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1. Introduction

The theory of special relativity plays a great role in particle physics. Now, particle
physics is increasingly being linked to engineering applications, via electron microscopy,
superconductivity, nuclear instrumentation, to name a few applications. Since relativistic
formulae are at the heart of all such applications, then it becomes important to find ways to
perform numerical computations related to localized (short-range) relativistic phenomena.
For instance, it is well known that the relativistic version of Schrödinger’s equation, namely,
the Dirac equation, cannot normally be solved over a short interval because it always predicts
that the velocity of the electron is equal to c, or the speed of light. In applications such
as electron microscopy, it becomes therefore usually necessary to abandon the relativistic
formulae and rely solely on the classical theory of electromagnetism. It is therefore clear that
there is a need at the present time to formulate the Dirac and other relativistic equations in a
manner that allows the computation of short-range phenomena. This is the first objective of
this paper.

The second objective of this paper is to show that space-time measurements on
closed-loop trajectories in special relativity and noncommutative properties of operators
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in quantum physics require a more rigorous definition of the method of measurement of
interaction phenomena. The use of the least action principle, for instance, implies some logic
definitions for measuring methods that are based on waves and for measuring methods
that are based on the corpuscular aspects of matter. When measurement is applied to
pulses, those logic definitions include considerations about a possible memory of previous
measurements (space-time operators). Accordingly, a distinction exists between the set of
existing space-time intervals and the set of measured space-time intervals (established using
wave measurement methods and defined within limited space-time intervals).

2. Relativistic short-range electron equation

In this section, we will develop a version of Dirac’s equation that is suitable for pulsed,
short-range electron beams. We will rely on the recently introduced mass-energy equivalence
relationH = mv2 [1] (whereH is the total energy of the electron and v is its velocity), which
has proved to be effective in explaining short-range phenomena. First, a new Hamiltonian
will be obtained. It will be then verified that the new Hamiltonian directly leads to the result
that the velocity of the electron must be equal to ±v, which is of course a result that is in
sharp contrast with Dirac’s result and which does agree with experimental observation. We
will also verify that the spin magnetic moment term obtained by Dirac remains unchanged
in the present formulation.

2.1. The wave equation

We will begin by describing briefly Dirac’s approach for obtaining the relativistic wave
equation and then proceed to derive the modified equation and hence the modified
Hamiltonian. Dirac considered the mass of the particle as represented by its relativistic
expression m = m0/

√
1 − v2/c2. If we square that expression and rearrange the terms, we

get

m2c2 = m2v2 +m2
0c

2. (2.1)

Multiplying by c2, we get

m2c4 = m2v2c2 +m2
0c

4. (2.2)

But sincemc2 is the total energy according to Einstein, then we have

H2 = p2c2 +m2
0c

4. (2.3)

Hence,

H = c
√
p2 +m2

0c
2. (2.4)

Since the term p2 can be written as
∑

rp
2
r , where pr is a one-dimensional momentum

component and r = 1, 2, 3, we finally have

H = c
√∑

r

p2r +m2
0c

2. (2.5)
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This was Dirac’s total energy equation and was subsequently used to obtain the
relativistic wave equation. To obtain the modified wave equation, we now proceed to
multiply (2.1) by v2, getting

m2c2v2 = m2v4 +m2
0c

2v2. (2.6)

UsingH = mv2 as the total energy of the particle, we have, from the above expression,

H2 = p2c2 −m2
0c

2v2. (2.7)

Now, since v2 =
∑

rv
2
r , where vr is a one-dimensional velocity component, (2.7) can

equivalently be written as

H = c
√∑

r

p2r −m2
0

∑

r

v2
r . (2.8)

Equation (2.8) can be further simplified by noting that vr = pr/m. We finally have

H = c

√√√
√
(
1 − m2

0

m2

)∑

r

p2r . (2.9)

Following Dirac’s approach, if we let �p0 be a vector defined as �p0 = �H/c, where �H

may be Hamiltonian of the form �H = (H, 0, 0), we will seek a wave equation that is linear in
�p0. We will take an equation of the most simple, basic form

(

�p0 −
∑

r

�pr
[
αr
]
)

ψ = 0. (2.10)

This form can be sufficient without any additional terms if we do not impose any
restrictions on the matrices [αr]. Dirac found that such matrices must be noncommuting, but
it is obvious here that such matrices must also contain mass terms. Multiplying (2.10) by the
vector (�p0 +

∑
r �pr [αr]), we get

p20 −
(
∑

r

�pr
[
αr
]
)2

= 0. (2.11)

Comparing this last expression with (2.9), we conclude that

(
1 − m2

0

m2

)∑

r

p2r =

(
∑

r

�pr
[
αr
]
)2

=
∑

r

�pr
[
αr
]2
�pTr +

∑

j

∑

k

�pj
[
αj
][
αk
]
�pTk , (2.12)

where j, k = 1, 2, 3, and j /= k. Accordingly, the matrices [αr] must satisfy

[
αr
]
= ±
√

1 − m2
0

m2

[
βr
]
, (2.13)
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where [βr] are matrices that must satisfy the following two conditions:

[
βr
]2 = I,

[
βj
][
βk
]
+
[
βk
][
βj
]
= 0. (2.14)

Examples of such matrices were suggested by Dirac [2]. Theymight take the following
forms among others:

⎛

⎜
⎜
⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

⎞

⎟
⎟
⎠ . (2.15)

(Note that Dirac used 4 × 4 matrices to account for time as the fourth dimension. It
was independently confirmed later that the minimum number of dimensions that will satisfy
Dirac’s theory is in fact four.)

Using the relativistic expression form, the matrices [αr] can now be written as

[
αr
]
= ±
√

1 −
(
1 − v2

c2

)
[
βr
]
= ±v

c

[
βr
]
. (2.16)

Therefore, from (2.12) and (2.16), the vector Hamiltonian can be written as

�H = c �p0 = c
∑

r

�pr
[
αr
] ± v

∑

r

�pr
[
βr
]
. (2.17)

To check the modified theory, it can be now easily verified that the velocity component
ẋ1 will be given by

ẋ1 =
[
x1, �H

]
= ±v. (2.18)

Unlike Dirac’s result, this result is of course in agreement with experimental
observation. It is important to note here that, mathematically, ẋ1 is the “expected” value of
the velocity. From (2.17), we can also see that the negative energy states are still preserved
here.

2.2. Motion of a charged particle in a magnetic field

We now consider the motion of a charged particle in a magnetic field to obtain a formulation
for the spin magnetic moment term that must appear in the final Hamiltonian (we assume
the absence of an electrostatic field here). In the presence of a magnetic field, the change in
the particle momentum Δp that occurs as a result of the interaction with the field is given by
[3]

Δp =
e

c
A, (2.19)

where e is the particle charge andA is themagnitude of the vectormagnetic potential. Adding
that term to the momentum in (2.17) gives the Hamiltonian

�H = ±v
∑

r

(
�pr +

e

c
�Ar

)
[
βr
]
. (2.20)
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By squaring (2.20), we get

H2

v2
=
∑

r

[(
�pr +

e

c
�Ar

)
[
βr
]
]2

+
∑

j

∑

k

(
�pj +

e

c
�Aj

)
[
βj
][
βk
]
(
�pk +

e

c
�Ak

)T
. (2.21)

It is fairly easy to verify that the second term on the r.h.s. of the above expression must
vanish since the �pr vectors commute and since the [βr] matrices satisfy condition (2.14). In
Dirac’s treatment of the subject, he was able to show that the following equation holds:

[(
�pr +

e

c
�Ar

)
[
βr
]
]2(

�pr +
e

c
�Ar

)2

+
�e

c

∥
∥ �M

[
βr
]∥∥, (2.22)

where �M = curl �A is the magnetic field intensity vector. Equation (2.21) therefore becomes

H2 = v2
∑

r

(
�pr +

e

c
�Ar

)2

+ v2 �e

c

∑

r

∥
∥ �M

[
βr
]∥∥. (2.23)

(Note that (2.23) is a scalar equation.) If we now letH = mv2 and divide both sides of
the equation by 2mv2, we get

1
2
mv2 =

1
2m

∑

r

(
�pr +

e

c
�Ar

)2

+
�e

2mc

∑

r

∥∥ �M
[
βr
]∥∥. (2.24)

If the particle is an electron, then e is a negative quantity and the above equation
becomes

1
2m

∑

r

(
�pr +

e

c
�Ar

)2

=
1
2
mv2 +

�|e|
2mc

∑

r

∥∥ �M
[
βr
]∥∥. (2.25)

Without the presence of the magnetic field, the l.h.s. of (2.25) is reduced to

1
2m

∑

r

p2r =
p2

2m
. (2.26)

This is the same as 1/2mv2. We can therefore conclude that the second term on the
r.h.s. of (2.25) is the term that represents the interaction of the field with the electron magnetic
moment. Hence the quantity �|e|/2mc is the spinmagnetic moment coefficient. In general, we
can withdraw here the following two important conclusions: (1) the modified theory fully
yielded the classical expression of kinetic energy with the addition of the spin interaction
term; and (2) the spin interaction term obtained here is the same as the one obtained by
Dirac [2] (which is one Bohr magneton). The second conclusion is a confirmation that this
part of Dirac’s theory was correct. The first conclusion, however, shows a fact that was not
apparent from Dirac’s theory. Specifically, when �M = 0 (i.e., when the particle is away from
the magnetic field lines), (2.25) becomes

1
2m

∑

r

(
�pr +

e

c
�Ar

)2

=
1
2
mv2. (2.27)

This is a direct confirmation of the Aharonov-Bohm effect [4, 5]. Clearly, (2.27) shows
that the components pr of the momentum will be altered while the kinetic energy remains
constant.
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3. Phase and group velocities of short-range electrons

The concepts of the phase velocity and the group velocity are very important concepts that
come into play when short-range phenomena are considered. For instance, de Broglie’s work
predicts that the phase velocity of a matter wave is given by the expression c2/v, which is a
very unrealistic assumption for short-range, slow electrons. We will attempt in this section to
give a better explanation for that problem.

First of all, we must realize that there exists a number of phase velocities, not a single
phase velocity. Now, it is well known mathematically that each phase velocity vp = ωi/ki
and that the group velocity vg = dω/dk (where ω is the angular frequency and k = 2π/λ is
the propagation constant). As was pointed out in [1], the two fundamental relationships of
wave mechanics, λ = h/p and H = hν, together make a statement about the total energy of
a particle; that is, H = (pλ)ν = pu, where u is some velocity. The question here is what is u
exactly? Is it a phase velocity or a group velocity? Apart from the fact that H = pu is a total
energy equation, we must also note, sinceH = �ω and p = �k, that the equation leads to the
relationship ω = ku. Hence we must conclude that

dω

dk
=
ω

k
= u. (3.1)

This means that the group and the phase velocities are the same. This is the conclusion
that we must hold as true for short-range phenomena. Let us now attempt to understand
the origin of the problem. De Broglie’s original derivation of the important relationship λ =
h/p can be found in a number of standard references (see, e.g., [6]). Amazingly, as we will
conclude, while the formula was correct, the approach that was used to derive it was not.

De Broglie started by assuming a wave function that describes a stationary particle of
the form ψ ′ = exp(iω′t′). By using the Lorentz transformation of time t′ = γ(t − vx/c2), then
ψ ′ = exp(iγω′[t − vx/c2]). Since this equation (in principle) is a traveling wave equation,
de Broglie then concluded that the quantity c2/v must represent the velocity of the wave
in the observer frame. The rest of the derivation that leads to the formula λ = h/p is then
straightforward and consists of lettingH = hν = mc2 and substituting the product λν for the
quantity c2/v. As it is well known historically [7, 8], de Broglie later offered the hypothesis
that c2/v is only a “phase” velocity and that the real, or “group” velocity is actually v so that
the particle and its associated wave would not part company. However, as we indicated, the
problem with such a hypothesis is that it directly contradicts the simple conclusion in (3.1).

Let us try to understand the problemwith the above approach that led to the indicated
contradictions. The Lorentz transformation of time t′ = γ(t − vx/c2), which includes the
coordinate x, strictly assumes that “x” is only one geometrical point. From the viewpoint of
a stationary observer, a traveling wave, in the observer’s frame, cannot be described by one
“x” coordinate. The correct approach for including a traveling wave within the relativistic
transformations is to assume first that the “x” coordinate is equal to zero (and hence the time
transformation will be t′ = γt) and then write a true traveling wave equation in the observer
frame, that is,

ψ = exp i(kx −ωt). (3.2)

This was indeed the approach that was taken by Shrödinger and certainly this
explains why Shrödinger’s equation has been unquestionably successful. Now, by noting
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that k = 2π/λ and ω = 2πν, ψ can be written as

ψ = exp i
(
2π
λ
x −ωt

)
= exp iω

(
2π
λ

x

2πν
− t
)

= exp iω
(
x

λν
− t
)
. (3.3)

Assume first that the particle is moving with a velocity v � c so that the relativistic
effects can be ignored. In this case, ordinary (nonrelativistic) wave mechanics state that λν =
v, or the wave velocity. Now, if the relativistic effect is to be included, then the wavelength
λ becomes λ/γ (length contraction) and the frequency ν becomes γν (frequency shift). The
result therefore is that λν is still equal to v. We can see, then, that the flaw in the original
approach that led to the result λν = c2/v was the incorrect use of the Lorentz transformation.

If we now follow the rest of de Broglie’s derivation, but use H = mv2 instead of mc2,
we haveH = mv2 = hν, hence

p = mv =
hν

v
=
hν

λν
=
h

λ
, (3.4)

which is of course de Broglie’s well-known formula. De Broglie was aware that this
relationship can be derived in a number of different ways, and for that reason he raised it
to the level of a postulate. Concerning the approach that was used in deriving it, however, this
is certainly one of the rare cases in science in which an incorrect derivation procedure still led
to the correct result.

4. A Klein-Gordon equation and a De Broglie dispersion relation for
short-range electrons

In this section, we present derivations for a modified Klein-Gordon equation and a modified
de Broglie dispersion relation. The conclusions are: (1) in the case of a massless particle, the
dispersion relation is the same as the original one; and (2) in the case of a massive particle,
we still conclude that the phase and the group velocities are the same, that is, vg = vp = v.

4.1. The Klein-Gordon equation

The derivation of the Klein-Gordon equation starts with the usual relativistic expression (see
[9])

H2 = p2c2 +m2
0c

4. (4.1)

If we now replaceH bymc2 and p bymv, we have

m2c4 = m2v2c2 +m2
0c

4. (4.2)

If we multiply this expression by v2/c2, we get

m2v2c2 = m2v4 +m2
0v

2c2. (4.3)

If we now letH = mv2, we finally have

H2 = p2c2 −m2
0v

2c2. (4.4)
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This is a modified energy-momentum relationship and was in fact derived previously
in [1]. Notice that the quantity m2

0v
2 = p2 −H2/c2. It is therefore a correct representation of

the momentum vector pμ.
To obtain the modified Klein-Gordon equation, we start with the well-known

relationship

∇2ψ = −k2ψ = −p
2

�2
ψ. (4.5)

By substituting from (4.4) into (4.5)we have

−�
2∇2ψ =

(
H2

c2
+m2

0v
2
)
ψ. (4.6)

From Shrödinger’s equation we have

∂2ψ

∂t2
= −H

2

�2
ψ. (4.7)

By substituting from (4.6) into (4.7)we finally get

1
c2
∂2ψ

∂t2
− ∇2ψ =

(
m0v

�

)2

ψ. (4.8)

This is the modified Klein-Gordon equation.

4.2. De Broglie’s dispersion relation

In view of (4.7) and (4.5), the modified Klein-Gordon equation can be written as

− 1
c2

(
ω2

�
2

�2

)
ψ = −k2ψ +

(
m0v

�

)2

ψ, or, ω2
�
2ψ = c2�2k2ψ −m2

0c
2v2ψ. (4.9)

Hence, the modified de Broglie wave dispersion relation is

�
2ω2 = c2�2k2 −m2

0c
2v2. (4.10)

Form0 = 0, we can see that the relation becomes �
2ω2 = c2�2k2, which is of course the

same as in the usual theory.
To obtain the group velocity, vg = dω/dk, we differentiate the dispersion relation with

respect to k, getting (note that only themagnitudes of the vectors p and kwill be represented)

�
2ω

dω

dk
= c2�2k −m2

0c
2v
dv

dk
. (4.11)

Since p = mv = �k and hencem(dv/dk) = �, the above equation becomes

�
2ω

dω

dk
= c2�2k −m2

0c
2 �

2

m2
k (4.12)

or

ω
dω

dk
= c2k − m2

0

m2
c2k = c2k

(
1 −
(
1 − v2

c2

))
= kv2. (4.13)
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Hence,

dω

dk
=
(
k

ω

)
v2. (4.14)

But since dω/dk = vg = v, we then conclude that ω/k = vp = v. The group and the
phase velocities are therefore the same.

5. Logical aspects connected with space-time measurements

After presenting basic aspects in physics from the relativistic point of view, we will present
some logical aspects for basic principles in physics (the principle of constant light in vacuum
in any reference system and the uncertainty principle in quantum theory). We will show
that these principles make use in an implicit manner of terms which are defining also the
conclusion. For example, the idea of constant light speed implies the use of a measuring
method based on a clocks’ synchronization performed using a supposed antecedent light
signal transmitted and reflected toward the observer. In a similar manner, the uncertainty
principle implies the existence of a measuring method for position or time correlated with a
subsequent measurement for momentum or energy (measurements which also make use of
position and time). Yet a logic definition of a physics principle cannot be based on the use of
the same terms in both sides of it; like in the case of an algebraic calculus, the quantity to be
determined must be finally placed in the opposite side of an equality, as related to the already
known quantities joined in a mathematical operation. More precisely, we cannot define in a
rigorous manner a certain term using the same term in the corresponding definition.

5.1. Logical aspects of light speed constance principle

The constant light speed principle (in vacuum) can be considered under the following form.
It exists a quantity light speed in vacuum noted as c, which is constant for any observer inside
an inertial reference system.

We can notice at first step that in an implicit manner the previous definition requires
the existence of a measuring method for light speed in vacuum; any method for measuring
a speed requires the use of time measurements (while v = Δr/Δt). For our case (special
relativity theory), the correspondence of timemoments in different reference systems is based
on a previous synchronization procedure implying an emission of light from an observer
to another and a reflection of this light signal from the other observer to the first one. The
reflection moment (considered as synchronization moment ≡ zero moment) is considered by
the first observer to take place at the middle of the time interval between the initial emission
of light and the return of it. Thewhole chain implies that the use of awave light LW appears in
the definition of the light speed constance principle (in vacuum) under an explicit form (the
notion of light speed), and it appears also under an implicit form (a previous synchronization
based on light signals is required). From the formal logic point of view, this represents a
contradiction [10]. A first attempt to solve it would be in taking into account the fact that
the light speed measurement and the systems synchronization correspond to different time
moments (the light wave considered for systems synchronization corresponds to the zero
moment of time, while the light wave whose speed is considered in light speed constance
principle corresponds to a subsequent moment of time).
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However, the use of such a set of different light waves (a light wave whose speed
has to be measured and a previous pair of emitted-reflected light wave necessary for the
synchronization procedure) implies the use of an extended time interval required by a light
speed measurement as

Tm =
[
t0, tm

]
, (5.1)

where Tm is the time interval required by a light speed measurement at tm time moment. But
at next step we can notice that a speed corresponds to an almost instant moment of time,
being defined as

v = lim
t→tm

Δr
Δt

=
dr
dt
. (5.2)

This requires that the time interval required by a speedmeasurement must be infinitely small.
Thus the time interval necessary for light speed measurement can be written as

Tm =
[
tm −Δt, tm

]
(5.3)

which implies that the corresponding length interval LTm is infinitely small

LTm −→ 0. (5.4)

But this is in contradiction with the previous consideration Tm = [t0, tm]. The corresponding
timelength

LTm = tm − t0 � 0 (5.5)

can be much greater than zero. So the contradiction can be easily proved as

LTM −→ 0 and in the same timeLTm � 0. (5.6)

From the intuitive point of view, this means that a light wave emitted in a certain
reference system interacts in the most general case only on a limited time interval with
another measuring reference system, the use of a previous procedure of emission-reflection
for synchronization being impossible in practice. So the solution of such a contradiction
(determined by implicit aspects of the terms used in definitions) must be found by taking
into consideration other properties of physics entities involved in definition; see also [11].

5.2. Logical aspects of uncertainty principle in quantum mechanics

If we study the uncertainty principle in quantum mechanics, we can notice quite similar
aspects. According to this principle, a measurement performed with a greater accuracy upon
space or time coordinates for a quantum particle must generate a greater error upon a
subsequent measurement for momentum or energy according to

ΔxΔPx ≥ h

4π
(5.7)
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or

ΔtΔE ≥ h

4π
. (5.8)

But the existence of a measuring method for position or time is correlated with a subsequent
measurement for momentum or energy (measurements which also make use of position and
time).

It can be noticed that a term (a space-time measurements) is explained using (in
an implicit manner) the same term at a subsequent moment of time. Without being a
contradiction (like in the case of light speed constance principle), it still remains a recurrent
definition. In the same manner presented for special relativity, we can take into consideration
the different moments of time for space-time measurements. Yet the fact that (in an implicit
manner) the principle requires the use of a measurement performed at a later time moment
generates another logical problem. Can a space-time measurement performed at a certain
moment of time be influenced by previous space-time measurements performed upon the
same quantum particle? When a space-time measurement belongs to the class of space-
time coordinates measurement, and when it belongs to the class of momentum or energy
measurements (performed in an indirect manner using also space-time measurements)?
Under which circumstances a measurement can be considered as an initial action (in this
case its accuracy can be greater) or as a subsequent action (its accuracy having to be less than
a certain value, according to Heisenberg relation)?. The time always appears in quantum
mechanics, while two physical quantities cannot be measured exactly at the same moment of
time.

So a space or time measurement performed at a certain time moment belongs to
the class of subsequent indirect methods for measuring momentum or energy (having as a
consequence a limited accuracy), or to the class of direct methods for measuring space or time
(having a possible greater accuracy). A rigorous classification according to certain patterns
should be made; see also [12], taking into consideration similarities in fundamental physics
laws [13].

5.3. Different-scale system properties used for explaining logical
aspects of pulse measurements

This problem suggests also a possible solution: if we continue our analysis of terms involved
in measuring procedures, we can notice that both basic principles (light speed constance
principle and uncertainty principle) use the term of measuring method. In an implicit
manner, the terms reference system (for special relativity theory) and measuring system (for
quantum theory) appear. Yet a measuring system implies the fact that it is not affected by the
measuring procedure (otherwise, the physical quantity having to bemeasuredwould possess
different values, depending on this interaction). So a first conclusion appears: the measuring
system must be defined at a much larger scale than the body or the wave which interacts
with it. The different scale system properties must be taken into consideration from the very
beginning so as to put them into correspondence with

(i) the class of reference systems, which are not affected by interaction (where wave
trains similar to wavelets can appear [14]);
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(ii) the class of transient phenomena which undergo specific interactions (such
transient phenomena can be represented as solitary waves, while estimations for
the space coordinates for the source of the received wave-train based on space
relations are not suitable for this purpose. As a further consequence, the constance
light speed principle appears as a simple generation of another light wave when
a received wave train arrives in the material medium of the observer reference
system, and the uncertainty principle appears as a spread of a wave corresponding
to a quantum particle by the measuring system, according to a kind of Fourier
transformation performed on limited space and time intervals (the aperture and
a certain working period). Thus logical aspects of the definitions of basic principles
in physics (implying measurements of pulse parameters) can be explained in a
rigorous manner.

6. Aspects connected with measurements on a set of pulses

6.1. Measurements on a set of pulses received on adjoining space-time intervals.
Synchronization aspects

We will justify the previous considerations by presenting the case of measurements for
sequence of pulses received on adjoining space-time intervals. As it is known, the special
relativity theory considers that the Lorentz formulae describe the transformation of the
space-time coordinates corresponding to an event when the inertial reference system is
changed. These formulae are considered to be valid at any moment of time after a certain
synchronization moment (the zero moment) irrespective to the measuring method used.
However, there are some problems connected to the use of mechanical measurements on
closed-loop trajectories. For example, let us consider that at the zero moment of time, in a
medium with a gravitational field which can be neglected (the use of the Galileean form
of the tensor gik being allowed) two observers are beginning a movement from the same
point of space, in opposite directions, on circular trajectories having a very great radius of
curvature. After a certain time interval, the observers are meeting again in the same point of
space. For very great radii of curvature, the movements on very small time intervals can be
considered as approximative inertial (as in the case of the transverse Doppler effect, where the
time dilation phenomenon was noticed in the earth reference system which is approximative
inertial on small time intervals). The Lorentz formulae can be applied on a small time interval
Δt(1) measured by one of the observers inside his reference system, and it results (using the
Lorentz formula for time) that this interval corresponds to a time interval

Δt′(1) =
Δt(1)

√
1 − v(1)2/c2

(6.1)

in the reference system S2 of the other observer, which moves with speed v(1) as related to
the reference system S1 on this time interval. So the time dilation phenomenon appears. If
each observer considers the end of this time interval (Δt(1) orΔt′(1)) as a new zero moment
(using a resynchronization procedure), the end of the second time interval Δt(2) (with the
new zero moment considered as origin) will correspond to a time moment

Δt′(2) =
Δt(1)

√
1 − v(2)2/c2

(6.2)
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measured in the other reference system S2 which moves with speed v(2) as related to system
S1 on the time intervalΔt′(2) (with the new zero moment considered as origin). As related to
the first zero moment (when the circular movement has started) the end of the second time
interval appears at the time moment

t2 = Δt(1) + Δt(2). (6.3)

For the observers situated in reference system S1, and at the time moment

t′(2) = Δt′(1) + Δt′(2)
Δt(1)

√
1 − v(1)2/c2

+
Δt(2)

√
1 − v(2)2/c2

(6.4)

for the other observer.
Due to the fact that

Δt′(1) > Δt(1),

Δt′(2) > Δt(2),
(6.5)

it results that

t′(2) = Δt′(1) + Δt′(2) > Δt(1) + Δt(2) = t(2) (6.6)

and thus a global time dilation for the time intervalΔt(1) +Δt(2) appears. The procedure can
continue, by considering the end of each time interval

Δt(1) + Δt(2) + · · · + Δt(i) (6.7)

as a new zero moment, and so it results that on all the circular movement period, a time
moment

t(k) =
k∑

i=0

Δt(i) (6.8)

(measured by the observer in reference system S1) corresponds to a time moment

t′(k) =
k∑

i=0

Δt′(i) =
k∑

i=0

Δt(i)
√
1 − v2

i /c
2

(6.9)

(measured by the observer situated in reference system S2)which implies

t′(k) > t(k). (6.10)

By joining together all these time intervals Δt(i) we obtain the period of the whole circular
movement T . While the end of this movement is represented by the end of the time interval
Δt(N) in the reference system S1, it results that T can be written under the form

T = t(N) =
N∑

i=0

Δt(i) (6.11)
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(considered in the reference system S1) and it results also that this time moment (the end of
the circular movement) corresponds to a time moment

T ′ = t′(N) =
N∑

i=0

Δt′(i) (6.12)

measured in the reference system S@. While

Δt′(i) =
Δt(i)

√
1 − v(i)2/c2

> Δt(i), (6.13)

it results

T ′ > T. (6.14)

If the time is measured using the age of two twin children, it results that the twin in
reference system S2 is older than the other in reference system S1, (having a less mechanical
resistance of bones) and it can be destroyed by it after both observers stop their circular
movements. However, the same analysis can be made starting from another set of small time
intervalsΔnt

′(i) considered in the reference system S2 which corresponds to a new set of time
intervals Δnt(i) considered in the reference system S2 (established using the same Lorentz
relation) and finally it would result that the period of the circular movement T ′ measured
in system S2 corresponds to a period T greater than T ′ considered in reference system S1. If
the time is measured using the age of two twin children, it results that the twin in reference
system S1 is older than the other in reference system S2, (having a less mechanical resistance
of bones) and it can be destroyed by it after both observers stop their circular movements.
But this result is in logic contradiction with the previous conclusion, because a man cannot
destroy and in the same time be destroyed by another man [15].

As a first attempt of solving this contradiction, one can suppose that Lorentz formulae
are valid only for electromagnetic phenomena (as in the case of the transversal Doppler
effect) and not in case of mechanical phenomena. But such a classification is not a rigorous
classification, being not suitable for formal logic. In next section, we will present a more
rigorous classification of phenomena used in space-time measurements, which can be used
for gedanken experiments using artificial intelligence based on formal logic.

6.2. Classification of space-time measurement methods
based on memory of previous measurements

The logical contradiction presented in previous section appeared due to the fact that an
element with internal memory has been used. The indication of this element has not been
affected by the resynchronization procedure. In modern physics such an element with
internal memory is connected with the corpuscular aspect of matter with a body. On the
contrary, ameasuring procedure based on an electromagnetic or optic wave train is a transient
phenomenon. The synchronization of clocks is possible only after the wave-train arrives
at the observer. Excepting a short time interval after the reception the received wave train
does not exist inside the observer medium, so there is not any space area where a physical
quantity which characterizes the wave to cumulate. That is the reason why a correct solution
of the twins paradox must be based not on the association of electromagnetic (or optic)
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phenomena with the Lorentz formulae, but on the association of the Lorentz formulae
with wave phenomena describing the propagation of a wave inside the observers reference
systems. The wave class is more general than the class of electromagnetic and optic waves
(we can mention the wave associated with particles in quantum mechanics). Besides, in the
most general case, the interaction between two reference systems appears under the form
of a field, not under the form of a material body. Moreover, this aspect implies an intuitive
interpretation for the dependence of the mass of a body inside a reference system.

Using the formal logic, all we have shown can be presented in a rigorous manner.
(a) We define the notion of “propagation” phenomenon in two inertial reference

systems (the system where the event takes place and the system where a signal generated by
the event is noticed) as a phenomenon having a finite existence inside the reference system,
the number of intervals being finite.

(b) We define the notion of corpuscle inside a certain reference system as a
phenomenonwhich can possess an unlimited evolution in time and space inside the reference
system; it can be also said that the phenomenon has its own existence, it exists by itself.

(c) We define the emission of a wave-train Ue in a reference system and its
transformation in another train when it interacts with the observers medium

Definition 6.1. There exist an area S0e and a time interval T0e in the reference system where
the emission takes place so that

Fue
(
S0e, T0e

)
/= 0, Fue

(
S0e, t

)
= 0 for t /∈ T0e. (6.15)

There exist a space area S0r and a time interval T0r in the observer reference system, and a
relation Tr so that

Fur
(
S0r , T0r

)
= Tr
[
Fue
(
S0e, T0e

)]
,

Fur
(
S0r , T0r

)
/= 0, Fur

(
S0r , t

)
= 0 for t /∈ T0r .

(6.16)

(d)We define the transformation of a sequence of received pulses ΣkUek in a sequence
ΣkUrk, k = 1 · · ·n after interaction with the observers reference system, by considering that
each pulse (wave-train) is transformed in an independent manner by the material medium
of the observer reference system, according to its specific Lorentz transformation

Definition 6.2. Consider

Urk = Lk[Ue]k,

ΣkUek = ΣkUrk,
(6.17)

where Lk represents the Lorentz transformation performed upon the Uek wave by the
system with the interaction moment of this wave with the material medium of the observer
considered as zeromoment of time (synchronizationmoment) for the Lorentz transformation
Lk.

(e)Wedefine the interaction between a sequence of pulses and thematerial body of the
observer reference system (a corpuscle) as an interaction function Int between the material
medium and each transformed pulseUrk corresponding to a received pulseUek, the massm
of the body measuring the influence of the received wave-trainUek upon the body.
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Definition 6.3. Consider

1
m

= Int
[
Urk
]
= Int

[
Lk(Ue)k

]
. (6.18)

When Lorentz transformation Lk does not generate a pulseUrk (e.g., when the relative
speed between the material body and the wave is equal to c, the speed of light in vacuum),
the mass m is equal to ∞, which means that no interaction due to the received pulse Uek
exists (an idea which connects the notion on infinite mass with the absence of interaction).
Som = ∞ for a body inside a reference system S shows that we cannot act upon the material
body using wave pulses emitted in system S; however, changes in the movement of the body
(considered in system S) due to other external forces seem to be allowed.

By interaction with a certain material medium, each pulse is transformed according
to Lorentz formulae, and the modified parameters of each pulse must replace the previous
informations in the memory cells.

7. Associating a certain wave train to Lorentz transformation

7.1. The necessity for associating a wave function to the Lorentz transformation

The Lorentz transformation is usually represented as a matrix L which acts upon a
quadridimensional column vector r having the components r1 = x, r2 = y, r3 = z, r4 = ict,
resulting in another quadridimensional vector r∗ having the components r ′1 = x

′, r ′2 = y
′, r ′3 =

z′, r ′4 = ict′, where x, y, z, t are the space-time coordinates corresponding to a certain event in
an inertial reference system S, and x′, y′, z′, t′ are the space-time coordinates corresponding
to the same event measured in an inertial reference system S′ which moves with velocity v (a
vector) against the system S. This means

r ′ = L(v)r. (7.1)

All time moments are considered after a synchronization moment (when the clock
indications in the reference systems are set to zero). The velocity v defines the matrix L, and
the result is considered not to depend on the measuring method used. But let us consider
that the velocity v has two components vx and vy oriented along the Ox axis (for vx) and
along the Oy axis (for vy) and let us consider also that the event taking place in the reference
system S is first observed in a reference system S1 which moves with velocity vx as against
the system S :

a set of space-time coordinates (x1, y1, z1, t1) will be established for the event. Then
the event having the space-time coordinates (x1, y1, z1, t1) in system S1 is observed in the
reference system S′ which moves with velocity vy (the projection of v along the Oy axis)
against the reference system S (this relative speed being measured in system S). That
corresponds to a relative speed

vy(c) =
vy

√
1 − v2

x/c2
(7.2)

between the systems S and S′ (due to the kinematics law of addition of speeds in special
relativity theory). Thus will result in the cuadridimensional vector r ′ (having the components
x′, y′, z′, ict′), measured in system S′, under the form

r ′ = L
(
vy(c)

)
L
(
vx
)
r. (7.3)
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But we can also consider that the event having the space-time coordinates x, y, z, t in system
S is first observed in a reference system S2 which moves with velocity vy (the projection of
velocity v along the Oy axis) as against system S; a set of space-time coordinates will be
established for the event. Then this event having the space-time coordinates x2, y2, z2, t2
in system S2 is observed in the reference system S′ which moves with velocity vx (the
projection of velocity v along the Ox axis) against the reference system S2, the velocity vx
being measured in the reference system S. That corresponds to a relative speed

vx(c) =
vx√

1 − v2
y/c2

(7.4)

between the systems S′ and S2 (due to the same kinematics law of addition of speeds in
special relativity). Thus will result in the space-time coordinates x′, y′, z′, t′ measured in
system S′ under the form

r ′ = L
(
vx(c)

)
L
(
vy
)
r. (7.5)

Using the explicit form of Lorentz transformation for the case when the relative speed has the
direction of one of the axes of coordinates, it can be easy shown that

L
(
vy(c)

)
L
(
vx
)
r /= L

(
vx(c)

)
L
(
vy
)
r. (7.6)

This shows that the coordinates measured for the event in S′ reference system depends on
the succession of transformations. This aspect is similar to the noncommutative properties
of operators in quantum theory [16]. It implies that in the case of special relativity we
must define a vector of state (a wave-function) upon which the Lorentz transformation
acts. Thus the Lorentz transformation can be considered as a physical transformation which
modifies a certain wave function inside a reference system. Taking into account the fact that
usually we receive information under the form of electromagnetic (or light) wave trains
(the emission of these wave trains corresponding to the event) and taking also into account
the fact that the time-dilation phenomenon (a consequence of Lorentz transformation) was
first time observed for light wave trains (the transverse Doppler effect) it results that in
the most general case this wave function must be associated to the wave-function of the
received light wave train. As a consequence of the previous statement, it results that a Lorentz
transformation L must be always put in correspondence with a pair (S, ϕ), S representing a
certain material reference system which acts upon a wave train having the state-vector ϕ. So
the Lorentz transformation must be written under the form LS(ϕ); in the most general case
L is the Lorentz matrix and ϕ is a vector or a higher-order tensor which describes the field.
For an electromagnetic wave, the field can be described using the cuadridimensional vector
A. The action of the matrix LS consists in a general transformation

ϕ(x, y, z, t) −→ ϕ′(x′, y′, z′, t′) = LSϕ(x, y, z, t), (7.7)

where the values of ϕ are modified according to the transformation rules of vectors and
tensors (e.g., A′ = LA for an electromagnetic wave described by the cuadrivector A) and in
the change of the space-time coordinates (x, y, z, t) into (x′, y′, z′, t′) according to the formula

r ′ = LSr, (7.8)
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r representing the cuadridimensional vector of coordinates. We have to point the fact that in
all these formulae ϕ(x, y, z, t) represents the value ϕ would have possessed in the absence of
the interaction with the observer material medium; the space-time origin must be considered
in the point of space and at the moment of time where the wave first time interacts with
the observer material medium (in a similar way with the aspects in quantum mechanics,
where all transformations are acting after the interaction with the measuring system). This
interpretation can solve the contradictions appearing in case of movements on closed-loop
trajectories (the twins paradox) in a very simple manner. The Lorentz transformation being
a transformation which acts upon a certain wave train (a light wave train, in the most
general case), it has no consequences upon the age of two observers moving on closed-loop
trajectories. So no contradiction can appear when the two observers are meeting again.

7.2. Possibilities of using the principle of least action
in connection with the wave-train interpretation

We begin bywriting the propagation equation for an electromagnetic wave inside an observer
material medium under the form dx2 + dy2 + dz2 = c2dt2 (c representing the light speed). It
results that c2dt2 − dx2 − dy2 − dz2 = 0 for all points inside the material medium where the
wave has arrived. But

c2dt2 − dx2 − dy2 − dz2 = ds2, (7.9)

where ds is the cuadridimensional space-time interval. The propagation equation of the
optical wave can be written as ds = 0, and so it results that the trajectory of the wave inside
the material medium between two points a and b is determined by the equation

∫b

a

ds = Δs = 0. (7.10)

By the other hand, for mechanical phenomena the quantity determining the trajectory of
a material body inside a reference system is the action S. Under a relativistic form, it can
be written as S = −mc ∫ba ds, m representing the mass of the body, and a, b the space-time
coordinates for two points situated along the “universe line” on which the body moves. The
principle of least action can be written as δS = −mcδ ∫ba ds = 0.

While δS =
∑

imcuiδxi, where ui = vi/
√
1 − v2/c2 for i = 1, 2, 3 and u4 =

ic/
√
1 − v2/c2, it results finally that

∑
ip

2
i = −m2c2, pi being the cuadrivector ∂S/∂xi

(the momentum). For a free particle, pi = mui. It can be noticed that the infinite
small cuadridimensional interval ds is used both for describing the propagation of an
electromagnetic wave and the movement of a body inside a reference system. While is it
related to the action S, this result is easy to be understood (the principle of least action being
a basic principle in nature). The next step consists in pointing the fact that the previous
integral Δs = 0 (determining the trajectory of the optical wave train inside the material
medium) is based on the supposition that both points a, b belong to the material medium
(otherwise, the velocity of the wave may differ, depending on the dielectric and magnetic
constants of the material). So the equation can be directly used in measurement procedures
(for establishing trajectory or other properties of the wave only for the time interval when
the optical wave train exists in that material medium [17]). If an observer has to analyze a
wave train emitted in another material reference system, he must use the invariance property
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of the cuadriinterval: ds = ds′, where ds represents the cuadriinterval between two close
events in a certain inertial reference system and ds′ represents the cuadriinterval between
the same two events measured in another reference system. While ds = ds(dx, dy, dz, dt) is
determined inside the observer reference system and ds′ = ds′(dx′, dy′, dz′, dt′) corresponds
to the reference systemwhere thewave has been emitted, it results that the cuadridimensional
interval dsmoves into the cuadridimensional interval ds′ by a function

ds(dx, dy, dz, dt) =⇒ L =⇒ ds′(dx′, dy′, dz′, dt′), (7.11)

where the arguments of ds are transformed by the Lorentz relations

dx′ =
dx + vdt
√
1 − v2/c2

, dy′ = dy, dz′ = dz, dt′ =
dt + vdx/c2
√
1 − v2/c2

(7.12)

for v parallel to Ox (all the space and time intervals dx, dy, dz, dt being considered inside
the observer material medium after the emitted optical wave train arrives), and ds = ds′. The
above relation can be considered as presenting a transformation of the received wave train
(with x, y, z, t coordinates) into a “supposed” wave train corresponding to the case when
the wave train would not have entered inside the observer material medium. For determining
the real trajectory of the wave before interaction the observer must extend the trajectory of
the received wave train (having coordinates x′, y′, z′, t′ in the past and outside the observer
material medium, using the relation

∫b

a

ds′ = Δs′ = 0. (7.13)

7.3. Non-Markov aspects of pulse transformation

Wehave also to emphasize the non-Markov aspect of Lorentz transformationwhich acts upon
a received wave train when this interacts with the observer material medium. At the initial
moment of time (the zero moment) we can consider that new values for wave quantities are
generated as a result of the Lorentz matrix action upon the received values (cuadrivectors
or cuadritensors). This represents a Markov transformation (using some physical quantities
defined at a certain moment of time t = 0, we can obtain the result of that transformation at a
time moment t + dt = 0 + dt).

Yet if we analyze the wave train transformation at a subsequent moment of time (after
the zero moment when the wave was received) we can notice that the physical quantities
corresponding to cuadrivectors and cuadritensors are not just modified (by the action of
Lorentz matrix) but are also translated at a different time moment (according to Lorentz
formulae for transforming space-time coordinates). This implies that the physical quantities
corresponding to the transformed wave train (defined in the observer material reference
system) depend on the physical quantities corresponding to the unchanged wave train
(supposed situation) at a previous time moment. Not being possible to use values of certain
quantities at a time moment t for obtaining the values of that physical quantities at a time
moment t + dt for t > 0, it results that the Lorentz transformation of a received wave train
(an electromagnetic or optic pulse or an associated wave corresponding to a particle) is a
non-Markov transformation. In future studies, this aspects should be studied using aspects
connected to time series inside a material medium [18].
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8. Conclusions

This study has shown that certain intuitive problems connected with measurements of
sequences of pulses on closed-loop trajectories in special relativity and noncommutative
properties of operators in quantum physics imply a more rigorous definition of measurement
method and of the interaction phenomena (classified according to a possible memory
of previous measurements), so as to avoid logical contradictions due to a possible
resynchronization. It is also shown that the use of the least action principle requires a specific
space-time interval available for a space-time measurement in an implicit form. Due to this,
it results in a certain distinction between the set of existing space-time intervals (which can
be defined on unlimited space-time intervals) and the set of measured space-time intervals
(established using measuring methods based on waves and always defined on limited space-
time intervals).
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