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A linear time-invariant (LTI) output feedback controller is designed for a linear parame-
ter-varying (LPV) control system to achieve quadratic stability. The LPV system includes
immeasurable dependent parameters that are assumed to vary in a polytopic space. To
solve this control problem, a heuristic algorithm is proposed in the form of an iterative
linear matrix inequality (ILMI) formulation. Furthermore, an effective method of set-
ting an initial value of the ILMI algorithm is also proposed to increase the probability of
getting an admissible solution for the controller design problem.
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1. Introduction

A linear parameter-varying (LPV) system is formalized as a certain type of nonlinear sys-
tem, and is successfully applied in developing a control strategy which is based on clas-
sical gain-scheduled methodology [1]. Several tutorial papers and special publications
concerning the gain-scheduled method of LPV control system are [2–7]. These gain-
scheduled LPV controller design approaches are applicable under the assumption that the
dependent parameters can be measured online. In practical application, it is often diffi-
cult to satisfy this requirement. Therefore, it is crucial to design an effective LTI controller
to get robust stability for an LPV plant with immeasurable dependent parameters. Here,
these dependent parameters are assumed to vary in a polytopic space. In robust control
framework of LPV system, a necessary and sufficient condition of quadratic stability for
polytopic LPV system is formulated in terms of a finite LMIs optimization problem [8].
The underlying quadratic Lyapunov functions are also used to derive bounds on robust
performance measures. Several heuristic procedures [9–13] have also been proposed to
solve some control problems with nonconvex constraints such as a controller with fixed
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or reduced order of the decentralized structure. In [10], a method is presented to solve
some controller design problems when structure constraints are imposed. The procedure
is based on a two-stage optimization process, each stage requires the solution of a convex
optimization problem based on a kind of LMI expression, in which either the controller
gain matrix or the Lyapunov function is considered as the optimization variable.

This paper proposes a way of designing a quadratically stabilizing LTI output feed-
back controller for LPV system where dependent parameters vary in a polytopic space.
Different from gain-scheduled LPV controller design, besides rank constraints, another
constraint condition in which the controller matrix should be the same one for each ver-
tex plant of LPV system is added. This problem still remains a complex issue and not
numerically tractable. Here, a heuristic ILMI approach is presented to solve an admis-
sible solution for this control problem. And a method of setting an initial value for the
Lyapunov matrix is also proposed to increase the possibility of obtaining a feasible solu-
tion to the ILMI approach. The proposed method is better than random assignment of
the initial value. Even though this approach is not guaranteed to converge globally, it may
provide a useful alternative design tool in practice.

2. Notation and definitions

Consider an LPV plant P(θ(t)) described by state space equations as

ẋ(t)= A(θ)x(t) +Buu(t),

y(t)= Cyu(t).
(2.1)

Here, state-space matrices have compatible dimensions of time-varying dependent pa-
rameters θ(t) = [θ1(t)θ2(t)···θr(t)]T ∈ Rr . Moreover, we have the following assump-
tions.

(1) The system state matrix A(θ) is a continuous and bounded function and depends
affinely on θ(t).

(2) The immeasurable real parameters θ(t) exist in the LPV plant and vary in a poly-
tope Θ as

θ(t)∈Θ := Co
{
ω1,ω2, . . . ,ωN

}

=
{ N∑

i=1

αi(t)ωi : αi(t)≥ 0,
N∑

i=1

αi(t)= 1, N = 2r
}

.
(2.2)

(3) The LPV plant is quadratically detectable and quadratically stabilizable.
With the above assumptions, the system state matrix A(θ) can be expressed as

A(θ)=
N∑

i=1

αi(t)Ai with αi ≥ 0,
N∑

i=1

αi = 1. (2.3)

Remark 2.1. It is assumed that the matrices Bu, Cy of the LPV plant are time invariant.
When they are time varying, a simple way is to satisfy the requirement by filtering the
control input and output through lowpass filters. These filters should have sufficiently



Wei Xie 3

large bandwidth. Then, the dependent parameters are shifted into the state matrix A(θ)
in [3].

Definition 2.2 (quadratic stability [14]). Considering a LPV system, ẋ(t) = A(θ)x(t) is
said to be quadratically stable if and only if there exists P > 0 such that

AT(θ)P +PA(θ) < 0. (2.4)

Remark 2.3. For polytopic LPV system, we have the equivalent conditions for (2.4) as

AT
i P +PAi < 0, i= 1, . . . ,N. (2.5)

It should be noted that if LPV system is quadratically stable one, it is also exponentially
stable.

3. Main results

In this section, a LTI output feedback controller is designed to achieve quadratic stability
for LPV system where dependent parameters vary in a polytopic space.

We seek to design a controller (AK ∈Rnk×nk ) of fixed order nk as

ẋk =Akxk +Bk y,

u= Ckxk +Dky,
(3.1)

where xK ∈Rnk is the controller state. Substituting (3.1) into (2.1), the closed-loop state
matrix Acl has the following expression:

Acl(θ)=
[
A(θ) +BuDkCy BuCK

BKCy AK

]

. (3.2)

First, the following definitions are made as

J =
[
Ak Bk

Ck Dk

]

, A(θ)=
[
A(θ) 0

0 0

]

, Bu =
[

0 Bu

I 0

]

, Cy =
[

0 I
Cy 0

]

,

(3.3)

which are totally dependent on the state-space matrices of the controller and the LPV
plant. Then, the closed-loop relation is parameterized in terms of the controller realiza-
tion as

Acl(θ)= A(θ) +BuJCy. (3.4)

Theorem 3.1. Suppose LPV system is given in (3.4), and then the following are equivalent
conditions.

(1) The closed-loop state matrix Acl(θ) is quadratically stable.
(2) There exist a symmetric positive definite matrix P and matrix J such that

A(θ)P +PA
T

(θ) +BuJCyP +PC
T
y J

TB
T
u < δI (3.5)
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Figure 3.1. Relevant LPV control scheme.

or

AiP +PA
T
i +BuJCyP +PC

T
y J

TB
T
u < δI , (3.6)

i= 1, . . . ,N , for δ being a negative scalar value.

Proof. According to Definition 2.2, the claims (3.5) or (3.6) can be established easily. �

From (3.6), system matrix J of the controller (3.1) should be the same one for each ver-
tex plant of LPV system (3.2): it is also a nonconvex constraint and difficult to be solved.
In the following section, necessary conditions for the existence of a constant matrix J
for (3.6) are presented, then a heuristic ILMI algorithm is presented to supply a solution
of J for (3.6). The choosing of an appropriate initial value to ILMI is very important to
converge quickly to a feasible solution. Here, a method of setting an initial value to ILMI
algorithm is also proposed.

Theorem 3.2. Given an LPV plant (2.1), if there exists a fixed order LTI controller of order
nk that makes the closed-loop LPV system as Figure 3.1 quadratically stable, then there exist
n×n symmetric positive definite matrices X ,Y such that

NT
o

(
AT(θ)X +XA(θ)

)
No < 0, NT

c

(
YA(θ) +AT(θ)Y

)
Nc < 0. (3.7)

Using the polytopic characteristic of the LPV plant, (3.7) can be equivalent to

NT
o

(
AT
i X +XAi

)
No < 0, NT

c

(
YAi +AT

i Y
)
Nc < 0, (3.8)

[
X I
I Y

]

≥ 0,

rank

[
X I
I Y

]

≤ n+nk,

(3.9)

where No and Nc are full column rank matrices such that

ImNo = kerCy , ImNc = kerBT
u . (3.10)



Wei Xie 5

The proof of the theorem can be easily taken from earlier results [3, 15].
Theorem 3.2 tells us necessary conditions of the existence of a stabilizing output feed-

back LTI controller for the LPV plant (2.1). Meanwhile, it also provides an efficient
method for setting an initial value of the common Lyapunov matrix P, which is used
to construct a stabilizing output feedback LTI controller.

Remark 3.3. Now, let us overview some results of LPV controller design for LPV plant.
Consider the LPV plant (2.1), since this plant is assumed to be quadratically stabilizable
and quadratically detectable, (3.8)-(3.9) are sufficient and necessary conditions for the
existence of such a full-order gain-scheduled LPV controller that quadratically stabilizes
LPV plant (2.1). In contrast to gain-scheduled LPV controller design [3], here only an LTI
controller is designed to quadratically stabilize the LPV plant and conditions (3.8)-(3.9)
become not sufficient but necessary just as Theorem 3.2.

Note that the matrix inequality (3.6) is a bilinear matrix problem with the constraint
that controller gain matrix should be constant, and it is a nonconvex optimization prob-
lem. Here, a heuristic approach of alternately solving convex optimization problems is
proposed based on LMI formulation. We minimize δ, over P and J , subject to (3.6). This
problem is a convex optimization problem in J and δ for fixed P, and is convex in P and
δ for fixed J . It also should be noted that this approach is guaranteed to converge, but
not necessarily to the global optimum of the problem. The assignment of a proper ini-
tial value to P is the key to enhance probability of converging to the global optimum.
Here, conditions (3.8)-(3.9) supply necessary conditions for the existence of such an LTI
controller of order nk. Therefore, conditions (3.8)-(3.9) of Theorem 3.2 also give us an
effective method of setting an initial value to P.

Therefore, the ILMI algorithm proceeds as shown in Algorithm 3.1.
If, after the procedure is alternated several times, solution J is still infeasible, there are

two cases: one is that a feasible J may still exit, for this procedure does not necessarily
guarantee to the solution J ; the other is that the LPV plant may not be quadratically
stabilizable by only an LTI controller.

4. Numerical example

In this section, two numerical examples are considered to illustrate the proposed method.
All LMI-related computations are performed with LMI toolbox of Matlab [4].

Example 4.1. We consider the problem of controlling the yaw angles of a satellite system
that appears in [4]. The satellite system consisting of two rigid bodies joined by a flexible
link has the state-space representation as

⎡

⎢
⎢
⎢
⎢
⎣

θ̇1

θ̇2

θ̈1

θ̈2

⎤

⎥
⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎣

0 0 1 0
0 0 0 1

−k k − f f
k −k f − f

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

θ1

θ2

θ̇1

θ̇2

⎤

⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎣

0
0
0
1

⎤

⎥
⎥
⎥
⎦
u, y =

⎡

⎢
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

θ1

θ2

θ̇1

θ̇2

⎤

⎥
⎥
⎥
⎦

, (4.1)
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Step 1.

Set initial value i= 0, obtain Pi =
[

X X2

XT
2 I

]

subject to (3.8)-(3.9), where X −Y−1 = X2X
T
2 .

Let δi be an arbitrary large positive real number.
δold = δi.

Step 2.
Repeat {
OP1: Solve eigenvalue problem, “minimize δi1, over Ji and δi1, subject to (3.6);”

δi = δi1opt, Ji = Jopt.
If δi < 0, exit. Ji is an admissible solution.

OP2: Solve eigenvalue problem, “minimize δi2, over Pi and δi2, subject to (3.6)
and Pi > 0”;

Pi+1 = Pi2opt. δi = δi2opt.
If δi < 0, exit. Ji is an admissible solution.

If ‖δi− δold‖ < γ, a predetermined tolerance, exit.
Else δold = δi.
i= i+ 1.

}

Algorithm 3.1

where k and f are torque constant and viscous damping, which vary in the following
uncertainty ranges: k ∈ [0.09 0.4] and f ∈ [0.0038 0.04]. A state-feedback controller
u= Kx is designed to achieve quadratic stability for all possible parameter trajectories in
the polytopic space. The pre-determined tolerance γ is set to 1.0e− 4. The following two
cases are considered.

(1) Setting an arbitrary matrix to the initial P such as identity matrix. After 12 iterations,
δ12 converges to −0.0857, therefore solution K is found as

K = [1061463.3 −1061463.3 −258208.45 −7338.2]. (4.2)

(2) Setting an initial matrix to P proposed in this paper. In this case, a state feedback is
considered to construct, then an initial matrix of P satisfying (3.8) is chosen as

P0 =

⎡

⎢
⎢
⎢
⎣

961.4 518.14 −118.4 278.06
518.1 930.3 −247.3 −167.8
−118.4 −247.3 95.46 −55.25

278.06 −167.8 −55.25 972.54

⎤

⎥
⎥
⎥
⎦
. (4.3)

Using the initial matrix P0, after only 1 iteration, δ1 converges to −9395817.73. An ad-
missible K is found as

K = [10541311.8 −24814284.7 −60435459.05 −15945712.7]. (4.4)

Therefore, the proposed method has a quicker convergence to a feasible solution than
the method of setting an arbitrary matrix as the initial matrix P.
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Example 4.2. A classical example of parameter-varying unstable plant that can be viewed
as a mass-spring-damper system with time-varying spring stiffness is considered [16].
The state-space equation of this unstable LPV plant is as follows:

A(θ)=
[

0 1
−0.5− 0.5θ −0.2

]

, Bu =
[

0
1

]

,

Cy =
[

1 0
]

, Duy = 0.

(4.5)

Here, the scope of time-varying parameter θ(t) is assumed in the polytope space Θ :=
Co{−1,1}. An LTI output feedback controller is designed to achieve quadratic stability
for all possible parameter trajectories in the polytopic space. The predetermined tolerance
γ is set to 1.0e− 4.

Just like Example 4.1, the following two cases are considered.

(1) Setting an arbitrary matrix to the initial P, such as identity matrix. After 5 iterations,
δ5 converges to 0.163, which is larger than zero. Therefore solution J is found infeasible.

(2) Setting an initial matrix to P proposed in this paper. In this case, a full-order output
feedback controller is considered to construct, then an initial matrix of P satisfying (3.8)-
(3.9) is as follows:

P0 =

⎡

⎢
⎢
⎢
⎣

17.62 −11.99 4.01 −1.22
−11.99 35.23 −1.22 5.80

4.01 −1.22 1 0
−1.22 5.80 0 1

⎤

⎥
⎥
⎥
⎦
. (4.6)

Using the initial matrix P0, after only 1 iteration, δ1 converges to −3.998. An admissible J
is solved as

J = 1.0e8∗
⎡

⎢
⎣

−4.00 −0.53 −7.8e− 7
−0.53 −5.56 2.94e− 7

3.76e− 8 6.0e− 10 2.0e− 7

⎤

⎥
⎦ . (4.7)

Therefore, an LTI output feedback controller to satisfy quadratic stability of closed-
loop LPV system is constructed as

Ak = 1.0e8∗
[
−4.00 −0.53
−0.53 −5.56

]

, BK =
[
−78
29.4

]

,

CK =
[

3.76 0.06
]

, Dk = 20.

(4.8)

When the trajectory of dependent parameter is assumed as θ(t)= 0.63 + 0.1 · e−t, the tra-
jectory of the output of this plant can be drawn for the initial values x(0)=[−0.25 0.15]T

as shown in Figure 4.1.
Comparing these two cases above, numerical examples demonstrate that the proposed

method of setting the initial value to ILMI algorithm is more efficient than the method
of setting an arbitrary matrix as the initial value.
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Figure 4.1. Trajectory of the output of this plant with initial values x(0)= [−0.25 0.15]T .

5. Conclusions

In this paper, an LTI output feedback controller has been designed for LPV system to
ensure that the closed-loop system achieves quadratic stability for all possible dependent
parameters in a polytopic space. A heuristic iterative algorithm to solve such a controller
has been presented in terms of LMI formulation. It also should be noted that the proce-
dure is heuristic and the choice of initial value is important to ensure convergence to an
acceptable solution. Finally, some numerical examples have been presented to illustrate
the design method.
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