1(x)= xTR1x = xT(LTL+
CTR−1

2 C)x, where L satisfies (4.4a) with ε = 0, u = −φ(y) = −Ky, and V(x) = xTPx,
where P > 0 is the solution to the algebraic Riccati equation given by

0=ATP +PA+LTL+CTR−1
2 C−PBR−1

2 BTP, (6.11)

that the optimal control gain is given by K = R−1
2 . To see that the output feedback con-

troller u(t) = −R−1
2 y(t) minimizes (6.1) with the state weighting R1 = LTL + CTR−1

2 C,
recall that a static optimal output feedback controller minimizing (6.1) with L1(x) =
xTR1x, where R1 ≥ 0, is given by [13]

K = R−1
2 BTPQCT

(
CQCT

)−1
, (6.12)

where the n×n positive-definite matrices P and Q satisfy

0= ATP +PA+R1−PBR−1
2 BTP + νT⊥PBR

−1
2 BTPν⊥, (6.13)

0= (A−BR−1
2 Cν

)
Q+Q

(
A−BR−1

2 Cν
)T

+V1, (6.14)

where ν � QCT(CQCT)−1C, ν⊥ � In − ν, and V1 � E[x0x
T
0 ], where E denotes expecta-

tion. Now, if

G(s)∼
[

A B

C 0

]
(6.15)

is positive real and R1 = LTL+CTR−1
2 C, where L satisfies (4.4a) with ε= 0, it follows that

Cν⊥ = 0 and hence the solution P to (6.13) is also a solution to the Kalman-Yakubovich-
Popov equations (4.4a) and (4.4b) with ε = 0. In this case, the optimal output feedback
given by (6.12) collapses to K = R−1

2 and (6.14) is superfluous. Hence, we note that in
the case where the plant is positive real, there exists an optimal static output feedback
controller minimizing (6.1) with L1(x)= xTR1x = xT(LTL+CTR−1

2 C)x, where L satisfies
(4.4a) with ε = 0, if and only if (A,B) is stabilizable and (A,R1) is observable.

7. Locally optimal and globally stabilizing dynamic output feedback
compensation for passive systems

In this section, we extend the results of Section 6 to address the problem of locally optimal
and globally stabilizing nonlinear dynamic output feedback compensators for nonlinear
passive dynamical systems. To show local optimality, we require the positivity LQG-based
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result given in [14] which shows that if the plant is positive real and the LQG design
weights are chosen in a specified manner, then the resulting LQG controller is guaranteed
to be positive real. For the statement of this result, let f (x) = Ax, G(x) = B, h(x) = Cx,
and J(x)= 0 so that

ẋ(t)= Ax(t) +Bu(t), x(0)= x0, t ≥ 0,

y(t)= Cx(t),
(7.1)

and let fc(xc)= Acxc, Gc(uc,xc)= Bc, hc(uc,xc)= Ccxc, and Jc(uc,xc)= 0 so that

ẋc(t)=Acxc(t) +Bc y(t), xc(0)= xc0,

u(t)=−Ccxc(t).
(7.2)

Next, assuming that the plant (7.1) is positive real, we seek to determine

Gc(s)∼
[

Ac Bc

Cc 0

]
(7.3)

that satisfies the following design criteria.
(i) The negative feedback interconnection of

G(s)∼
[

A B

C 0

]
(7.4)

and Gc(s) given by Ã�
[ A −BCc
BcC Ac

]
is asymptotically stable.

(ii) The H2 performance measure

J
(
Ac,Bc,Cc, x̃0

)
�
∫∞

0

[
xT(t)R1x(t) +uT(t)R2u(t)

]
dt (7.5)

is minimized, where x̃0 �
[
xT(0) xTc (0)

]T
, R1 ≥ 0, and R2 > 0.

(iii) The transfer function Gc(s) is strictly positive real.
Note that since the plant is positive real and the negative feedback compensator is

strictly positive real, condition (i) is automatically satisfied [11]. Furthermore, note that
J(Ac,Bc,Cc, x̃0) can be written as

J
(
Ac,Bc,Cc, x̃0

)= ∫∞
0
x̃T(t)R̃x̃(t)dt, (7.6)

where x̃ �
[
xT xTc

]T
and R̃ �

[
R1 0
0 CT

c R2Cc

]
, so that J(Ac,Bc,Cc, x̃0) = x̃T0 P̃x̃0, where P̃ ∈

R2n×2n is the unique, positive-definite solution to the Lyapunov equation

0= ÃT P̃ + P̃Ã+ R̃. (7.7)

Furthermore, note that J(Ac,Bc,Cc, x̃0) = x̃T0 P̃x̃0 = tr P̃x̃0x̃
T
0 , which has the same form as

the H2 cost in standard LQG theory. Hence, we replace x̃0x̃
T
0 by Ṽ , where Ṽ �

[
V1 0
0 BcV2BT

c

]
,

and V1 ∈ Rn×n and V2 ∈ Rl×l are arbitrary design weights such that V1 ≥ 0 and V2 > 0,
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and proceed by determining controller gains that minimize 	(Ac,Bc,Cc) � tr P̃Ṽ . Now,
using the approach proposed in [6, 14], we have the following result for constructing
strictly positive real compensators that minimize the H2 cost 	(Ac,Bc,Cc).

Theorem 7.1 [6, 14]. Assume that

G(s) min∼
[

A B

C 0

]
(7.8)

is positive real and let L and L̂ satisfy (4.4a) and (4.7) with ε= 0, respectively. Furthermore,
assume that there exist n×n positive-definite matrices X and Y satisfying

0=ATY +YA+R1−YBR−1
2 BTY,

0=AX +XAT +V1−XCTV−1
2 CX,

(7.9)

where R1, R2, V1, and V2 satisfy

R1 = LTL+CTV−1
2 C > 0, V1 = L̂L̂T +BR−1

2 BT > 0, R2 =V2. (7.10)

Then the negative feedback dynamic compensator

Gc(s)∼
[

A− 2BR−1
2 C BR−1

2

R−1
2 C 0

]
(7.11)

is strictly positive real and satisfies the design criteria (i) and (ii). Furthermore, the H2 per-
formance is given by 	(Ac,Bc,Cc)= tr[XR1 +XCTV−1

2 CXY].

Finally, we state the main result of this section characterizing exponentially passive
dynamic nonlinear controllers for nonlinear passive systems. For the statement of this
result, let � denote the set of nth-order linearized stabilizing compensators for the lin-
earized system �; that is,

� �
{(
Ac,Bc,Cc

)
: Ã is asymptotically stable

}
, (7.12)

where (A,B,C) in the definition of Ã are given by (3.12) and

Ac = ∂ fc
∂xc

∣∣∣∣
xc=0

, Bc =Gc(0), Cc = ∂hc
∂xc

∣∣∣∣
xc=0

. (7.13)

Theorem 7.2. Consider the closed-loop system consisting of the nonlinear plant � given
by (2.2) with J(x) ≡ 0, and the nonlinear compensator �c given by (5.1). Assume that �
is completely reachable, zero-state observable, and exponentially passive with continuously
differentiable radially unbounded storage function Vs : Rn → R. Furthermore, suppose that
there exists a continuously differentiable, radially unbounded positive-definite function V :
Rn→R such that (6.3) is satisfied with L1(x)= �T(x)�(x) + εVs(x) +hT(x)R−1

2 h(x), where
Vs(·), ε, and �(·) satisfy (3.7a). Then, the dynamic compensator (5.1), with

fc
(
xc
)= f

(
xc
)− 2G

(
xc
)
R−1

2 h
(
xc
)
, Gc

(
xc
)=G

(
xc
)
R−1

2 ,

hc
(
xc
)= R−1

2 h
(
xc
)
, Jc

(
xc
)= 0,

(7.14)
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is exponentially passive and the negative feedback interconnection of � and �c is globally
asymptotically stable. Finally, if the linearization of � is observable, that is, (A,C) is observ-
able, and Vs(·) and V(·) belong to C3, then the closed-loop system is locally optimal with
respect to 	(Ac,Bc,Cc), where (Ac,Bc,Cc)∈�; that is, there exist n×n positive-definite ma-
trices Y and X such that conditions (7.9) are satisfied with A, B, and C given by (3.12) and
R1 � ∂2L1/∂x2|x=0.

Proof. Since L1(x) = �T(x)�(x) + εVs(x) + hT(x)R−1
2 h(x), it follows from (3.7a) and

(3.7b) that V(x) = Vs(x) is a solution to (6.3). Now, using (3.7b) and (7.14), it follows
that

1
2
V ′
s

(
xc
)
Gc
(
xc
)= 1

2
V ′
s

(
xc
)
G
(
xc
)
R−1

2 = hT
(
xc
)
R−1

2 = hTc
(
xc
)
. (7.15)

Next, using (3.7a), (3.7b), and (7.14), it follows that

0=V ′
s

(
xc
)
f
(
xc
)

+ εVs
(
xc
)

+ �T
(
xc
)
�
(
xc
)

=V ′
s

(
xc
)[
f
(
xc
)− 2G

(
xc
)
R−1

2 h
(
xc
)]

+ εVs
(
xc
)

+ �T
(
xc
)
�
(
xc
)

+ 2V ′
s

(
xc
)
G
(
xc
)
R−1

2 h
(
xc
)

=V ′
s

(
xc
)
fc
(
xc
)

+ εVs
(
xc
)

+ �T
(
xc
)
�
(
xc
)

+ 4hT
(
xc
)
R−1

2 h
(
xc
)
, xc ∈R

n.

(7.16)

Now, using (3.7a), (3.7b), (7.15), and (7.16) with Vsc(xc) = Vs(xc) and �c(xc), xc ∈ Rnc ,
such that �Tc (xc)�c(xc) = �T(xc)�(xc) + 4hT(xc)R−1

2 h(xc), it follows that �c given by (5.1)
with nonlinear gains given by (7.14) is exponentially passive. Hence, it follows from
Corollary 5.4 that the negative feedback interconnection of � and �c is globally asymp-
totically stable.

To show local optimality of the closed-loop system with respect to 	(Ac,Bc,Cc), where
(Ac,Bc,Cc) ∈ �, note that since (A,C) is observable, it follows from Theorem 3.8, with
Q = R= 0 and S= Im, that there exist matrices P ∈Rn×n and L∈Rp×n and a scalar ε > 0,
such that P = ∂2Vs/∂x2 > 0 and L= ∂�/∂x|x=0, satisfying (4.4a) and (4.4b), with (A,B,C)
given by (3.12). Hence, the triple (A,B,C) is strictly positive real. Now, since L1(x) =
�T(x)�(x) + εVs(x) + hT(x)R−1

2 h(x), it follows that R1 = LTL + εP + CTR−1
2 C and hence

(4.4a) and (4.4b) yield

0=ATP +PA+R1−PBR−1
2 BTP. (7.17)

Finally, since the triple (A,B,C) given by (3.12) is strictly positive real, it follows from
(4.7) and (4.8) that there exist Q � P−1 ∈ Rn×n and L̂ � P−1LT ∈ Rn×q, with Q positive
definite, and a scalar ε > 0 such that

0= AQ+QAT +V1−QCV−1
2 CTQ, (7.18)

where V1 = L̂L̂T + εQ + BV−1
2 BT . Now, local optimality of the closed-loop system with

respect to 	(Ac,Bc,Cc), where (Ac,Bc,Cc) ∈ �, is a direct consequence of Theorem 7.1
with X =Q, Y = P, and V2 = R2. �
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8. Conclusion

Using exponentially weighted system storage functions with appropriate exponentially
weighted supply rates, we introduce the concept of exponential dissipativity to formalize
the nonlinear analog of strict positive realness and strict bounded realness. The proposed
results provide a generalization of the strict positive real lemma and the strict bounded
real lemma to nonlinear systems. We also provide a nonlinear analog to the classical pos-
itivity and small gain stability theorems for state-space nonlinear feedback systems. The
results were used to extend the H2 positive real synthesis techniques of Lozano-Leal and
Joshi [14] to nonlinear passive dynamical systems.
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