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Generally, the greatest difficulty encountered when designing a fuzzy sliding mode controller
(FSMC) or an adaptive fuzzy sliding mode controller (AFSMC) capable of rapidly and efficiently
controlling complex and nonlinear systems is how to select the most appropriate initial values
for the parameter vector. In this paper, we describe a method of stability analysis for a GA-based
reference adaptive fuzzy sliding model controller capable of handling these types of problems
for a nonlinear system. First, we approximate and describe an uncertain and nonlinear plant for
the tracking of a reference trajectory via a fuzzy model incorporating fuzzy logic control rules.
Next, the initial values of the consequent parameter vector are decided via a genetic algorithm.
After this, an adaptive fuzzy sliding model controller, designed to simultaneously stabilize and
control the system, is derived. The stability of the nonlinear system is ensured by the derivation
of the stability criterion based upon Lyapunov’s direct method. Finally, an example, a numerical
simulation, is provided to demonstrate the control methodology.
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1. Introduction

Over the past few years, fuzzy control (FC) can be designed without needing an exact
mathematical model of the system to be controlled, and can efficiently control complex
continuous unmodeled or partially modeled processes [1, 2]. There have been significant
research efforts devoted to the analysis and control designs for fuzzy systems (see [3, 4]
and the references therein). The main motivation for this development has been applied to
practical nonlinear systems and engineering problems (see [5–7] and the references therein).
Undoubtedly, Lyapunov’s theory is one of the most common approaches for dealing with the
stability analysis of systems. However, to overcome the conservatism that arises from the use
of Lyapunov’s methods, it has been necessary to develop a number of more effective methods,
for example, fuzzy Lyapunov functions [8, 9]. There are also many important issues that have
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advanced results for T-S fuzzy control systems, such as time delays [10–13], H∞ performance
[3–15], robustness [16, 17], neural networks (NNs), and genetic algorithms (GAs) [18–21].
Furthermore, much work has been published on the design of fuzzy sliding mode controllers
(FSMCs) [22, 23]. An FSMC is composed of an FC and a sliding mode controller (SMC)
[24–26]. An FSMC is a powerful and robust control strategy for the treatment of modeling
uncertainties and external disturbances. Although control performance is good, one still has
to decide on the parameters. This is one of the most important issues in their design.

In the so-called adaptive FSMC (AFSMC), [27–29], an adaptive algorithm is utilized to
find the best high-performance parameters for the FSMC [30, 31]. In recent years, adaptive
fuzzy control system designs have attracted a good deal of attention as a promising way
to approach nonlinear control problems [30, 31]. For adaptive fuzzy control, one initially
constructs a fuzzy model to describe the dynamic characteristics of the controlled system;
then, an FSMC is designed based on the fuzzy model to achieve the control objectives.
After this, adaptive laws are designed (with Lyapunov’s synthesis approach) for tuning the
adjustable parameters of the fuzzy models, and analyzing the stability of the overall system.

Deciding on the fuzzy rules and the initial parameter vector values for the AFSMC is
very important. A genetic algorithm [32–34] is usually used as an optimization technique
in the self-learning or training strategy for deciding on the fuzzy control rules and the
initial values of the parameter vector. This GA-based AFSMC should improve the immediate
response, the stability, and the robustness of the control system.

Another common problem encountered when switching the control input of the FSMC
system is the so-called “chattering” phenomenon. Chattering is eliminated by smoothing the
control discontinuity inside a thin boundary layer, which essentially acts as a low-pass filter
structure for the local dynamics [25]. The boundary-layer function is introduced into these
updated laws to cover parameter and modeling errors, and to guarantee that the state errors
converge within a specified error bound.

In this study, we focus on the design of robust tracking control for a class of nonlinear
uncertain system involving plant uncertainties and external disturbances. First, the nonlinear
system for the tracking of a reference trajectory for the plant [35] is described via fuzzy
models with fuzzy rules. A genetic algorithm is used to find the initial values of the parameter
vector. Then the designed adaptive control laws of the reference adaptive fuzzy sliding mode
controller (RAFSMC) are updated. This GA-based RAFSMC would improve the immediate
response, the stability, and the robustness of the control system. Finally, both the tracking
error and the modeling error approach zero.

2. Reference modeling of a nonlinear dynamic system

The plant is a single-input/single-out nth-order system with n ≥ 1:

ẋ1 = x2,

...

ẋn−1 = xn,

ẋn = f(x) + g(x) ·u + d,

y = x1,

(2.1)

where x = [x1, x2, . . . , xn−1, xn]
T ∈ Rn is the state vector of the system; u ∈ R is the control
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signal; f , g are smooth nonlinear functions; d denotes the external disturbance d(t) which is
unknown but usually bounded.

The states x = [x1, x2, . . . , xn−1, xn]
T are assumed to be available. For example, a single

robot can be represented in the form of (2.1), with n = 2 and x(x1 = θ, x2 = θ̇) being
measurable. Differentiating the output with respect to time for n times (till the control input
u appears), one obtains the input/output form of (2.1):

(n)
y = f(x) + g(x) ·u + d(t). (2.2)

The system is said to have a relative degree n, if g(x) is bounded away from zero.

Assumption 2.1. g(x) is bounded away from zero over a compact set ζ ⊂ Rn,

∣
∣g(x)

∣
∣ ≥ b > 0, ∀x ∈ ζ. (2.3)

If the control goal is for the plant output y to track a reference trajectory yr , the
reference control input r can be defined by the following reference model:

r =
(n)
yr +αn−1

(n−1)
yr +αn−2

(n−2)
yr + · · · + α1ẏr + α0yr, (2.4)

where αn−1, αn−2, . . . , α1, α0 are chosen such that the polynomial �n + αn−1�
n−1 + αn−2�

n−2 + · · ·+
α1� + α0 is Hurwitz, and � here denotes the complex Laplace variable.

If f(x), g(x) are known, and assumption 2.1 is satisfied, the control law can defined
by

u =
−f(x) − d(x) −

(

αn−1
(n−1)
y + · · · + α1ẏ + α0y

)

+ r

g(x)
, ∀x ∈ S. (2.5)

Substituting (2.5) into (2.1), the linearized system becomes

( (n)
yr −

(n)
y
)

+ αn−1

( (n−1)
yr −

(n−1)
y

)

+ · · · + α1
(

ẏr − ẏ
)

+ α0
(

yr − y
)

= 0. (2.6)

If we define e = yr−y as the tracking error, then the reference control input (2.4) results
in the following error equation:

(n)
e +αn−1

(n−1)
e + · · · + α1ė + α0e = 0. (2.7)

It is clear that e will approach zero if αn−1, αn−2, . . . , α1, α0 are chosen, such that the
polynomial �n + αn−1�

n−1 + αn−2�
n−2 + · · · + α1� + α0 is Hurwitz.
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Figure 1: The fuzzy logic controller system.

3. Development of a GA-based FSMC

In general, people describe the decision-making process using linguistic statements, such
as “IF something happens, THEN do a certain action.” For example, let us look at a rule:
“IF the temperature is high, THEN the power of the heater is low.” In this statement both
“high” and “low” are linguistic terms. Although this kind of linguistic rule is not precise,
humans can use them to make correct decisions. To utilize such fuzzy information in a
scientific way, mathematical representation of the fuzzy information is needed. Fuzzy set
theory and approximate reasoning are two ways that such linguistic information can be dealt
with mathematically. A review of the literature provides the theoretical foundation for the
developed fuzzy logic controller. The configuration of the fuzzy logic controller is shown in
Figure 1.

The basic concepts for fuzzy sets and fuzzy logic are briefly described below.
(1) Fuzzy set, fuzzifier, and membership function. Let X denote the universe of discourse.

A fuzzy set A in X is characterized by a membership function μA : X→ [0, 1], with μA(x)
representing the grade of membership of x ∈ X in fuzzy set A. For example, the Gaussian-
shaped membership function is represented as μA(x) = exp(−((x −m)/σ)2), where m is the
center and σ denotes the spread of the membership function.

(2) Fuzzy rule base and fuzzy inference engine. Each rule Rj in the fuzzy rule base can be
expressed as

Rj : IF x1 is A1j and · · · xn is Anj , THEN y is Bj ; and μRj (χ) =
n⋂

i=1

μAij

(

xi
)

. (3.1)

(3)Deffuzzifier. The defuzzifier maps a fuzzy setA inX to a crisp point x ∈ X. There are
several defuzzification methods described in the literature. The most popular is the weighted
average defuzzification method defined as y =

∑N
j=1θj ·μRj (χ)/

∑N
j=1μRj (χ).

The FSMC is composed of a sliding mode controller and an FLC. This makes it a
powerful and robust control strategy for the treatment of modeling uncertainties and external
disturbances. The sliding mode plant combined with the FLC is shown in Figure 2.

Genetic algorithms (GAs) are parallel, global search techniques derived from the
concepts of evolutionary theory and natural genetics. They emulate biological evolution by
means of genetic operations such as reproduction, crossover, and mutation. GAs are usually
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Sliding mode
function

GA

FSMC Plant

State

Si

x(t)

eim

u

Figure 3: GA-based FSMC.

used as optimization techniques and it has been shown that they also perform well with
multimodal functions (i.e., functions which have multiple local optima).

Genetic algorithms work with a set of artificial elements (binary strings, e.g.,
0101010101) called a population. An individual (string) is referred to as a chromosome, and a
single bit in the string is called a gene. A new population (called offspring) is generated by the
application of genetic operators to the chromosomes in the old population (called parents).
Each iteration of the genetic operation is referred to as a generation.

A fitness function, specifically the function to be maximized, is used to evaluate
the fitness of an individual. The offspring may have better fitness than their parents.
Consequently, the value of the fitness function increases from generation to generation. In
most genetic algorithms, mutation is a random-work mechanism to avoid the problem of
being trapped in a local optimum. Theoretically, a global optimal solution can be found.

Offspring are generated from the parents until the size of the new population is equal
to that of the old population. This evolutionary procedure continues until the fitness reaches
the desired specifications. However, in a specific application, the fitness specification might
be used to stop the evolutionary process. In most applications, the optimal fitness value is
totally unknown. In this case, the evolutionary process is interrupted either by stabilization
of the fitness value (the variation is below a specific value) or by reaching the maximum
number of generations.

Knowledge acquisition is the most important task in the fuzzy sliding mode controller
design. The initial values of the entries in the consequent parameter vector are decided by
the self-organizing of FSMC system which developed based on GA. The configuration of this
system is shown in Figure 3.
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The learning procedure for the GA-based FSMC is summarized as follows.
(1) The fuzzy rule base of FSMC (with fixed premise parts and random consequence

parts) is constructed. For example, FSMC for system (2.1):

FSMC :

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪
⎩

R
(i)
1 : IFS is PB(4 , 0.424) THENu is û(i)1

(

θ̂
(i)
1

)

,

R
(i)
2 : IFS isPM(3.2 , 0.424) THENu is û(i)2

(

θ̂
(i)
2

)

,

...

R
(i)
N : IFS isPB(−4 , 0.424) THENu is û(i)N

(

θ̂
(i)
N

)

,

(3.2)

where û(i)j is an unknown linguistic label for the control u; θ̂(i)j is the adjustable parameter,
which have to be encoded as binary strings for genetic operations.

(2) Encode each parameter, θ̂(i)j (i = 1, 2, . . . ,M; j = 1, 2, . . . ,N), to a d-bit binary code,

P
(i)
j (h) = (b1

j b
2
j · · · b

d
j )(h) = enc(θ̂(i)j (h)), where b1

j , b
2
j , . . . , b

d
j ∈ {0, 1} and enc(∗) denote the

encoding operator which encodes the real values to the corresponding binary codes and
synthesizes the chromosome of the ith individual.

(3) Establish the population for generation h, Pj(h) = {P (1)
j (h), P (2)

j (h), . . . , P (M)
j (h)},

where M is the population size, and every individual P (i)
j (h) corresponds to a binary-code

parameter of an FSMC candidate.
(4) Evaluate the fitness value of each individual. The fitness function F is defined

as F = 1/(w‖s(k)‖ + v‖u(k)‖ + ε0), where k = int(t/Δt) denotes the iteration instance;
Δt is the sampling period; int(∗) is the rounding off operator; w and v are positive
weights; ε0 is a very small positive constant used to avoid the numerical error of dividing
by zero.

(5) Based on the fitness value of the individual, keep the best and apply the genetic
operators. Assuming that the population size M is 12, pick the top ten-fitted individuals
in Pj(h) to apply as genetic operators, that is, reproduction, crossover, mutation (assuming
the mutation rate is 0.03125), and keep the top two fitted individuals to generate a new
population Pj(h + 1), as the offspring of Pj(h).

(6) Decode each binary code to its real value and use this to calculate the control u,
then apply u to the system (2.1).

(7) Set h = h + 1; go to Step 2, and repeat the aforementioned procedure until F ≥ FM
or h ≥ H, where FM and H denote an acceptable specific fitness value and the top generation
number, respectively, as specified by the designer.

In general, there are at least four methods for the construction of a fuzzy rule base: (1)
from expert knowledge or operator experience; (2) modeling an operator’s control action; (3)
modeling a process; (4) generating fuzzy rules by training, self-organizing, and self-learning
algorithms. In Figure 3, GA is used as the learning and training mechanism. The use of the GA
means that the second, third, and fourth approaches also provide an efficient way to obtain
a fuzzy rule base. Although there are several methods that can provide excellent results
in this kind of modeling [36–38], we are convinced that GAs are the most advantageous
way to extract an optimal, or at least suboptimal fuzzy rule base for the initial values of the
consequent parameter vector of the FSMC or AFSMC.
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4. GA-based RAFSMC for nonlinear systems

A schematic representation of the GA RAFSMC system is shown in Figure 4. If f(x), g(x) are
known, we can design the FLC (4.1) to approximate u:

u(θ) =
m∑

k=1

Rk

(

−
(∥
∥Si − Cki

∥
∥

β

)2)

· θk, (4.1)

where m is the sum of the fuzzy rules, θk, that is, |θk| ≤ θmax indicate the adjustable
consequent parameters of the FLC, and R(S) = [R1(S), R2(S), . . . , Rm(S)]

T is the vector of
fuzzy basis function [23] which is defined as

Rk(S) = Rk

(∥
∥Si − Cki

∥
∥
)

=
∏n

i=1μk(‖Si − Cki‖)
∑m

k=1

[

∏n
i=1μk(‖Si − Cki‖)

] , (4.2)

where k = 1, . . . , m and i = 1, . . . , n with μk represent the degree of membership. The Si in μk
can be chosen by

μk
(∥
∥Si − Cki

∥
∥
)

= exp
(

−
(∥
∥Si − Cki

∥
∥

β

)2)

. (4.3)
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Since here n, the sum of input variables, is only one, we know that

Rk(S) =
μk
(

S − Ck

)

∑m
k=1 μk

(

S − Ck

) , (4.4)

where k = 1, . . . , m with μk represent the degree of membership. The S in μk can be chosen
by μk(‖S − Ck‖) = exp(−(‖S − Ck‖/β)2).

From the approximation property of the fuzzy system, an uncertain and nonlinear
plant can be well approximated and described via a fuzzy model with FLC rules to achieve
the control object [14, 39, 40].

Assumption 4.1. For x ∈ ζ ⊂ Rn, there exists an adjustable parameter vector θ = [θ1, θ2,

. . . , θm] T such that the fuzzy system u(S, θ) = θ
T
R(S) can approximate a continuous function

u with accuracy εmax over the set ζ, that is, ∃ θ, such that

sup |u(S, θ) − u(S) | ≤ εmax, ∀S ∈ ζ. (4.5)

Let θ̂ denote the estimate of θ at time t. Now, we can define the estimated control
output û(S, θ̂) by

û(S, θ̂) =
m∑

k=1

θ̂k · Rk(S) = θ̂TR(S), (4.6)

and decide on the initial values of the consequent parameter vector θ̂ = [θ̂1, θ̂2, . . . , θ̂m]
T

based
on the genetic algorithm.

First, define the parameter error vector at time t by θ̃ = θ − θ̂, and then

θ̃TR(S) = u(S, θ) − û(S, θ̂). (4.7)

According to assumption 4.1, we can define the modeling error

ε = u − u(S, θ), (4.8)

where |ε| ≤ εmax.
We can say that

u = û(S, θ̂) + θ̃TR(S) + ε. (4.9)

Now, by substituting (4.9) into (2.5), we obtain the error dynamic equation:

(n)
e +αn−1

(n−1)
e + · · · + α1ė + α0e = g(x) ·

(

θ̃TR(S) + ε
)

. (4.10)
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We now define the augmented error as

S = βn−1
(n−1)
e + · · · + β1ė + β0e, (4.11)

where βn−1, . . . , β1, β0 in (4.11), and αn−1, . . . , α1, α0 in (4.10) are chosen such that

M̂(�) =
βn−1�

n−1 + · · · + β1� + β0

�n + αn−1�n−1 + · · · + α1� + α0
=
N(�)
D(�)

(4.12)

is strictly positive real (SPR) transfer function, and N(�) and D(�) are coprime. Now, S and
g(x)·(θ̃TR(S) + ε) can be related by

L
{

S(t)
}

= M̂(�)·L
{

g(x) ·
(

θ̃TR(S) + ε
)}

, (4.13)

where L{ ·} is the Laplace transform of the function, and � denotes the complex Laplace
transform variable.

If we define em = [e, . . . ,
(n−1)
e ]

T

as the states of (4.10), then (4.10) can be realized as

ėm(t) = Λ · em(t) + b ·
[

g(x) ·
(

θ̃TR(S) + ε
)]

, (4.14)

S(t) = cTem(t), (4.15)

where

Λ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0

0 0 0 · · · 0 1

−α0 −α1 −α2 · · · −αn−2 −αn−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

n×n

c = [ β0 β1 · · · βn−1]
T , let βn−1 = 1.

, b =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

0
...

0

0

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

n×1

, (4.16)

According to the Kalman-Yakubovich lemma, when M̂(�) is SPR, there exist symmetric and
positive definite matrices P and Q such that

PΛ + ΛTP = −Q,

Pb = c, for i = 1, . . . , p.
(4.17)

Next, we investigate the asymptotic stability of the origin using Lyapunov’s function
candidates. First, define a Lyapunov candidate function as

V
(

em, θ̃
)

= η · eTmPem + θ̃TH11θ̃, (4.18)
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where η is a positive constant representing the learning rate

θ̃ = [ θ̃1 θ̃2 · · · θ̃m]
T
, H11 = g(x) · Im×m,

θ̃TH11 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

g(x) · θ̃1 0 · · · 0

0 g(x) · θ̃2 · · · 0
...

...
. . . 0

0 0 · · · g(x) · θ̃

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

m×m

, m : the sum of the fuzzy rules.
(4.19)

If eTmPem > φ2, the derivate of V ( em , θ̃ ) along the trajectories of the system should
be negative definite for all nonlinearities that satisfy a given sector condition (Lyapunov’s
stability):

V̇
(

em, θ̃
)

= η ·
(

ėTmPem + eTmPėm
)

+ 2θ̃TH11
˙̃θ. (4.20)

As mentioned above θ̃ = θ − θ̂, and we can infer that ˙̃θ = − ˙̂θ, and

V̇ = η ·
(

eTmΛ
TPem + eTmPΛem

)

+ 2η · eTmPb·
[

g(x) ·
(

θ̃TR(S) + ε
)]

+ 2 · θ̃TH11
(

− ˙̂θ
)

= η · eTm(−Q)em + 2η ·S ·
[

g(x) ·
(

θ̃TR(S) + ε
)]

+ 2 · θ̃TH11
(

− ˙̂θ
)

.
(4.21)

In general, chattering must be eliminated for the controller to perform properly. This
can be achieved by smoothing out control discontinuity in a thin boundary layer neighboring
the switching surface. To amend the modeling error ε and the chattering phenomenon,
we propose a modified adaptive law (4.22) with which to tune the adjustable consequent
parameters of the RAFSMC:

˙̂θ = η · |S| ·R(S) · sat
(
S

Φ

)

. (4.22)

The thin boundary layer function sat(S/Φ) is defined as

sat
(
S

Φ

)

=

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪
⎩

1, if
(
S

Φ

)

> 1,
(
S

Φ

)

, if − 1 ≤
(
S

Φ

)

≤ 1,

−1 , if
(
S

Φ

)

< −1,

(4.23)

where Φ > 0 is the thickness of the boundary layer.
If we substitute (4.22) into (4.21), then (4.21) becomes

V̇ = −η · eTmQem + 2η ·S ·
[

g(x) ·
(

θ̃TR(S) + ε
)]

− 2η · |S| ·
[

g(x) · θ̃TR(S)
]

· sat
(
S

Φ

)

. (4.24)
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When |S| > Φ, then

V̇ = −η · eTmQem + 2η · eTmc ·
(

g(x) · ε
)

≤ −η ·
∥
∥em

∥
∥

2 ·Q + 2η ·
∥
∥em

∥
∥ · ‖c‖ ·

∥
∥g(x) · ε

∥
∥

≤ −η ·
∥
∥em

∥
∥ ·
[∥
∥em

∥
∥ · Q − 2‖c‖·

∥
∥g(x)· ε

∥
∥
]

.

(4.25)

If μ is positive and small enough, then φ > 0 and σ > 0, such that

{
φQ
√
P
− 2‖c‖ ·

∥
∥g(x) · ε

∥
∥

}

> σ, (4.26)

where eTmPem > φ2.
It is real that V̇ ≤ −η · ‖em‖ ·σ if eTmPem > φ2 and |S| > Φ, and hence V̇ < 0. Thus V will

gradually converge to zero as all the ς.
Based on the above inference and Lyapunov’s stability theory, em will gradually

converge inside the bounded zone |em| ≤ (φ/
√
P,Φ/β0 ). The tracking error and the modeling

error will then both approach zero.

Theorem 4.2. Consider a nonlinear uncertain system
(n)
y = f(x) + g(x) ·u + d that satisfies the

assumptions (θ, θ̂). Suppose that the unknown control input u can be approximated by û(S, θ̂) as
in (4.6). Now, S is given by (4.15), and Q is a symmetric positive definite weighting matrix.

5. Numerical simulation

In this section, the proposed GA-based RAFSMC is demonstrated with an example of the
control methodology.

Consider the problem of balancing an inverted pendulum on a cart as shown in
Figure 5. The dynamic equations of motion of the pendulum are given below [27]:

ẋ1 = x2,

ẋ2 =
g· sin(x1) − aml x2

2 sin(2x1)/2 − a cos(x1) ·u
4l/3 − aml cos2(x1)

,
(5.1)

where x1 denotes the angle (in radian) of the pendulum from the vertical; and x2 is the
angular vector. Thus the gravity constant g = 9.8 m/s2, wherem is the mass of the pendulum,
M is the mass of the cart, l is the length of F (input force), s is the force applied to the cart (in
Newtons), and a = 1/(m +M). The parameters chosen for the pendulum in this simulation
are m =0.1 kg, M =1 kg, and l =0.5 m.

The control objective in this example is to balance the inverted pendulum in the
approximate range x ∈ (−π/2 , π/2). The GA-based RAFSMC designed based on the
procedure discussed above will have the following steps.

Step 1. Specify the response of the control system by defining a suitable sliding surface

S = cTem = 5e + ė [27]. (5.2)
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Figure 5: Inverted pendulum system.
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Figure 6: Angle response of the pendulum with the initial condition x1(0) = 30◦.

Step 2. Construct the fuzzy rule base (3.2) and the fuzzy models (4.6) based on the genetic
algorithm. After carrying out the abovementioned genetic-based learning procedure, the
number of individual strings is 10, the size of population M is 12, the crossover rate is 0.8333,
the mutation rate is 0.03125, and the maximum number of the generations H is 15. Now, the
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Figure 7: Control force in the pendulum system with the initial x1(0) = 30◦.
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Figure 8: Angle response of the pendulum with the initial condition x1(0) = 60◦.

initial values of the consequent parameter vector θ̂ for the GA-based RAFSMC can be chosen
as follows:

[ 1, 0.6263, 0.4113, 0.2100, 0.0850, 0 ,−0.0850,−0.2100,−0.4113,−0.6263, − 1]T . (5.3)

Step 3. Apply the controller as given by (4.6) to control the nonlinear system (2.1). Now, let
η = 10, Φ = 0.3, and adjust θ̂ by the adaptive law as given by (4.22).

Therefore, based on Theorem 4.2, the proposed GA-based RAFSMC can asymptoti-
cally stabilize the inverted pendulum. The simulation results are illustrated in Figures 6–9.
The initial conditions are x1(0) = 30◦, 60◦, and x2(0) = 0.
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Figure 9: Control force in the pendulum system with the initial condition x1(0) = 60◦.

Figures 6–9 show that the inverted pendulum system (compare with Yoo and Ham
[27]) is rapidly, asymptotically stable because the system trajectory starts from any nonzero
initial state, to rapidly and asymptotically approach the origin.

6. Conclusion

The stability analysis of a GA-based reference adaptive fuzzy sliding model controller for
a nonlinear system is discussed. First, we track the reference trajectory for an uncertain and
nonlinear plant. We make sure that it is well approximated and described via the fuzzy model
involving FLC rules. Then we decide on the initial values of the consequent parameter vector
θ̂ via a GA. Next, an adaptive fuzzy sliding model controller is proposed to simultaneously
stabilize and control the system. A stability criterion is also derived from Lyapunov’s direct
method to ensure stability of the nonlinear system. Finally, we discuss an example and
provide a numerical simulation. From this example, we see that the stability of the inverted
pendulum system is ensured because the trajectories from nonzero initial states approach
to zero by proposed controller design, and the results demonstrate that with this control
methodology we can rapidly and efficiently control a complex and nonlinear system.
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