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We are concerned with the analytic solution of multiserver retrial queues including the impatience
phenomenon. As there are not closed-form solutions to these systems, approximate methods are
required. We propose two different generalized truncated methods to effectively solve this type of
systems. The methods proposed are based on the homogenization of the state space beyond a given
number of users in the retrial orbit. We compare the proposed methods with the most well-known
methods appeared in the literature in a wide range of scenarios. We conclude that the proposed
methods generally outperform previous proposals in terms of accuracy for the most common
performance parameters used in retrial systems with a moderated growth in the computational
cost.
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1. Introduction

A common assumption when evaluating the performance of communication networks is that
users that do not obtain an immediate service leave the system without retrying. However,
due to the increasing number of customers and network complexity, the customer behavior,
in general, and the retrial phenomenon, in particular, may have a significant impact on the
network performance. We can find numerous examples of retrial queues in communication
networks. In addition to classical telephony networks [1], the effect of retrials in wireless
networks [2, 3] is usually a more delicate matter. We can also find the effect of retrials in
data transfers along Internet [4]. However, it must be noted that retrial queues can also be
observed in a wider range of systems, such as communication protocols or in many queues in
daily life where a customer retries its access to a queue hoping to experience a lower delay in
the access to a free server. Regarding the appearance of retrials in communication protocols, we
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can highlight its common use in the performance evaluation of MAC protocols like CSMA/CD
[5]. The retrial phenomenon is also essential in modeling call centers (see [6] for a wealth of
references on this issue).

The modeling of repeated attempts has been the subject of numerous investigations.
Two functional blocks are typically distinguished in models which consider retrials: a block
that accommodates the servers and possibly a waiting queue, and a block where users
that retry are accommodated, usually called retrial orbit. More concretely, we consider an
M/M/C queueing system (following Kendall’s notation M/M/x stands for a queue with
exponentially distributed interarrival and service times and an infinite capacity waiting room)
with retrials where, following the human behavior, users can abandon the system with
certain probability after an unsuccessful retry, what is usually referred to as impatience.
Therefore, the resulting model under study will have a nonhomogeneous (because the
retrial rate depends on the number of users in the retrial orbit) and infinite state space.
It is known that the classical theory [7] is developed for random walks on the semistrip
{0, . . . , C} × Z+ with infinitesimal transitions subject to conditions of space homogeneity.
When the space-homogeneity condition does not hold, that is, in the case described in
this paper, the problem of calculating the equilibrium distribution has not been solved
beyond approximate methods [8, 9]. Indeed, if we focus on the case of multiserver retrial
queues, the absence of closed-form solutions for the main performance characteristics when
C > 2 [10] can be emphasized. Therefore, it is clear that in this case it is necessary to
resort to approximate methods. These methods are usually grouped into three categories:
approximations, finite truncated methods, and generalized truncated methods. Although
all the mentioned categories are in fact approximations and, therefore, sometimes it is
not clear which category a method belongs to, the first category is usually devoted to
methods that can be useful in a certain domain of the system parameters or in special
extreme cases (low retrial intensity, high blocking probabilities, etc.). Both the finite truncated
and generalized truncated methods replace the original infinite state space by a solvable
state space, that is, a model where steady state probabilities can be computed. However,
while for the finite truncated methods the initial state space is replaced by a finite state
space, in generalized truncated methods it is replaced by another infinite but solvable state
space.

The main contribution of this paper is the development of two new generalized
truncated methods that are able to effectively solve retrial systems with user impatience.
These novel methods are inspired in the model proposed by Neuts and Rao [11]. Comparing
the proposed methods with the most well-known approaches appeared in the literature,
we conclude that the new methods generally outperform the previous proposals in terms
of accuracy for the most common performance parameters used in retrial systems and
under a wide range of scenarios. Moreover, we show that their computational cost increases
moderately compared to the simpler methods. We also show that all the generalized truncated
methods clearly outperform the finite truncated methods in terms of accuracy, as it was
predicted in [10].

The rest of the paper is structured as follows. Section 2 describes the model of the system
under study and Section 3 summarizes previous approaches appeared in the literature. In
Section 4 we describe the two proposed methods, and their performance is evaluated and
compared to previous approaches in Section 5. Final remarks and a summary of the results
are provided in Section 6.
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Figure 1: System model.

2. System model

In the system under study (shown in Figure 1), users arrive following a Poisson stream
with rate λ and contend for access to a system with C servers, requesting an exponentially
distributed service time with rate μ. Furthermore, we define the load of the system by ρ =
λ/(Cμ). Without loss of generality, we consider that each user occupies one resource unit.
When a new request finds all servers occupied, it joins the retrial orbit with probability 1,
having considered an infinite capacity for the retrial orbit. After an exponentially distributed
time of rate μr this user retries, being a successful retrial if it finds a free server. Otherwise, the
user leaves the system with probability Pi or returns to the retrial orbit with probability (1−Pi),
starting the retrial procedure again.

The model considered can be represented as a bidimensional continuous-time Markov
chain (CTMC) whose state space is defined by

S :=
{
s = (k,m) : k ≤ C;m ∈ Z+

}
, (2.1)

being k the number of users being served and m the number of users in the retrial orbit,
constituting a level dependent Quasi Birth and Death Process (QBD) [7] whose transition
diagram is depicted in Figure 2. In QBD related literature, the term level refers to a set of states
with the same second coordinate. The infinitesimal generator of this process has the following
infinite block tridiagonal structure:

Q =

⎡

⎢⎢⎢⎢⎢⎢
⎣

A(0)
1 A(0)

0 0 0 0 · · ·

A(1)
2 A(1)

1 A(1)
0 0 0 · · ·

0 A(2)
2 A(2)

1 A(2)
0 0 · · ·

0 0
. . . . . . . . . · · ·

⎤

⎥⎥⎥⎥⎥⎥
⎦

. (2.2)

The main characteristics of this model are its infinite state space ({0, . . . , C} × Z+) and
also its space heterogeneity produced by the fact that the retrial rate depends on the number
of customers in the retrial orbit.

2.1. Computation of performance parameters

The most common performance parameter used in retrial systems is the blocking probability
(Pb), which is defined as the probability of the system being in a state where arrivals are not
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Figure 2: Retrial model under study.

accepted. Notwithstanding, other performance parameters can describe the behavior of retrial
systems more accurately. Those performance parameters are the mean number of users in the
retrial orbit (Nret), the immediate service probability (Pis), the delayed service probability
(Pds), and the nonservice probability (Pns). Pis is defined as the probability of a user being
served in its first attempt, Pds as the probability of obtaining service but not in the first attempt,
and Pns as the probability of leaving the system due to impatience without having been served.
Obviously, it must be met that Pis + Pds + Pns = 1.

3. Overview of approximate methods

As stated in Section 1, it is known [10] that neither a closed-form analytical solution nor a
direct algorithmic computation of the steady state probabilities has been obtained for the
model under study, so we must resort to approximate methods. Those approximations can
be classified into three categories [10].

(i) Approximations: this category includes those solutions in which the original in-
tractable model is simplified making some assumptions that usually suppose a good
approximation only in a certain domain of the system parameters or in special extreme
cases.

(ii) Finite truncated methods: these methods consist in replacing the original infinite state
space by a finite one, so the resulting model is solvable.

(iii) Generalized truncated methods: in this case, the original infinite state space is
replaced by another infinite but simplified and solvable state space.

It must be noted that the difference between the category approximations and the rest
is sometimes not clear because all the methods are in fact approximations, and usually the
accuracy of a method is better in a certain domain of the problem.
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3.1. Approximations

An intuitive first approach to solve retrial systems is to consider those retrials as new arrivals
requesting the access to a server. With this approximation, known as loss method [12, Section
2.8], the system becomes a simple loss model whose solution can be obtained using Erlang’s B
formula with an arrival rate that is the sum of new users and retrials. Although this solution
is very simple, intuitively its main drawback is the expected inaccuracy when the retrial rate is
high.

On the other side, for high values of the retrial rate the system can be approximated by
an M/M/C queueing system, so that the blocking probability can be computed using Erlang’s
C formula. As the loss method and the M/M/C approach are useful for low and high retrial
rates, respectively, in [12, Section 2.8], an interpolation of the above two methods is proposed
to obtain a more accurate solution. Hereafter, we will refer to this method as Int.

In [13], Greenberg and Wolff propose another approximation (denoted by GW) based on
the assumption that the returning customers see time averages. Obviously, the approximation
made in GW is expected to work more accurately when the retrial rate decreases, because
when a customer is blocked and reattempts quickly, the probability of finding the system busy
is high.

3.2. Finite truncated methods

The first finite truncated method was proposed by Wilkinson in [14]. This method, denoted
by Wil, is based on the truncation of the state space of the QBD beyond a level Q, that is, the
method restricts the maximum number of users in the retrial orbit to Q. Obviously, the method
is expected to be more accurate as we use larger values for the truncation level Q, but its
computational cost will also increase. Other authors present more efficient truncated methods,
for example, in [15] the truncation is based on the exclusion of those states with negligible
stationary probabilities.

There also exist other finite truncated methods that modify the truncated state space to
introduce, in some sense, the effect of retrials. The model presented by Fredericks and Reisner
[16], and called hereafter FR, reduces the dimensionality of the model to a one dimensional
state space, eliminating the dimension corresponding to the number of users in the retrial orbit
and introducing its effect as a new arrival rate that depends on the state of the system.

In a similar way, Marsan et al. [17] propose a method (denoted by Mar) that reduces the
infinite state space to a finite one grouping all the levels of the QBD where there are users in
the retrial orbit into a single level. In [18] we propose a generalized version of Mar method,
called FM. Comparing FM and Mar, FM shows a substantial improvement in the accuracy at
the expense of only a marginal increase in the computational cost. These two methods include
the effect of the eliminated states by modifying the transition rates of the last level of the
resulting QBD. The difference between both methods lies in the number of levels taken into
account in the finite truncated model. While Mar groups all the states with retrials into a single
level, FM defines a value Q so the aggregation is performed beyond level Q. Mar can be seen
as a particular case of FM, where Q = 1. Note also that by increasing the value of Q both
the accuracy and the computational cost will also increase. Due to that aggregation two new
parameters are introduced: Θ and p. The parameter Θ denotes the mean number of users in
the retrial orbit conditioned to those states where there are at least Q users in the orbit, that is,
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Θ = E(m | m ≥ Q). The probability that after a successful retrial the number of users in the
retrial orbit does not drop below Q is represented by p. The expressions needed to compute
those parameters are [18]

p =
π(C,Q)

π(C,Q − 1) + π(C,Q)
,

Θ =
λ
(
π(C,Q − 1) + π(C,Q)

)

μr
[∑k=C−1

k=0 π(k,Q) + Piπ(C,Q)
] .

(3.1)

As there is a mutual dependence between Θ and p and the steady state probabilities
(π(k,m)), to find these values we followed a fixed-point iterative procedure starting with p = 0
and Θ = Q.

3.3. Generalized truncated methods

In this section, we discuss the use of generalized truncated methods which approximate the
M/M/C retrial queue by some infinite although solvable system. We comment separately on
the method proposed by Neuts and Rao in [11] as the methods proposed in this paper are
based on it.

The method introduced by Falin in [19] (denoted by Fal) is based on the assumption that
the retrial rate becomes infinite when the number of customers in orbit exceeds a certain level
Q. Therefore, the system is approximated beyond level Q by a standard M/M/1 queue, and
the retrial rate will depend on the number of users in the retrial orbit as follows:

μr(m) =

⎧
⎨

⎩

mμr if m < Q,

∞ if m ≥ Q.
(3.2)

Artalejo and Pozo [10] proposed a method (denoted by AP) based on the M/M/2
queue, instead of the M/M/1 queue. Therefore, the retrial rate will depend not only on the
number of users in the retrial orbit (m) but also on the number of busy servers (k) as follows:

μr(m) =

⎧
⎨

⎩

∞ if k < C − 1, m ≥ Q,

mμr otherwise.
(3.3)

3.3.1. NR method

The method proposed by Neuts and Rao in [11], and called hereafter NR, which was proved
to converge to the original model in [20], is based on the homogenization of the model beyond
a given level Q of the QBD, which supposes to restrict the maximum retrial rate, that is,

μr(m) =

⎧
⎨

⎩

mμr if m < Q,

Qμr if m ≥ Q.
(3.4)
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Figure 3: NR model.

Figure 3 depicts the system model used in NR method. The resulting approximated
model can be solved by the matrix-geometric approach [7]. Let

Q̂ =

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

A(0)
1 A(0)

0 0 · · · 0 0

A(1)
2 A(1)

1 A(1)
0 · · · 0

...
...

... · · ·
...

...

0 0 0 · · · A(Q−1)
1 A(Q−1)

0

0 0 0 · · · A2 A1 + RA2

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, (3.5)

where R is the rate matrix defined as the unique minimal nonnegative solution of the quadratic
matrix equation R2A2 + RA1 + A0 = 0. In order to compute matrix R, we have used the
logarithmic reduction algorithm as proposed in [9, Section 8.4], using a precision of 10−8 for
the iterative procedure. The steady state probabilities for states where m ≤ Q are obtained by
solving [π (0) · · ·π (Q)]Q̂ = 0 combined with the normalization condition

Q−1∑

l=0

π (l)e +π(Q)(I − R)−1e = 1. (3.6)

As Q̂ is a finite matrix, this system can be solved by any of the standard methods
defined in the classical linear algebra. Finally, the steady state probabilities of the states in
the homogeneous part of the model are easily computed by π (Q+n) = π (Q)Rn.

4. Proposed methods

4.1. HM1 method

When the number of users retrying is higher than Q, the NR method considers the retrial rate
to be Qμr . Obviously, this is a rough approximation that can be inaccurate in many cases.
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Therefore, we propose to approximate the retrial rate beyond level Q by an estimation of its
mean value, that is, M = E[m | m ≥ Q], keeping the idea of the homogenization:

μr(m) =

⎧
⎨

⎩

mμr if m < Q,

Mμr if m ≥ Q.
(4.1)

The physical meaning of the proposed approximation is founded on assigning to the retrial
rate beyond level Q a value that is the mean number of users retrying, when there are at least
Q users retrying. This value can be computed by using

M = E[m | m ≥ Q] =

∑
r≥Q rπ

(r)e
∑

r≥Qπ
(r)e

=
π (Q)[R(I − R)−1 +QI

]
(I − R)−1e

π(Q)(I − R)−1e
. (4.2)

However, it must be noticed that M depends on the value of Q, which is a configuration
parameter, and more importantly, on the steady state probabilities. Therefore, we obtain a set
of nonlinear equations relating M, R, and the probability vectors π (0), . . . ,π (Q).

To solve this system, we use an approximation based on the assumption that when the
number of customers in the orbit is sufficiently high then it is very likely that all servers are
being used. Hence, π (Q) ≈ π(C,Q)ψ , where ψ = [0 0 · · · 0 1]t, and thus M and R no longer
depend on π (Q):

M ≈
ψ
[
R(I − R)−1 +QI

]
(I − R)−1e

ψ(I − R)−1e
. (4.3)

However, as the relationship between R and M still holds, we deploy an iterative
procedure as follows: (1) set M0 = Q; (2) given Mn compute R using the logarithmic reduction
algorithm, then compute Mn+1 using (4.3); (3) if |Mn+1 −Mn|/Mn ≥ ε = 10−3 go to step 2;
(4) with the final values of M and R compute the steady state probabilities solving the finite
QBD.

4.2. HM2 method

We must notice that the approximation that performs HM1 (π(Q) ≈ π(C,Q)ψ) may not be very
accurate when the blocking probabilty is low, although it is expected to outperform NR. For
that reason, we propose the HM2 method, which computes the value of M using (4.2). More
specifically, HM2 method uses the iterative procedure sketched next: (1) set M0 = Q; (2) given
Mn compute R and the steady state probabilities solving the finite QBD, then compute Mn+1

using (4.2); (3) if |Mn+1 −Mn|/Mn ≥ ε = 10−3 go to step 2.
Obviously, the performance of the HM2 method is expected to be higher than that of the

HM1 method, but the computational cost of HM2 is also expected to be higher due to the fact
that in HM1 the values of π (0), . . . ,π (Q) are computed only once, and this is not true in HM2.
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4.3. Computation of performance parameters

For the methods HM1 and HM2, we have used the next expressions to compute the
performance parameters described in Section 2.1.

Pb =
Q−1∑

m=0

π (m)z +π (Q)(I − R)−1z with z = [0, 0, . . . , 0, 1],

Pis = 1 − Pb,

Pds = λ−1μr

[
Q−1∑

m=0

mπ (m)o +Mπ (Q)(I − R)−1o

]

with o = [1, 1, . . . , 1, 0],

Pns = λ−1Piμr

[
Q−1∑

m=0

mπ (m)z +Mπ (Q)(I − R)−1z

]

with z = [0, 0, . . . , 0, 1],

Nret =
Q−1∑

m=0

mπ (m)e +π (Q)(R(I − R)−1 +QI
)
(I − R)−1e with e = [1, 1, . . . , 1].

(4.4)

5. Results

This section is aimed to compare the proposed methods HM1 and HM2 with the most well-
known approaches appeared in the literature so far. In order to evaluate and compare the
proposed algorithms with previous approaches, we have studied a wide range of scenarios.
Letting ρ = λ/(Cμ), we have studied different system loads by modifying λ and keeping
C = 50 and μ−1 = 180 s fixed. It must be noted that, due to the introduction of the impatience
phenomenon, we will be able to consider values of ρ > 1. We have also studied different
configurations of the retrial behavior by varying μr using in all cases Pi = 0.2. Note that it
is not necessary to modify Pi to have different loads in the retrial orbit, as we use μr for that
purpose.

The comparison of HM1 and HM2 is done with FM and NR methods, which can be
considered representative examples of a finite truncated method and a generalized truncated
method, respectively. It must be noted that the resulting QBD has been solved using the
algorithm proposed in [21] in all cases, although other algorithms have been proposed in the
literature [22, 23]. For the iterative procedures in FM, HM1, and HM2 the accuracy has been
chosen in all cases to be ε = 10−3.

For comparing the results, we have used the relative error of different performance
parameters, defined as |Ψapprox − Ψexact|/Ψexact for a generic performance parameter Ψ. In order
to obtain an accurate enough estimate of Ψ which can be used as Ψexact, we ran all methods with
increasing and sufficiently high values of Q so that the value of Ψ had stabilized up to the 14th
decimal digit. As an example and for the particular case ρ = 0.8 and μr = 0.01, Figure 4 depicts
that the general trend is that the higher the value ofQ the lower the relative error is. This is due
to the fact that the system under consideration becomes more similar to the exact model as Q
increases. As expected all methods converged to the same value in the performance parameters
under study, Ψ ∈ {Pb, Pds, Pns,Nret}. In Table 1 we show the values of Pb andNret that are going
to be considered as the exact values, obtained as described above. Obviously, to obtain those
values we need higher values of Q as Pb and Nret increase. In general, when we use values
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Table 1: Estimations of Pb and Nret.

ρ μr = 0.001 μr = 0.01 μr = 0.1 μr = 1.0

0.4 Pb = 7.664·10−9 Pb = 7.951·10−9 Pb = 9.299·10−9 Pb = 9.360·10−9

Nret = 8.558·10−7 Nret = 9.276·10−8 Nret = 1.487·10−8 Nret = 3.017·10−9

0.6 Pb = 2.262·10−4 Pb = 2.566·10−4 Pb = 3.378·10−4 Pb = 3.050·10−4

Nret = 3.800·10−2 Nret = 4.627·10−3 Nret = 8.947·10−4 Nret = 1.531·10−4

0.8 Pb = 2.548·10−2 Pb = 3.318·10−2 Pb = 3.994·10−2 Pb = 2.897·10−2

Nret = 5.883 Nret = 0.876 Nret = 0.160 Nret = 2.009·10−2

1.0 Pb = 0.347 Pb = 0.333 Pb = 0.273 Pb = 0.172
Nret = 1.359·102 Nret = 14.332 Nret = 1.573 Nret = 0.154

1.2 Pb = 0.6482 Pb = 0.6387 Pb = 0.5436 Pb = 0.3541
Nret = 450.19 Nret = 44.74 Nret = 4.300 Nret = 0.3928

1.4 Pb = 0.7563 Pb = 0.7524 Pb = 0.7028 Pb = 0.5032
Nret = 745.68 Nret = 74.44 Nret = 7.290 Nret = 0.6700

2.0 Pb = 0.8713 Pb = 0.8706 Pb = 0.8619 Pb = 0.7527
Nret = 1598.46 Nret = 159.81 Nret = 15.935 Nret = 1.538

5.0 Pb = 0.9613 Pb = 0.9612 Pb = 0.9607 Pb = 0.9539
Nret = 5780.45 Nret = 578.04 Nret = 57.80 Nret = 5.770

10.0 Pb = 0.9821 Pb = 0.9821 Pb = 0.9820 Pb = 0.9809
Nret = 12728.44 Nret = 1272.84 Nret = 127.28 Nret = 12.725
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Figure 4: Evolution of the relative error for the different methods deployed.

of ρ > 1, the value of Q needed to obtain a tight estimation of Ψ increases significantly, so
the computational complexity makes the resolution to be unfeasible from a practical point of
view when ρ > 10. For that reason and since blocking probabilities between 50% and 75% are
unacceptable for virtually any practical application, the comparison among different methods
is done in a range of 0.4 ≤ ρ ≤ 1.4.

The different methods are compared by using a metric based on the minimum truncation
level needed to obtain a certain relative error, which has been widely used in the literature
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Table 2: Minimum value of Q to obtain relative errors lower than 10−4.

μr = 0.001 μr = 0.01 μr = 0.1 μr = 1.0
ρ Pb Nret Pds Pns Pb Nret Pds Pns Pb Nret Pds Pns Pb Nret Pds Pns

0.4

FM 6 8 6 14 8 10 7 13 5 8 8 9 4 4 5 4
NR 5 9 4 11 7 9 6 11 4 7 6 8 4 5 4 4

HM1 5 9 4 11 7 8 9 10 5 6 7 8 3 3 4 5
HM2 1 2 2 6 4 5 3 8 4 5 4 6 3 3 4 4

0.6

FM 17 18 16 27 15 18 13 22 10 11 11 12 5 5 5 5
NR 11 16 11 20 13 14 12 18 8 10 9 10 4 5 5 5

HM1 10 15 17 20 11 13 15 18 5 8 10 11 4 4 5 6
HM2 4 4 2 13 6 8 4 12 6 7 5 8 4 4 4 4

0.8

FM 56 61 53 76 30 32 32 37 13 12 14 14 6 4 6 5
NR 43 49 42 58 21 29 24 32 12 13 12 12 5 6 5 5

HM1 33 39 50 57 20 22 28 32 10 11 13 14 4 5 6 6
HM2 16 23 18 39 19 20 19 22 9 9 9 10 4 4 5 4

1.0

FM 264 250 266 266 58 54 59 58 17 15 17 16 6 5 7 5
NR 226 254 230 236 50 56 51 50 15 17 15 14 6 7 6 5

HM1 137 211 249 256 41 46 54 57 13 13 16 17 5 5 6 7
HM2 144 190 182 197 38 35 40 40 12 10 12 11 5 4 5 4

1.2

FM 566 552 571 535 87 83 88 77 20 18 21 17 7 6 7 5
NR 516 564 523 487 76 86 78 68 18 20 18 15 6 7 6 5

HM1 453 498 560 562 63 73 84 86 15 16 19 20 5 5 7 7
HM2 454 500 499 500 62 62 63 64 14 11 15 13 5 4 6 3

1.4

FM 856 837 864 791 115 110 118 99 23 21 24 18 7 6 8 5
NR 792 861 803 750 103 117 105 87 20 24 21 16 6 8 7 5

HM1 748 792 856 858 84 101 115 117 17 19 23 24 6 6 7 8
HM2 748 795 794 795 83 91 92 91 17 14 18 15 5 5 6 4

[10, 11]. Table 2 shows the minimum value of Q needed to obtain a relative error lower than
10−4 for Pb, Pds, Pns and Nret. Note that a wide range of operation points for the occupancy
of the servers and the retrial orbit has been chosen. The number in bold indicates the lowest
value of Q for all the models studied. Finally, it is important to note that immediate service
probability has been omitted as it is the complementary value of Pb in the system under study.

Results show that the best performance is obtained by HM2, followed by HM1, NR,
and FM. This trend is obtained in almost every scenario studied and for all the performance
parameters. It is not unexpected that HM2 is more accurate than NR and HM1 as these can be
considered as approximations of HM2. As it could be expected generalized truncated methods
outperform finite truncated methods, as predicted in [12]. More specifically, the NR method
improves FM, as it requires a lower value of Q for obtaining a concrete relative error. HM1
method obtains better accuracy than NR method for the same value of Q for Pb and Nret, but
this is not true for Pds and Pns, in which the inverse behavior is obtained. Finally, HM2 method
clearly outperforms all methods, as it needs much lower values of Q to obtain the desired
accuracy for all the performance parameters under study.

Nonetheless, as we are dealing with numerical methods some attention must be paid to
the computational cost. Note that the same methodology for solving the QBD and the same
precision for the iterative procedures have been used in all cases. In Figure 5 we show the
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Figure 5: Computation time for the different methods deployed.

time needed to solve the system when ρ = 0.8 and μr = 10−2 for different values of Q. Results
have been obtained running Matlab in an Intel Pentium Core 2. As observed, the generalized
truncated methods are not only more accurate than FM, but also they are computationally more
efficient. However, we must note that times are negligible from a human point of view in all
the generalized truncated methods. If we compare the results with those obtained in Figure 4,
we conclude that we can obtain high accuracies with small computation times, specially for
the generalized truncated methods.

5.1. Scenario with no impatience

Although the impatience phenomenon is part of the human behavior, some of the most well-
known methods to solve retrial systems do not consider it. For that reason, in this section we
consider the particular case of the proposed model in which Pi = 0, that is, we do not take
into account user impatience. In this way we will be able to make a global comparison of
all methods. Note that in this scenario, the load offered to the system (ρ) has to be less than
one. Moreover, we have decreased the number of servers to C = 10, because the computational
complexity of AP makes it infeasible to solve the system whenC ≥ 50 servers. We have focused
only in the blocking probability because when we do not consider the impatience phenomenon
Pns = 0 and, therefore, Pds = Pb. We can classify all the methods described in Section 3 into two
categories: those in which the truncation level Q is a configurable parameter and those that
offer a unique solution. In the former the precision can be adjusted through the parameter Q
while in the latter precision is an intrinsic feature of the method and hence it is fixed. In the first
group we find Wil, FM, Fal, NR, AP, HM1, and HM2 while in the latter we find FR, GW, Loss,
Int and Mar. In a first part, we study the performance of the latter, showing Pb and the relative
error for each method in Table 3. As we can see, errors are usually lower when we increase the
time between retrials but, in any case, errors are unacceptable in most cases. As Mar is the best
method in all of them and it is a particular case of FM in the sequel only the FM method will
be considered as it yields an upper bound for the accuracy of fixed precision methods.
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Table 3: Pb and its relative error obtained with fixed precision methods.

ρ μr = 0.001 μr = 0.01 μr = 0.1

0.6

FR 1.3987·10−2 5.4617·10−2 4.6031·10−2

GW 4.3889·10−2 0.2187 0.4022
Loss 3.4677·10−2 0.2112 0.3964
Int 3.4484·10−2 0.2096 0.3846

Mar 8.6043·10−4 8.385·10−3 2.066·10−2

Pb =5.683·10−2 Pb =6.954·10−2 Pb =9.089·10−2

0.8

FR 2.8113·10−2 0.1022 7.9129·10−2

GW 4.3607·10−2 0.2079 0.3702
Loss 4.1717·10−2 0.2064 0.3690
Int 4.1451·10−2 0.2042 0.3521

Mar 1.1167·10−2 2.3249·10−2 2.3980·10−2

Pb=0.2469 Pb=0.2982 Pb=0.3750
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Figure 6: Computation time for the different methods deployed. Pi = 0.

Focusing on the configurable methods, Table 4 shows the minimum value ofQ needed to
obtain a relative error in the blocking probability lower than 10−4. Note that the number in bold
represents the best choice for each scenario. As we can see, in scenarios without impatience,
generalized truncated methods (Fal, NR, AP, HM1, and HM2) also outperform finite truncated
methods (Wil and FM). Among the generalized truncated methods, the best performance is
obtained by HM2 and AP. While the first is specially useful for low values of μr , the latter is
the best for high values of μr (μr/μ > 10).

In Figure 6 we show the computational cost associated to all the presented methods
when ρ = 0.8 and μr = 0.01 for different values of Q. Results show that the lowest computation
costs are for the simplest methods (Wil, Fal, NR) followed by HM1 and HM2. Finally, and
computationally speaking, the worst methods are FM and AP.
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Table 4: Minimum value of Q to obtain relative errors for Pb lower than 10−4 when Pi = 0.

ρ μr = 0.001 μr = 0.01 μr = 0.1 μr = 1.0

0.4

Wil 9 10 10 10
FM 9 9 7 4
Fal 11 9 7 4
NR 7 7 5 4
AP 10 7 4 1

HM1 7 6 5 3
HM2 3 5 4 3

Pb =5.633·10−3 Pb= 6.442·10−3 Pb =7.998·10−3 Pb =8.696·10−3

0.6

Wil 24 19 18 17
FM 23 16 11 5
Fal 25 16 11 7
NR 18 13 9 6
AP 22 13 6 1

HM1 15 10 7 4
HM2 5 9 7 4

Pb =5.683·10−2 Pb =6.954·10−2 Pb =9.089·10−2 Pb =9.979·10−2

0.8

Wil 74 45 40 39
FM 68 34 17 21
Fal 70 35 23 14
NR 53 27 17 10
AP 57 24 9 1

HM1 41 21 13 7
HM2 36 20 13 7

Pb=0.2469 Pb=0.2982 Pb=0.3750 Pb=0.4043

6. Conclusions

We proposed and compared two novel methods that effectively obtain the value of typical
performance parameters in retrial systems with user impatience. As there are not closed-
form solutions to these systems when there are more than two servers, approximate methods
are required to solve such systems. The proposed methods are improvements of the method
proposed by Neuts and Rao in [11] being also based on the homogenization of the state
space beyond a certain level. The results show the better performance of generalized
truncated methods compared to finite truncated methods in terms of accuracy. Comparing
the generalized truncated methods among them, we conclude that the proposed HM2 method
outperforms, in almost all cases, previous proposals in terms of accuracy for a wide range
of scenarios and for the performance parameters studied, with moderated computation cost
growths compared to the simpler methods.
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