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This paper presents an innovative approach to model validation for a structure with significant
parameter variations. Model uncertainty of the structural dynamics is quantified with the use
of a singular value decomposition technique to extract the principal components of parameter
change, and an interval model is generated to represent the system with parameter uncertainty.
The coordinate vector, corresponding to the identified principal directions, of the validation system
is computed. The coordinate distance between the validation system and the identified interval
model is used as a metric for model validation. A beam structure with an attached subsystem,
which has significant parameter uncertainty, is used to demonstrate the proposed approach.
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1. Introduction

Model validation of structural dynamics is of great interest to both government and industry
[1]. Recently, a model validation workshop [2, 3] was organized by Sandia National
Laboratories to address the problem of certification of structures under various forms of
uncertainty. Following their formulation, an integrated system consisting of a beam structure
and an attached subsystem, shown in Figure 1, is the test structure used for study. In this
model the physical elements of the attached three degrees of freedom subsystem are the
only ones exhibiting significant parameter variations, all other parameters are known. The
substructure, along with its nonlinear connection, is considered for calibration, and data are
provided as a basis for the calibration of the substructure model [2].

In the process of certifying structures for use in harsh dynamic environments, it is
often required that not only the main structure be capable of withstanding the loads but also
all the attached substructures. To ensure survivability of all the substructures, Sandia in [2]
has chosen a performance metric in terms of the maximum acceleration magnitude of mass
3, top of the substructure, under a shock force at position x8. For this study, the uncertain
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Figure 1: A beam structure with an attached subsystem.

parameters are the identified modal parameters (frequency, damping, and mode shape) of
subsystem, 15 parameters total.

This paper presents a model validation methodology based on an interval modeling
technique for the structural dynamics problem proposed by Sandia [2]. A singular value
decomposition technique [4] is applied to extract the principal components of parameter
change, where the sensitivity of performance is included in the SVD process. From this
process, an interval model is generated and each interval corresponds to one identified
bounded uncertainty parameter with its associated principal direction. This interval
modeling technique can precisely quantify the uncertainty of a system with significant
parameter uncertainty [4]. The coordinate vector, corresponding to the identified principal
directions, of the validation system can be computed. The coordinate distance between the
validation system and the identified interval model is used as the metric for model validation
[5].

2. Model validation

In the model validation process, first an interval modeling technique, given in the appendix,
is applied for uncertainty quantification. The data used for model uncertainty quantification
are based on the identified modal parameters from 60 virtual experiments [2], generated from
20 identical systems selected from a virtual pool and three levels of random excitation applied
at mass 2. The modal parameter vector of the subsystem is defined as

p =
[
ω1 ω2 ω3 ξ1 ξ2 ξ3 φ11 φ21 φ31 φ12 · · · φ33

]T
, (2.1)

where ωi is the ith natural frequency, ξi is the ith damping ratio, and φji is the jth component
of the ith mode shape. The interval modeling technique in the appendix is applied to generate
an interval model as

P =

{

p | p = p0 +
15∑

j=1

αjqj , αj ∈
[
α−j , α

+
j

]
}

, (2.2)

where p0 is the nominal parameter vector, and αj is the jth identified bounded uncertainty
parameter corresponding to the basis vector qj . The coordinate vector of any validation
system with parameter vector pv can be computed as

βv = U−1Δpv, (2.3)
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Figure 2: Modal parameters of subsystems: (a) natural frequency (rad/sec) of 1st mode, (b) damping ratio
of 3rd mode, (c) 2nd mode shape coefficient of 1st mode. (circels) 60 calibration systems; (asterisks) 60
validation systems.

with

Δpv = pv − p0, U =
[
q1 · · · q15

]
, (2.4)

where U is the basis matrix. The coordinate distance between a validation system and the
interval model is defined as

dv = min
{√[

βv − β(p)
]T[

βv − β(p)
]
, p ∈ P

}
, (2.5)

where β(p) is the coordinate vector of the subsystem with parameter vector p. This distance
represents a metric of performance deviation between a validation system and the identified
interval model since the weighting of performance sensitivity is included in SVD process
[4, 5].

3. Discussion of results

There are 60 sets of identified modal parameters used for model validation [2], generated
from 20 identical systems selected from a virtual pool with three levels of shock input at mass
1. Figure 2 shows three modal parameters of 60 calibration systems and 60 validation systems
as functions of the first uncertainty parameter α1. Variations in the natural frequencies are
significant, around 100%, and increase linearly as the first uncertainty parameter α1 increases.
Natural frequencies of calibration systems and validation systems share same variation
characteristics. Damping and mode shape coefficients of validation systems show bias from
those of calibration systems. For example, the mean value of ξ3 of the validation systems
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Figure 3: Coordinates and parameter bounds of uncertainty parameters: (a) 2nd uncertainty parameter,
(b) 3rd uncertainty parameter, (c) 4th uncertainty parameter. (circles) 60 calibration systems; (asterisks)
60 validation systems; — parameter bounds of interval model.

is around 30% lower than that of the calibration systems when α1 is 0.1. For the second
mode shape coefficient of the first mode in Figure 2, the mean value for the validation
systems is always around 5% lower than that of the calibration systems. Figure 3 shows
the uncertainty parameters α2–α4 and the identified interval bounds as functions of the first
uncertainty parameter α1. The third interval length, normalized to the first interval length
(i.e., α1 = 1), drops to less than 10% (see Figure 3) of the first interval length [4]. The model
uncertainty is dominated by the first uncertainty parameter α1. Natural frequency variations
are the dominant uncertainty corresponding to variations in α1. In contrast to frequency
variations, damping and mode shape variations behave more like random variables, and they
correspond to secondary uncertainties [4]. All α2 and α3 of validation systems are inside the
bounds or close to the boundary of the identified interval model. All α4 of validation systems
are outside the bounds of the interval model, and this bias is mainly contributed from the
bias of mode shape and damping. Figure 4 shows the coordinate distance of 60 validation
systems from interval model. The distance is mainly due to the bias of α4.

Figure 5 shows the performance sensitivity to the identified uncertainty parameters
αi. The sensitivity of performance to the jth uncertainty parameters αj of the ith chosen
subsystem pi is defined as

sαij =
1

a
(
pi
)
∣∣∣∣
∂a

(
pi
)

∂αj

∣∣∣∣, i = 1, . . . , ns, (3.1)

where a(pi) is the maximum acceleration magnitude of the integrated system with subsystem
parameter vector pi, and ns is the number of parameter vectors. This sensitivity represents a
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Figure 4: Coordinate distance of 60 validation systems from interval model: (circls) distance from interval
model; (asterisks) distance contributed from α4 bias.
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Figure 5: Sensitivity of performance to identified uncertainty parameters αj .

percentage change. The average sensitivity corresponding to the jth uncertainty parameters
αj is defined as

sαj =
1
ns

ns∑

i=1

∣∣sαij
∣∣. (3.2)

Figure 5 shows that this sensitivity is between 21% and 69%, corresponding to the original
maximum acceleration magnitude, and the sensitivity to α4 is 39% of the maximum
acceleration. Coordinate distance of all the validation systems is between 0.03 and 0.07. This
means that the maximum acceleration deviation between the validation system and a system
in interval model is insignificant (around 1% to 3%), based on the sensitivity in Figure 5.
All the validation systems are acceptable, based on the coordinate distance corresponding to
performance index of maximum acceleration.

Figure 6 shows the maximum acceleration of the integrated systems with the identified
interval model, 60 calibration systems, and 60 validation systems when an impulse force is
applied at x8 position. The results show that the identified interval model well represents
and covers 60 calibration systems. The maximum acceleration of all the validation systems is
inside the envelope or close to the boundary of the interval model. As expected, the validation
systems are acceptable, based on the coordinate distance results shown in Figure 4. This
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Figure 6: Maximum acceleration with impulse input: (circls) interval system; + 60 calibration systems;
(asterisks) 60 validation systems.

coordinate distance represents a metric of the maximum acceleration deviation (percentage
difference) between a validation system and the identified interval model.

4. Concluding remarks

This paper presents a novel approach for model validation of a system with an attached sub-
system that is exhibiting significant parameter uncertainty. An interval modeling technique
is applied for uncertainty quantification with the performance sensitivity weighting in SVD
process. The coordinate distance, between the validation system and the identified interval
model, is defined as a metric for model validation. This distance represents a metric of the
possible performance deviation of the validation system from a system in interval model.
The results show that all the validation systems provided by Sandia are acceptable, based on
this distance metric. This demonstrates an efficient tool for model validation, based on the
interval model analysis. The proposed technique in this paper can be extended to probability
framework.

Appendix

Model uncertainty quantification

The sensitivity of performance index a, such as maximum acceleration magnitude, to the jth
component of the ith chosen subsystem pi is defined as

sij =
1

a
(
pi
)
∣∣∣∣
∂a

(
pi
)

∂pij

∣∣∣∣σj , i = 1, . . . , ns, (A.1)

where pij is the jth component of parameter vector pi, and σj is the standard deviation of the
jth vector component. This sensitivity represents a percentage change including the factor σj
to account for the size of the parameter variation. The average sensitivity corresponding to
the jth vector component is defined as

sj =
1
ns

ns∑

i=1

∣∣sij
∣∣. (A.2)
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To quantify the parameter uncertainty, an uncertainty matrix is defined as

ΔP =
[
Δp1 Δp2 · · · Δpn

]
, (A.3)

with

Δpj = pj − p0, j = 1, . . . , n, p0 =
1
n

n∑

j=1

pj , (A.4)

where pj is the jth identified parameter vector, and p0 is the nominal parameter vector, which
is computed as the average from n = 60 experiments.

A singular value decomposition (SVD) technique [4] is used to generate an optimal
linear interval model. This SVD process involves the following computational steps.

(1) Compute an initial weighting matrix as

ΔP 1 =W−1
1 ΔP, (A.5)

where W1 is a diagonal matrix with its jth diagonal element as the standard
deviation σj .

(2) Compute the weighting matrix including sensitivity as

ΔPW =W2ΔP 1, (A.6)

where W2 is a diagonal matrix with its jth diagonal element sj .

(3) Use SVD to compute the basis matrix UW for ΔPW ,

ΔPW = UWSV T , S = diag
[
d1 · · · d15

]
. (A.7)

(4) Compute the basis matrix U for ΔP ,

U =W1W
−1
2 UW, U =

[
q1 · · · q15

]
. (A.8)

The singular values dj are in descending order, this leads to a descending order of
perturbation distribution in qj .

(5) Compute the coordinate vector of Δpi corresponding to the basis vectors qj ,

βi = U−1Δpi. (A.9)

(6) Represent each parameter vector as

pi = p0 +
15∑

l=1

βi(l)ql, (A.10)

where βi(l) is the lth element of the coordinate vector βi.

(7) Compute the parameter bounds as

α+j = max
{
β1(j), β2(j), . . . , βn(j)

}
,

α−j = min
{
β1(j), β2(j), . . . , βn(j)

}
.

(A.11)

All the basis vectors, coordinates, and parameter bounds are normalized to the first interval
length [6].
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