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This paper considers the problem of low thrust suboptimal maneuvers to insert a satellite
in a constellation. It is assumed that a satellite constellation is given with all the Keplerian
elements of the satellite members having known values. Then, it is necessary to maneu-
ver a new satellite from a parking orbit to its position in the constellation. The control
available to perform this maneuver is the application of a low thrust to the satellite and
the objective is to perform this maneuver with minimum fuel consumption.

Copyright © 2007 Vivian Martins Gomes et al. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The problem of orbital maneuvers is very important in astronautics and it is under in-
vestigation for a long time. Looking in the more recent literature, there are important
papers, like the one written by Stewart and Melton [1], that presented a multivariable per-
turbation solution to the equations of a vehicle moving under the influence of constant
low-level thrust, using a fixed-angle steering law and moving in an inverse-square grav-
itational field, in a single plane. Comparisons with direct numerical integrations show
relatively low errors and sizeable advantages in speed for the analytical approximation.

After that, Geffroy and Epenoy [2] presented a study of optimal low-thrust transfers
based on the use of averaging techniques. Both minimum time and fuel-saving strategies
using nonconstant acceleration are investigated to optimize the trajectory between arbi-
trary distant orbits. Optimal low-thrust rendezvous are treated in the same way. In each
case, several constraints are included, either environmental such as Earth oblateness and
shadow effect or technological such as thrust direction limits. The different problems are
treated by a generalized averaging method and for each of them a theoretical justification
of the approximation is discussed.
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Kluever and Oleson [3] developed a method for computing near optimal minimum
time Earth orbit transfers for solar electric propulsion spacecraft. A direct optimization
approach is used to solve the optimal control problem. The thrust direction time history is
parameterized by combining three extremal feedback control laws and the optimal thrust
steering is obtained by computing the optimal weights for each feedback law. The optimal
trajectories computed via the direct approach exhibit a very close match with optimal
trajectories computed via the calculus of variations approach.

Kechichian [4] analyzed the problem of minimum time orbit transfer using intermedi-
ate acceleration and using both accurate integration and averaging. Continuous constant
accelerations of the order of 10−2 g are considered for applications using nuclear propul-
sion upper stages. The acceleration vector is optimized in direction with its magnitude
held constant throughout the flight.

In Herman and Spencer’s work [5], it is used a trajectory optimization technique based
upon higher-order collocation to solve optimal, low-thrust, Earth orbit transfer prob-
lems. A comparison is made between the optimal transfers found in this work and the
transfer found by using analytical blended control methods.

Kiforenko et al. [6] did a study about the problem of minimum time low-thrust trans-
fer arbitrary elliptic orbits in the central gravitational field. The rocket engine is assumed
to produce constant in magnitude and controllable in direction thrust, which is essen-
tially smaller than the gravity force. Approximate solution is obtained with the use of the
averaging method. Simple control algorithms for practical realization are proposed and
their efficiency is compared with that of the optimal control.

In [7], Haberkorn et al. described the study of an Earth orbital transfer with a low-
thrust propulsion system. The objective is the maximization of the final mass, which leads
to a discontinuous control with a large number of thrust arcs. The method to solve this
problem is based on single shooting, combined with a homotopic approach in order to
cope with the problem of the initial guess, which is actually critical for nontrivial prob-
lems.

In the present paper, based on previous papers from one of the authors (Prado [8],
Prado and Rios-Neto [9]), where a detailed analysis of the alternatives available in the
literature in the problem of performing orbital maneuvers with low thrust was made; and
in bibliographical studies to consider papers written after that, the suboptimal param-
eterization method is selected to be implemented and used to simulate the maneuvers
required by a satellite to be inserted in a constellation. The reason for this choice is the
simple implementation, in terms of hardware for the satellite, together with the fact that
the results are very close to the optimal approach, as shown in the references cited above.

In this problem, the spacecraft is supposed to be in Keplerian motion controlled only
by the thrusts, whenever they are active. This hypothesis is not very restrictive because
you can consider an osculating orbit just before the maneuver, and the duration of the
maneuver is not too long to have important perturbations on the satellite during the
transfer. This means that there are two types of motion.

(i) A Keplerian orbit, that is an orbit obtained by assuming that the Earth’s gravity
(assumed to be a point of mass) is the only force acting on the spacecraft. This motion
occurs when the thrusts are not firing.
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(ii) The motion governed by two forces: the Earth’s gravity field (also assumed to be a
point of mass) and the force delivered by the thrusts. This motion occurs during the time
the thrusts are firing.

The thrusts are assumed to have the following characteristics.
(i) Fixed magnitude: the force generated by them is always of constant magnitude

during the maneuver. The value of this constant is a free parameter (an input for the
algorithm developed here) that can be high or low.

(ii) Constant ejection velocity: meaning that the velocity of the gases ejected from the
thrusts is constant.

(iii) Constrained angular motion: this means that the direction of the force given by
the thrusts can be modified during the transfer. This direction can be specified by the an-
gles α and β, called pitch (the angle between the direction of the thrust and the perpendic-
ular to the line Earth-spacecraft) and yaw (the angle with the orbital plane), respectively.
The motions of those angles are constrained (constant, linear variations, forbidden re-
gions for firing the thrusts, etc.).

(iv) Operation in on-off mode: it means that intermediate states are not allowed. The
thrusts are either at zero or maximum level all the time.

The solution is given in terms of the constants that specify the control to be applied
and the fuel consumed. Several numbers of “thrusting arcs” (arcs with the thrusts active)
can be used for each maneuver.

Instead of time, the “range angle” (the angle between the radius vector of the spacecraft
and an arbitrary reference line in the orbital plane) is used as the independent variable.

The contribution of the present paper is to implement the algorithm combined with a
new numerical method to solve the problem. This new implementation showed to have
a better numerical behavior regarding convergence in the situations simulated. Another
point is the use of this technique to place a satellite in a constellation.

2. Definition of the problem

The basic problem discussed in this paper is the problem of orbit transfer maneuvers
to place a satellite in a constellation. The objective of this problem is to modify the or-
bit of a given spacecraft, from an initial parking orbit to a specific position in a final
orbit. In the case considered in this paper, an initial and a final orbit around the Earth
are completely specified, as well as the final desired position of the satellite in that or-
bit. The problem is to find how to transfer the spacecraft between the first of those two
orbits to a specific position in a final orbit, in such way that the consumed fuel is mini-
mum. There is no time restriction involved here and the spacecraft can leave from any
point in the initial orbit. The maneuver is performed with the use of an engine that
is able to deliver a thrust with constant magnitude and linearly variable direction. The
mechanism, time, and fuel consumption to change the direction of the thrust are not
considered in this paper, because the optimization of the maneuver does not depend on
those parameters and the cost is very small compared with the cost of the maneuver it-
self.
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3. Formulation of the optimal control problem

This is a typical optimal control problem, and it is formulated as follows: objective func-
tion: Mf , where Mf is the final mass of the vehicle and it has to be maximized with respect
to the control u(·); subject to: equations of motion, constraints in the state (initial and
final orbit), and control (limits in the angles of “pitch” and “yaw,” forbidden region of
thrusting, etc.); and given: all parameters (gravitational force field, initial values of the
satellite, etc.).

The equations of motion are the ones suggested by Biggs [10] that avoid the singular-
ities in circular and/or planar orbits. They are given by
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where
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and F is the magnitude of the thrust, W is the velocity of the gases when leaving the
engine, ν is the true anomaly of the spacecraft.

In those equations, the state was transformed from the Keplerian elements (a= semi-
major axis, e = eccentricity, i = inclination, Ω = argument of the ascending node, ω =
argument of periapsis, ν = true anomaly of the spacecraft) in the variables Xi, to avoid
singularities, by the following relations:
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(3.3)

s is the range angle of the spacecraft, μ is the gravitational parameter of the central body,
and m0 is the initial mass of the satellite.

The number of state variables defined above is greater than the minimum required to
describe the system, which implies that they are not independent and relations between
them exist, like: X2

6 +X2
7 +X2

8 +X2
9 = 1. This system is also subject to the constraints in

state and to some of the Keplerian elements of the initial and the final orbit. All the pa-
rameters (gravitational force field, initial values of the satellite, etc.) are assumed to be
known.

4. Suboptimal method

In this approach (Biggs [10]; Prado [8]), a linear parameterization is used as an approxi-
mation for the control law (angles of pitch (α) and yaw (β)),

α= α0 +α′∗(s− ss
)
,

β = β0 +β′∗(s− ss
)
,

(4.1)
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where α0, β0, α′, β′ are parameters to be found, s is the instantaneous range angle, and ss
is the range angle when the motor is turned on.

These equations are the mathematical representation of the “a priori” hypothesis that
α and β vary linearly with the “range angle” s. This is done to explore the possibility of
having a model easy to implement in terms of hardware.

Considering these assumptions, there is a set of six variables to be optimized (start and
end of thrusting and the parameters α0, β0, α′, β′) for each “burning arc” in the maneuver.
Note that this number of arcs is given “a priori” and it is not an “output” of the algorithm.
This is the control available to maneuver the satellite.

By using parametric optimization, this problem is reduced to one of nonlinear pro-
gramming, which can be solved by several standard methods.

In the references cited before (Prado [8]; Prado and Rios-Neto [9]), the gradient pro-
jection method was used to solve the numerical problem. It showed to be a useful tool, but
convergence was difficult in some situations. In the present paper, the Powell’s quadrat-
ically convergent method (Press et al. [11]) was used for the optimization steps of the
algorithm. This method showed to be better, in terms of convergence, in the performed
simulations.

5. Simulations

To validate the developed and implemented algorithm, the same maneuvers available in
Biggs [10] were simulated and the results showed a good agreement. After that, a transfer
maneuver is simulated. It is assumed that the satellite starts its motion in a parking orbit.
This orbit has the following data: semimajor axis of 7000 km, eccentricity of 0, inclination
of 5 degrees, ascending node of 35 degrees, argument of perigee of 0, mean anomaly of
90 degrees.

From this orbit, the satellite has to go to a final orbit, that has the following orbital
elements: semimajor axis of 26560 km, eccentricity of 0.0131, inclination of 55 degrees,
ascending node of 90 degrees, argument of perigee of 180 degrees, mean anomaly of 270
degrees.

It is also assumed that the initial mass of the satellite is 500 kg and the thrust level to
perform the maneuver is 20 N.

The results are shown in Table 5.1 for three different situations: a maneuver with two,
four, and eight thrusting arcs. For each maneuver the table shows, for every thrusting arc,
ss(deg) the range angle of the instant the engine is turned on; se(deg) the range angle of
the instant the engine is turned off; α0(deg) the initial value for the pitch angle; β0(deg)
the initial value for the yaw angle; α′ the value of the derivative of the pitch angle with
respect to the range angle; β′ the value of the derivative of the yaw angle with respect to
the range angle; the fuel consumed by the maneuver.

In a second set of simulations, the same maneuvers were performed with the addi-
tional constraints that the control angles must be fixed (α′ = β′ = 0); and, in a third set,
the constraint α0 = 0 was added (only β0 is a free parameter for the control law). The solu-
tion shown in Table 5.1 was used as a first guess for those new simulations. The objective
is to know how much more fuel is required to compensate a simpler implementation of
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Table 5.1. Maneuvers with 2, 4, and 8 “thrusting arcs.”

Arc ss(deg) se(deg) α0(deg) β0(deg) α′ β′ Fuel (kg)

1 17.2 1736.3 5.5 62.3 0.016 0.304 —

2 1965.1 3737.1 6.7 47.4 −0.234 −0.038 53.65

1 19.2 850.1 0.79 50.4 0.031 0.076 —

2 1009.7 1853.1 10.1 44.3 −0.020 −0.178 —

3 2036.3 2900.9 11.5 29.4 −0.012 0.317 —

4 3078.3 3989.1 5.3 42.4 −0.120 0.178 51.49

1 40.2 439.7 1.6 46.4 0.003 −0.024 —

2 610.2 1059.1 4.9 54.1 −0.119 0.109 —

3 1157.4 1579.4 3.2 48.5 −0.007 0.653 —

4 1711.9 2135.1 4.3 60.2 −0.127 −0.096 —

5 2325.3 2773.4 5.1 52.5 −0.009 −0.065 —

6 2949.3 3360.2 4.4 42.5 0.119 −0.097 —

7 3470.6 3910.6 3.2 37.6 −0.101 −0.457 —

8 4090.2 4510.4 3.1 54.7 −0.141 −0.101 49.97

Table 5.2. Maneuvers with 2, 4, and 8 “thrusting arcs” (α′ = β′ = 0).

Arc ss(deg) se(deg) α0(deg) β0(deg) Fuel (kg)

1 10.1 1750.5 4.5 75.1 —

2 1955.3 3747.5 4.3 52.2 55.01

1 14.1 855.3 1.09 54.2 —

2 1004.3 1859.1 9.2 47.2 —

3 2030.2 2906.7 10.3 32.3 —

4 3072.1 3995.3 6.4 47.8 52.97

1 37.2 443.2 3.2 50.3 —

2 606.1 1062.9 6.3 57.2 —

3 1153.2 1583.2 5.3 50.6 —

4 1707.1 2139.4 2.1 66.4 —

5 2320.1 2779.3 7.2 50.2 —

6 2943.2 3362.1 6.3 47.8 —

7 3465.3 3913.2 4.1 42.5 —

8 4085.1 4514.3 5.6 57.6 51.02

the control device and to satisfy the constraints of keeping some equipment (e.g., anten-
nas) pointed toward Earth. Tables 5.2 and 5.3 show the results and Table 5.4 shows the
comparison in fuel expenditure for all cases studied.
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Table 5.3. Maneuvers with 2, 4, and 8 “thrusting arcs” (α0 = α′ = β′ = 0).

Arc ss(deg) se(deg) β0(deg) Fuel (kg)

1 7.4 1763.2 77.2 —

2 1945 3759.3 57.3 56.27

1 9.1 859.8 55.2 —

2 1000.2 1863.8 47.1 —

3 2026.2 2909.2 33.2 —

4 3070.9 3998.9 44.5 54.97

1 35.1 445.1 52.3 —

2 600.4 1070.2 57.2 —

3 1148.9 1580.2 52.3 —

4 1700.8 2144.3 58.1 —

5 2315.2 2782.9 59.4 —

6 2939.1 3369.9 38.7 —

7 3462.3 3919.9 39.1 —

8 4081 4519.9 59.2 52.11

Table 5.4. Fuel expenditure (kg) for all simulated maneuvers.

Method 2 arcs 4 arcs 8 arcs

Suboptimal 53.65 51.49 49.97

Suboptimal (α′ = β′ = 0) 55.01 52.97 51.02

Suboptimal (α′ = β′ = α0 = 0) 56.27 54.22 52.11

It is clear from the results that the increase of the number of arcs of burning reduces
the fuel consumed and that the increase of constraints forces the spacecraft to spend more
fuel.

6. Conclusions

Suboptimal control was explored to generate an algorithm to obtain solutions for the
minimum fuel maneuvers required to insert a satellite in a constellation.

The method has a good numerical behavior. Process time (CPU) is short (around one
minute, in an IBM-PC computer) for simple maneuvers, but when several constraints
and/or “thrusting arcs” are present the process time can be larger (around 15 minutes
in some cases). The method used to solve the numerical problem in this paper (Powell’s
quadratically convergent method) is better then the one used in previous cited papers,
because convergence is easier (it occurs in more situations).

The simulations show that an increase in the number of “thrusting arcs” reduces the
consumed fuel, a reduction of the order of 5% to 10%. They also show that the additional
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restrictions added to the problem generate an increase in the consumed fuel, in the order
of 2% to 4%.
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12227-010 São José dos Campos, SP, Brazil
Email address: prado@dem.inpe.br

Helio Koiti Kuga: Division of Space Dynamics and Control, Instituto Nacional de Pesquisas Espaciais
(INPE), Avenue dos Astronautas, 1758 Jardim da Granja, 12227-010 São José dos Campos, SP, Brazil
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