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1. Introduction

Costas arrays were introduced as frequency hopping patterns with ideal autoambiguity
properties by Dr. Costas [1, 2], in an effort to improve SONAR performance. Unable to find
a general construction technique himself, he approached Professor Solomon Golomb, who
published [3] and proved [4] two generation techniques for Costas arrays, both based on the
theory of finite fields, known as the Welch and the Golomb-Lempel methods, respectively.
These are still the only general construction methods for Costas arrays available today.

In multiuser and multiplexing systems it is desirable that the signals used have low
cross-correlation, in order to minimize cross-talk. While Costas arrays are known for (and,
indeed, defined by) their ideal autocorrelation, they typically exhibit poor cross-correlation.
Subfamilies of Costas arrays with low cross-correlation are, therefore, particularly suitable
for such applications. In this paper, we examine the cross-correlation of pairs of Costas
arrays related by a horizontal and/or a vertical flip, in order to identify array pairs with
good cross-correlation properties. Such a small family will be sufficient in some applications,
for example, when a small number of SONARs/RADARs (4 or less) operate in the same
geographical area (otherwise larger families will need to be considered, but this study lies
outside the scope of this paper).
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Figure 1: Labeling of rotations and reflections of a Costas array. I, the original array; R, a 90◦ rotation CCW;
ST = R2, a 180◦ rotation; R3, a 270◦ rotation CCW; RT , a reflection about the main antidiagonal; S = R2T , a
horizontal flip; R3T , a reflection about the main diagonal; and T , a vertical flip.

Regarding the layout of the paper, in Section 2 we give the definition of Costas arrays
and describe the construction methods available. In Section 3, we review the literature on
cross-correlation properties of Costas arrays. In Section 4, we prove the reflective symmetry
property of Welch Costas arrays. Section 5 states and proves bounds on the cross-correlation
of pairs of Costas arrays in the same family.

2. Costas arrays: definition and algebraic constructions

Definition 2.1. Let [n] := {1, . . . , n}, n ∈ N and consider a bijection f : [n] → [n]; f is a Costas
permutation if and only if for all i, j, k such that 1 ≤ i, j, i + k, j + k ≤ n,

f(i + k) − f(i) = f(j + k) − f(j) =⇒ i = j or k = 0. (2.1)

A Costas array Af is the permutation array corresponding to a Costas permutation f .
This correspondence is a matter of convention: we choose here the convention that the jth
element of the permutation indexes the position of the (unique) 1 in the jth column of the
array, j ∈ [n], counting from top to bottom in the usual array convention: f(i) = j ⇔ a

f

j,i = 1.
It is customary to refer to (and denote) the 1s of a permutation array as “dots” and to 0s as
“blanks.” Definition 2.1 is equivalent to the statement that all distance vectors (f(i)−f(j), i−j),
where i > j, between pairs of dots in a Costas array are distinct (note that we take the second
coordinate to be nonnegative).

An example Costas array is shown in the top left of Figure 1. Note that the image of
a Costas array under rotation by 90◦, horizontal or vertical flips, and transposition is still a
Costas array: each Costas array generates a family of eight members (or four, if the array is
symmetric) also shown in the figure. The notation used signifies the generation of this family
using two operators: R, a 90◦ rotation counterclockwise (CCW), and T , a vertical flip. We
also define for convenience S = R2T to be the horizontal flip, in which case we also have
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that R2 = ST = TS, the double (horizontal and vertical) flip. The numbers under each array
correspond to the permutation indexing it.

Every Costas array of size n ≤ 27 has been found by exhaustive computer search [5–7]:
they add up to about 150 000 arrays in total.

The two known construction methods for Costas arrays are based on finite field
techniques; each one has several submethods/variants [3, 4, 8]. In the sequel we will work
exclusively with the main methods.

Theorem 2.2 (Welch construction W1(p, α, c)). Let p be a prime, let α be a primitive root of the
finite field F(p) of p elements, and let c ∈ [p − 1] − 1 be a constant; then, the function f : [p − 1] →
[p − 1] where f(i) = αi−1+c mod p is a bijection with the Costas property.

The reason for the presence of −1 in the exponent is that when c = 0, 1 is a fixed point
f(1) = 1. We refer to arrays generated with c /= 0 as circular shifts of the array generated by
c = 0 for the same p and α. Welch Costas arrays have antireflective symmetry (see below, and
see also [9]).

Definition 2.3. Let f : [2n] → [2n]; f has antireflective symmetry if and only if

f(n + i) + f(i) = 2n + 1, i ∈ [n], (2.2)

which means, in other words, that the right half of Af is the vertical flip of the left half.

Theorem 2.4 (Golomb construction G2(p,m, a, b)). Let p be a prime, m ∈ N, and let α, β be
primitive roots of the finite field F(pm) of q = pm elements; then, the function f : [q − 2] → [q − 2]
where αi + βf(i) = 1 is a bijection with the Costas property.

If α = β, the array is known as a Lempel Costas array, and is symmetric about the main
diagonal.

3. Cross-correlations of Costas arrays

Definition 3.1. Let f, g : [n] → [n], n ∈ N, and let u, v ∈ Z; the cross-correlation between f
and g at (u, v) is defined as

Ψf,g(u, v) =
∣
∣
{

(f(i) + u, i + v) : i ∈ [n]
} ∩ {

(g(i), i) : i ∈ [n]
}∣
∣. (3.1)

In other words, in order to find the cross-correlation of two Costas arrays Af and Ag

of order n at (u, v), we place the two arrays on top of each other, slide the first v columns
horizontally and u rows vertically, and count the number of pairs of dots that overlap. We
will also use the notation ΨAf ,Ag instead of Ψf,g .

There are few previous works on cross-correlations of Costas arrays in the literature.
The closest to the subject of this paper is O’Carroll et al. [10] (further details about its
relevance to the present work will be given in Section 5). Titlebaum and Maric [11] proved
that the maximal cross-correlation of two Welch or Lempel Costas arrays generated from
reciprocal primitive roots of an odd prime is 2. They also proved that the upper bound
on the maximum of the cross-correlation of two Welch Costas arrays of order n is n/2,
and established that primes of certain forms had good or bad cross-correlation bounds, for
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example, they showed that the upper bound on the maximum of the cross-correlation of a
pair of Welch Costas arrays is realized for primes equivalent to 1 modulo 4.

Drumheller and Titlebaum [12] derived upper bounds on the maximal cross-
correlation of two Golomb or two Welch Costas arrays, both in terms of the relative powers
of the generating primitive elements.

Rickard has previously proposed that the upper bound on the maximal cross-
correlation of a pair of Golomb arrays of order n, taken over all such possible pairs of different
arrays, is at most (n − 1)/2 [13]. He also proposed that (a) for primes p of the form 2r + 1,
r prime (known as safe or Germain primes), this quantity exhibits local minima, and that
(b) the upper bound on the maximal cross-correlation of a pair of Golomb arrays of order
p − 2, taken over all such possible pairs of different arrays, is one less than the corresponding
quantity for pairs of Welch arrays of order p − 1, taken over all pairs of different arrays that
are not circular shifts of each other, as long as p is not a safe prime.

Finally, Etzion has demonstrated that the maximum of the cross-correlation of any
Costas array with its image under rotation by 180◦ is exactly 2 [14].

4. A symmetry property of the Welch arrays

Welch Costas arrays, as mentioned above, have anti-reflective symmetry (see Definition 2.3),
also known as glide-reflection symmetry (G-symmetry) [14]. For completeness, we present a
proof of this property.

Theorem 4.1. A Welch Costas array has antireflective symmetry.

Proof. Consider the Welch Costas permutation f generated by α in F(p); then, for all i ∈
[(p − 1)/2],

f(i) + f

(

i +
p − 1

2

)

= α+i−1+c + α(p−1)/2+i−1+c = α+i−1+c + p − αi−1+c = p, (4.1)

in view of the fact that α(p−1)/2 ≡ −1 mod p. This completes the proof.

We will make use of this property later in the paper. It should be noted that this
symmetry does not characterize the Welch Costas arrays, that is, there exist non-Welch arrays
with this property. Some conditions on the existence of arrays with antireflective symmetry
were established in [14].

5. Proof of some correlation bounds

In this section we present upper bounds on the cross-correlation values of Costas arrays
related by a flip. More specifically, we divide our results in two groups: those dealing with the
maximum of the cross-correlation and those dealing with the cross-correlation at the origin.

5.1. Bounds on cross-correlation maximum

Freedman and Levanon [15] proved that, for n > 3, the cross-correlation between any two
arrays of the same size will have at least 2 hits. We present a special case where the cross-
correlation between a pair of arrays is exactly 2: the cross-correlation between any Costas
array and its 180◦ rotation has a maximum value of 2.
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Theorem 5.1. Let I be a Costas array of order n > 1; then max(u,v)ΨI,R2(u, v) = 2.

Proof. The key observation is that a rotation by 180◦ generates a Costas array whose distance
vectors are the same as in the original array: letting two dots lie at A = (f(i), i), B = (f(j), j),
where i > j, their images in the rotated array lie at A′ = (n + 1 − f(i), n + 1 − i), B′ = (n + 1 −
f(j), n + 1 − j), n being the order of the array. The distance vectors BA and A′B′ are equal:
(f(i), i) − (f(j), j) = (f(i) − f(j), i − j) and (n + 1 − f(j), n + 1 − j) − (n + 1 − f(i), n + 1 − i) =
(f(i) − f(j), i − j). It follows that a shift will align these pairs, whence max(u,v)ΨI,R2(u, v) ≥ 2
(but note that the shift aligns A with B′ and B with A′).

Assume now that, for this given shift, a third pair of dots become aligned as well, say
C and K, where C is a point in I and K a point in R2: then K has a pre-image in I, say a
point k. We claim that the points A, B, C, and k form a parallelogram, violating the Costas
property: indeed, by the triple alignment we get A′K = BC and B′K = AC, while, by the
observation above, A′K = kA and B′K = kB. It follows that BC = kA, AC = kB, hence AkBC
is a parallelogram and the proof is complete.

As mentioned earlier, this result has also been derived by Etzion ([14, Theorem 2]); we
chose to present it here for completeness, offering a more concise proof. O’Carroll et al. [10]
sketched a proof that the maximal cross-correlation of any two amongst a Golomb array and
its S, T , and ST flips is identically 2.

We now prove two bounds for Welch Costas arrays of order n: first, we show that the
peak of the cross-correlation of a Welch Costas array and its vertical flip T is n/2. Then we
consider the case of a Welch Costas array and its horizontal flip S which yields a rather better
result.

Theorem 5.2. For any antireflective Costas array I of (even) order n and its vertical flip T ,

max
(u,v)

ΨI,T(u, v) =
n

2
. (5.1)

In particular, the result holds true for any Welch Costas array generated in F(p) (where n = p − 1).

Proof. We prove this property by considering the form of three distinct regions of the cross-
correlation. Let f be the permutation corresponding to i. Then, we show that

(i) for all u, ΨI,T(u, v) ≤ 1 when v /=n/2,

(ii) ΨI,T(u, n/2) = 0 when u/= 0,

(iii) ΨI,T(0, n/2) = n/2.

Fixing u and v, we find the number of pairs (i, j) for which

(f(i), i) = (u, v) + (n + 1 − f(j), j) =⇒ f(v + j) = u + n + 1 − f(j) = u + f

(

j ± n

2

)

, (5.2)

where “+” is chosen if j ≤ n/2, and “−” otherwise.
Assuming v /=n/2, this equation has at most one solution j because of the Costas

property. Assuming v = n/2, the equation becomes u = 0, which is satisfied for no j if we
choose u/= 0, but is satisfied for all j ∈ [n/2], that is n/2 values of j, if we choose u = 0. This
completes the proof.
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Theorem 5.3. For any Welch Costas array I and its horizontal flip S,

max
(u,v)

ΨI,S(u, v) = 2. (5.3)

Proof. Let f be the Welch permutation generated in F(p) by the primitive root α and the
parameter c. For fixed values of u and v, we need to find the number of pairs (i, j) for which

(

αi−1+c mod p, i
)

= (u, v) +
(

αp−j−1+c mod p, j
)

(5.4)

whence we get the two equations

αi−1+c mod p = u + αp−j−1+c mod p, i = v + j, (5.5)

namely

αv+j−1+c mod p = u + αp−j−1+c mod p. (5.6)

If this equation is true, it is also true mod p, whence

αv+j−1+c ≡ u + αc−j mod p ⇐⇒ αv−1+cα2j − ugj − αc ≡ 0 mod p. (5.7)

Setting αj = x, we obtain

αv−1+cx2 − ux − αc ≡ 0 mod p. (5.8)

This is an equation of the second degree in a field, and therefore it has at most 2 solutions
for x and thus for j. Note, however, that not all solutions of this equation need actually
also be solutions of (5.6). Note also that, as both I and S are Costas arrays, Freedman and
Levanon’s result [15] guarantees that there are two solutions for at least one pair of values of u
and v.

Theorem 5.4. For any Costas array I of order n > 1,

max
(u,v)

ΨI,G(u, v) ≤ n

2
or

n − 1
2

, (5.9)

depending on whether n is even or odd, respectively, where G is either S or T .

Proof. Assume n even, and assume there exists a shift for which a subset A of (n/2) + 1 dots
of I can be aligned with a subset W of equally many dots of T . I also contains a subset B of
(n/2) + 1 dots, namely the pre-image of W : the distance vectors in B are the vertical flips of
the distance vectors in A.

Observe now that, as no two dots of a Costas array lie in the same row or column,
each distance vector is different from its vertical flip. Assume A contains both a vector x and
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its vertical flip x′, where, without loss of generality, the starting point of x lies to the left of
the starting point of x′. Then B contains both vectors as well, but now the starting point of
x lies to the right of the starting point of x′. This implies that the two pairs of equal vectors
cannot both be collocated, hence I contains at least two equal vectors and is not Costas, a
contradiction.

It follows that distance vectors between points of A are disjoint from distance vectors
between points of B. But this is absurd, since, by the pigeonhole principle, A and B have at
least 2 dots in common, hence they necessarily share a common distance vector.

Assuming n odd, and considering a subset A of (n − 1)/2 + 1 dots of I, we end up, as
before, with another subset B of (n−1)/2+1 dots in I, so that each set contains the vertical flips
of the distance vectors present in the other. But now the pigeonhole principle only guarantees
the two sets have at least one dot in common, so it is necessary to count more carefully.
Indeed, if we assume that the shift aligning A and B has a nonzero vertical component, say
u/= 0, it follows that |u| ≥ 1 dots can belong to neither A nor B, whence |A ∩ B| ≥ 2, that is,
they share a common distance vector, which is impossible.

This implies that the shift aligning A and B is purely horizontal, so that A and B are
vertical flips of each other. The only dot that could possibly lie in A ∩ B then is the (unique)
dot of the central row, and since at least one dot must exist in A ∩ B (or else I would have at
least n + 1 dots), we deduce that no shift is possible. Hence, (n − 1)/2 + 1 = 1 ⇔ n = 1 is the
only possibility.

The argument for G = S is completely analogous. This completes the proof.

Note that, for n even, the upper bound is actually achieved for a Welch Costas array,
while, for n odd, the upper bound is again achieved for a Costas array resulting from the
removal of the corner dot from a Welch Costas array generated with c = 0, in both cases due
to the antireflective symmetry.

5.2. Bounds on origin value of cross-correlation

We now consider some of the bounds regarding the values of the cross-correlation at the
origin, that is, the number of hits for perfect overlay of two arrays. The reason for our
particular interest in the value of the cross-correlation at the origin is, on the one hand,
practical, as it becomes the only relevant value in a multiuser system where users’ clocks
are synchronized, and, on the other hand, theoretical, as it is often much simpler to compute
or estimate than a general value, as we are about to see.

First, we show that a Costas array of even order and its vertical or horizontal flip
(S and T , resp.) do not overlap, while the corresponding result for odd orders is that they
overlap at one point only. Note that we already derived and used part of this result in the
proof of Theorem 5.4.

Theorem 5.5. For any Costas array of order n,

ΨI,B(0, 0) = n mod 2, (5.10)

when array B is either S or T .

Proof. Since a Costas array contains one dot per column and row, ΨI,T(0, 0) will equal the
number of dots a vertical flip leaves fixed: if n is even there is no fixed dot, whereas if n is
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odd exactly one dot remains fixed, namely the one lying on the central row. The horizontal
flip is analogously treated. This completes the proof.

We now sketch a proof that a symmetric Costas array of even order and its rotation
by 90◦ in either direction (R and R3) do not overlap, while the corresponding result for odd
order is that they overlap at one point only.

Theorem 5.6. For any symmetric Costas array of order n,

ΨI,B(0, 0) = n mod 2 (5.11)

when array B is one of R or R3.

Proof. We can show this by observing that a symmetric array’s rotation by ±90◦ is equivalent
to a horizontal or vertical flip and then invoking Theorem 5.5.

Next, we prove that if we overlay a Welch Costas array with its R2 rotation, the number
of hits depends on the array order.

Theorem 5.7. For any Welch Costas array I,

ΨI,R2(0, 0) =

⎧

⎨

⎩

0, for p ≡ 1 mod 4,

2, for p ≡ 3 mod 4.
(5.12)

Proof. A Welch Costas array of size n = p − 1 contains dots at positions

(f(i), i), i ∈ [p − 1] where f(i) = αi−1+c mod p (5.13)

for prime p and a primitive element α of F(p). Its R2 rotation contains dots at positions (p −
f(j), p − j), j ∈ [p − 1].

The value at the origin of the cross-correlation is equal to the largest possible number
of solutions of the simultaneous equations

f(i) = p − f(j), i = p − j. (5.14)

Substituting the latter into the former and using (5.13), we get, after some manipulation,

αi−1+c mod p + αp−i−1+c mod p = p

⇐⇒ αi−1+c + α−i+c ≡ 0 mod p

⇐⇒ αi−1+c ≡ α−i+(p−1)/2+c mod p

⇐⇒ i − 1 ≡ −i + p − 1
2

mod (p − 1)
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⇐⇒ either i − 1 = −i + 3
2
(p − 1)

⇐⇒ i =
3p − 1

4
or i − 1 = −i + p − 1

2

⇐⇒ i =
p + 1

4
.

(5.15)

As i is an integer, these equations can be satisfied if and only if p ≡ 3 mod 4. Therefore, when
p is of this form, we have two solutions, but when p ≡ 1 mod 4, there are no solutions.

Theorem 5.8. For a Golomb Costas array I of order n,

ΨI,R2(0, 0) = n mod 3. (5.16)

Proof. A Golomb Costas array of order n = q − 2 has dots at positions (f(i), i), where

αi + βf(i) = 1, i ∈ [q − 2] (5.17)

for q = pm, p prime, integer m, and primitive elements α and β. Its R2 rotation has dots at
positions (q − 1 − f(j), q − 1 − j), j ∈ [p − 2].

The value of the cross-correlation at the origin is the number of solutions of the
simultaneous equations f(i) + f(j) = q − 1 and i + j = q − 1. It follows that

αj + βf(j) = 1, f(j) = q − 1 − f(i), j = q − 1 − i

=⇒ αq−1−i + βq−1−f(i) = 1

⇐⇒ α−i + β−f(i) = 1

⇐⇒ 1
αi

+
1

βf(i)
= 1

⇐⇒ αi + βf(i)

αiβf(i)
= 1

⇐⇒ 1
αiβf(i)

= 1.

(5.18)

We therefore end up with two simultaneous equations:

αiβf(i) = 1, αi + βf(i) = 1

⇐⇒ (αi)
2 − αi + 1 = 0βf(i) = 1 − αi.

(5.19)
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Setting x = αi, we obtain the quadratic

x2 − x + 1 = 0. (5.20)

Now we consider three cases.

(i) n ≡ 1 mod 3 ⇔ q ≡ 0 mod 3: q is a power of 3, so (5.20) becomes

x2 + 2x + 1 = 0 ⇐⇒ (x + 1)2 = 0 ⇐⇒ x = 2. (5.21)

Since only solution exists, ΨI,R2(0, 0) = 1.

(ii) Otherwise, x solves x2 − x + 1 = 0 if and only if −x solves x2 + x + 1 = 0 ⇔ (x3 −
1)/(x − 1) = 0 ⇔ x3 = 1, x /= 1. This has solutions in F(q) if and only if 3 | q − 1 ⇔
n ≡ 2 mod 3:

(a) n ≡ 2 mod 3: (5.20) has 2 roots in F(q).
(b) n ≡ 0 mod 3: (5.20) has 0 roots F(q).

6. Conclusion

Families of Costas arrays with low cross-correlation are useful in a multiuser setting, where
the necessity for ideal autoambiguity for optimal RADAR/SONAR performance is combined
with the need to minimize cross-interference between different users. We focused on the
special case of the cross-correlation of two Costas arrays related by a horizontal and/or
a vertical flip and considered both general Costas arrays and more specific algebraically
constructed subfamilies.

On many occasions the cross-correlation was found to be low (2 or less), implying that
for a small number of users it is possible to use flipped variants of the same array without
significant interference. Our options increase further if we tie all users to a common clock, in
which case the only cross-correlation value that becomes relevant is that at the origin.

For a larger number of users, larger families of Costas arrays need to be considered;
we relegate this for future work. We have also collected empirical results regarding the cross-
correlation of a Costas array with its image under rotation by ±90◦, or under transposition
(and flips and/or rotations thereof), but so far we have been unable to find provable formulas
for these results.
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