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Structural systems liable to asymmetric bifurcation usually become unstable at static load levels
lower than the linear buckling load of the perfect structure. This is mainly due to the imperfections
present in real structures. The imperfection sensitivity of structures under static loading is well
studied in literature, but little is know on the sensitivity of these structures under dynamic loads.
The aim of the present work is to study the behavior of an archetypal model of a harmonically
forced structure, which exhibits, under increasing static load, asymmetric bifurcation. First, the
integrity of the system under static load is investigated in terms of the evolution of the safe basin
of attraction. Then, the stability boundaries of the harmonically excited structure are obtained,
considering different loading processes. The bifurcations connected with these boundaries are
identified and their influence on the evolution of safe basins is investigated. Then, a parametric
analysis is conducted to investigate the influence of uncertainties in system parameters and random
perturbations of the forcing on the dynamic buckling load. Finally, a safe lower bound for the
buckling load, obtained by the application of the Melnikov criterion, is proposed which compare
well with the scatter of buckling loads obtained numerically.
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and reproduction in any medium, provided the original work is properly cited.

1. Introduction

During the past few decades, a considerable effort within the engineering sciences has been
directed towards understanding the behavior of structures that exhibit unstable postbuckling
behavior [1–3]. The main motivation for this comes from a notorious and persistent
discrepancy between theoretical and experimental results of the buckling loads of several
slender structures, being that the experimental results are lower than the theoretical ones.
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A general explanation for this upsetting behavior is given by Koiter in his pioneering work
on the general theory of buckling and postbuckling behavior of elastic structures [4]. He
showed that imperfections in the geometry or in the load might decrease substantially the load
carrying capacity of these structures under slow variation of the applied load. This scenario
becomes even worse if the unavoidable uncertainties in system parameters are also taken
into account. Elishakoff [5] and Kounadis [6], among others, studied imperfection-sensitive
structures under a step load. Because the expressions for the critical load are developed from
a static equilibrium analysis, they actually calculate an upper bound for the load carrying
capacity of the real structure, since they do not take into account the disturbances imposed
upon the imperfect structure during its service life [7]. The influence of these disturbances
on the integrity of the structure can be evaluated by analyzing the evolution of the basin of
attraction of the stable equilibrium configuration as a function of the system parameters. To
take indirectly into account these deleterious effects, lower bounds of buckling loads have
been proposed for design. They are usually based on the scatter of experimental buckling
loads [8, 9]. However, in the past decades researchers have sought to deduce theoretically
well-founded lower bounds for imperfection-sensitive structures under static load. Croll [8]
developed the so-called reduced stiffness method based on the elimination in the potential
energy of the structure of the energy components mostly eroded by the imperfections. Based
on this idea, reliable lower bounds have been deduced for a series of structures [8, 9].

The estimation of the dynamic buckling load of structures with unstable postbuckling
branches—the load corresponding to escape from the safe prebuckling well—considering the
effects of uncertainties and imperfections is a much more difficult task. Structures under
dynamic loads may exhibit both local and global bifurcations that affect in different ways the
load carrying capacity and degree of safety of the structure. Global bifurcations are particularly
important since they control, as shown by Thompson et al. [10–13], the evolution of the basins
of attraction of the solutions in phase space. In addition, compared with the static case, the
number of load control parameters is higher. Finally, experimental results of dynamic buckling
loads of slender structures are rather scarce in literature [14, 15]. Therefore, little is known
on the effects of uncertainties on the load carrying capacity of structures liable to unstable
static buckling. Therefore, the aim of the present work is to shed some light on this problem
by analyzing the behavior of an archetypal model of a harmonically forced structure liable to
asymmetric bifurcation under increasing static load.

First, the evolution of the basin of attraction of the static equilibrium configuration is
studied. Then, the dynamic buckling load under different loading conditions is evaluated and
the different types of bifurcation connected with the instability boundaries in force control
space are identified. Next, a detailed parametric analysis clarifies the influence of uncertainties
in load and system parameters on the dynamic buckling load. Based on these results, a lower
bound is proposed which compares favorably with the scatter of buckling loads obtained in
the analysis.

The evolution of the basins of attraction of these systems is governed in a large extent
by the evolution of the stable and unstable manifolds of the saddle connected with the hilltop
that separates the pre- and postbuckling wells. Thompson et al. have studied this connection
in detail [10–13]. They show that the erosion and stratification of the basin of attraction
increases significantly after the first crossing of the stable and unstable manifolds. The load
level associated with such event can be obtained by the application of the Melnikov criterion,
which measures the distance between the manifolds [16, 17]. It can be applied to lightly
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damped system, which is usually the case of slender structures found in structural engineering.
The present work shows that the zeros of the Melnikov function can be used as a basis for the
deduction of safe lower bounds that can be used effectively in design. Rega and Lenci [18]
discussed recently the use of integrity measures in nonlinear mechanical oscillators based on
the evolution of basins of attraction.

A classical example that illustrates asymmetric buckling behavior in structural system is
the plane frame studied by Roorda [1–3, 19]. Recently, Galvão et al. [20] published a detailed
parametric analysis of this frame structure showing the influence of the system parameters on
its postbuckling behavior and imperfection sensitivity. Another system is the perfect shallow
spherical cap under lateral pressure [21].

Analyses of the dynamics of structures liable to asymmetric bifurcations have been
studied by, among others, Virgin [22] and Donescu et al. [23]. General analyses of the static
buckling behavior of systems with asymmetric postbuckling behavior have been conducted
recently by Ohaki [24] and Banchio and Godoy [25].

2. Formulation of the problem

Consider an SDOF system with quadratic nonlinearity that exhibits under the variation of a
static load parameter a transcritical bifurcation point. The equation of motion of such a system
can be written as

ẍ + 2ηω0 ẋ + ε +ω2
0 x + β x2 = F cos(Ω t) (2.1)

where η is the viscous damping parameter, ω0 =
√
(λcr − λ)/m is the natural frequency of

the statically loaded structure in which λcr is a critical load parameter, λ is an applied load
parameter and m is the mass (this expression describes the load frequency, leading to ω2

0 = 0
at λ = λcr), ε is an imperfection parameter, β is a nonlinearity parameter, F is the magnitude
of the externally applied load, and Ω is the excitation frequency. The dots indicate derivation
with respect to time t.

Equation (2.1) is sometimes called Helmholtz equation [26], meaning a single-well
potential with one escape direction. It applies also to other fields of mechanics such as the
rolling of asymmetric vessels, in which case the critical threshold corresponds to overturning
[10]. In fact, (2.1) is the archetypal model of an asymmetric bifurcation where the parameter ε
is the perturbation responsible for the unfolding [27, 28]. As an example, (2.1) is derived in the
appendix for a structural system liable to asymmetric bifurcation [1–3].

2.1. Analysis of the autonomous system

For the autonomous undamped system, there are two fixed points. They are

x(eq1) =
1
2

−ω2
0 +

√
ω4

0 − 4 β ε

β
, (2.2a)

x(eq2) =
1
2

−ω2
0 −

√
ω4

0 − 4 β ε

β
. (2.2b)
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Figure 1: Equilibrium paths of the perfect and imperfect structures (β = 1).

For the equilibrium branch described by (2.2a), the eigenvalues are

μ1 =

√

−
√
ω4

0 − 4βε,

μ2 = −
√

−
√
ω4

0 − 4βε.

(2.3)

For the equilibrium solution (2.2b), the eigenvalues are

μ1 =

√√
ω4

0 − 4βε,

μ2 = −
√√

ω4
0 − 4βε.

(2.4)

Figure 1 shows, for β > 0, the variation of ω2
0 as a function of the equilibrium position

xeq. Continuous lines correspond to stable equilibrium paths, and dashed lines correspond to
unstable paths. A similar figure, symmetric with respect to the ω2

0 axis, is obtained for β < 0.
For the perfect system and for the imperfect system when β and ε have opposite signs, there are
for any load level two equilibrium positions, a center and a saddle. For the imperfect system,
when β and ε have the same sign, there is a region below and above the critical value (ω2

0 = 0
or λ = λcr) where no solution occurs. This region is bounded by two limit loads corresponding
to saddle-node bifurcations. The limit load defines thus the load carrying capacity of a real
imperfect system. The limit load parameter is given by

λlim = λcr − 2
√
βε. (2.5)

The limit load may be attained only in a slowly evolving, quasistatic, system. Nonzero
initial conditions will further decrease the buckling load. In fact, the limit load is but an upper
bound of the load carrying capacity of the imperfect system under static loading. The area of
the basin of attraction at the critical point is zero. Therefore, any small disturbance leads to
buckling. A good measure of the integrity and safety of the system is the area and topology of
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Figure 2: Variation of the safe region defined by the homoclinic orbit of the saddle corresponding to the
unstable equilibrium point. ε = 0, β = −1.

the basin of attraction [18]. For the undamped autonomous system, bounded solution only
occurs for initial condition within the area defined by the homoclinic orbit of the saddle
connected with the unstable solution in Figure 1. The area enclosed by the homoclinic orbit
is given by

A = 2
∫xmax

xmin

√

2
(
Esaddle − εx −

1
2
ω2

0 x
2 − 1

3
β x3

)
dx, (2.6)

where Esaddle is the total energy of the system at the saddle point, xmin is the coordinate
corresponding to the saddle, given by (2.2b), and xmax is given by

xmax =
2
√
ω4

0 − βε −ω
2
0

2β
. (2.7)

The variation of this area with ω2
0 is illustrated in Figure 2. By expanding (2.6) in Taylor

series, one obtains as a first approximation

A =
6ω5

0

5β2
− 6ω0ε

β
(2.8)

which shows clearly the influence of the nonlinearity, β, and imperfection, ε, on the safe area.
The variation of the safe region with the load parameter λ and the imperfection ε is

illustrated in Figure 3. The curve on the λ-ε plane is the so-called imperfection sensitivity curve
[1–3].

As the load level approaches the critical value, there is not only a swift decrease of the
safe area but also a decrease in the depth of the safe potential well, h, which is given by

h =

√(
ω4

0 − 4 β ε
)3

6 β2
. (2.9)
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Figure 3: Variation of the safe region as a function of the load parameter λ and the imperfection ε. β = −1.

The degree of safety of a given autonomous undamped system can be established by
defining at the stage of design the magnitude of the safe area A. The maximum load, λmax, that
can be applied to the structure with a prescribed safe area A is given approximately by [7]

λmax = λcr −
√

5 β ε −
51/4 Aβ

√√
βε

12 ε
. (2.10)

The consideration of viscous damping changes the eigenvalues but not the equilibrium
solutions of (2.1). For the damped case, the eigenvalues connected with the stable solution
(2.2a) become

μ1 = −ηω0 +

√

η2 ω2
0 −

√
ω4

0 − 4 β ε,

μ2 = −ηω0 −
√

η2 ω2
0 −

√
ω4

0 − 4 β ε.

(2.11)

So, for positive damping, the equilibrium is asymptotically stable.
For solutions (2.2b), the eigenvalues are

μ1 = −ηω0 +

√

η2 ω2
0 +

√
ω4

0 − 4 β ε,

μ2 = −ηω0 −
√

η2 ω2
0 +

√
ω4

0 − 4 β ε,

(2.12)

which is a saddle.
The basin of attraction of the lightly damped system is illustrated in Figure 4, where gray

corresponds to bounded solutions and white to unbounded solutions. Disregarding the infinite
tail that corresponds to initially large amplitude motions, the area of this basin of attraction is
only slightly higher than the area enclosed by the homoclinic orbit. So, (2.6) can be used as a
safe measure of the basin area [7].

Figure 5 shows the variation of the basin area of the damped (η = 0.05) autonomous
system with the nonlinear parameter β and the imperfection magnitude ε.
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Figure 4: Basin of attraction of the damped autonomous system. Gray area: bounded solutions.
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Figure 5: Variation of the basin area as a function of the nonlinearity and imperfections.

2.2. The forced system

This section addresses the problem of calculating the dynamic buckling load of imperfection-
sensitive structures under a harmonic load. Actually, because of the resonance phenomenon
this is one of the worst possible types of dynamic load.

The solution set of (2.1) can be classified in bounded and unbounded solutions.
Unbounded solutions indicate ruin of the structure, as its displacements become increasingly
large and incompatible with the structure’s use and hypotheses embodied into the mathemat-
ical modeling. Unbounded solutions are also called escape solutions, or simply escape. In this
work, as in, for example, the works of Malasoma et al. [29], Thompson [10], and Szemplińska-
Stupnicka [30], one is interested in the values of F and Ω that lead to escape from a given
potential well. The minimum value of F at which escape occurs, when all other parameters are
maintained fixed, is called the escape load, Fe. The underlying dynamics that ultimately leads to
escape can be very complex. Consequently, the escape boundary, which is the set of escape loads
in the parameter space, is rather involved and can even be of fractal nature [7].
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Figure 6: Stability boundaries in force control space. System under harmonic and constant load. η = 0.05, ε
= 0, ω0 = 1, and β = −1.

Figure 6 shows the escape load, Fe, as a function of the forcing frequency, Ω, for η = 0.05,
ε = 0, ω0 = 1, and β = −1. Two loading processes are considered: a suddenly applied harmonic
load (dashed line) and a gradually increasing harmonic load (continuous line). For the suddenly
applied harmonic load, after each load increment, (2.1) is integrated numerically considering
zero initial position and velocity, that is, after each increment the system starts from rest. For
the gradually increasing harmonic load, for a given excitation frequency, the final position and
velocity of the previous load level are taken as the initial conditions for the current load level
(here, a load step of 0.001 is considered). For comparison purposes, Figure 6 also shows the
escape load for a structure under a step load of infinite duration as well as the static critical load.
As the value of the forcing frequency Ω varies, there is a series of valleys associated to super
harmonics of various orders culminating with a deep valley around the natural frequency. For
higher excitation frequencies, the escape load increases and can be, due to the appearance of
new attractors, many times larger than the corresponding static critical load.

The escape is connected with a series of local bifurcations, as illustrated in the bifurcation
diagrams depicted in Figure 7. In the main resonance region, for excitation frequencies smaller
than those corresponding to the minimum escape load, escape occurs due to a saddle-node
(S-N) bifurcation, as illustrated in Figure 7(a) for Ω = 0.70. After this minimum, the initially
stable period one solution undergoes a stable period doubling bifurcation (D1) and escape
occurs just after this solution becomes unstable, as shown in Figure 7(b), for Ω = 1.00. As the
forcing frequency increases, the period doubling bifurcation becomes unstable and initially
escape occurs at this point, as illustrated in Figure 7(c), for Ω = 1.50. Finally, as the forcing
frequency increases even further, a secondary stable branch appears along the bifurcated path
after a saddle-node bifurcation. This solution also becomes unstable (D2). If the bifurcation
load D2 is higher than the bifurcation load D1, the escape load of the slowly evolving system is
then controlled by D2, as illustrated in Figure 7(d), for Ω = 1.90. Here, after D1, escape becomes
unpredictable [10–13]. Figure 8 shows a summary of the bifurcation events connected with the
escape boundary of the slowly evolving system.

The influence of the geometric imperfection parameter ε on the escape load is illustrated
in Figure 9 that depicts the stability boundaries for increasing values of ε. The stability
boundaries show a shift to the lower frequency range as ε increases. This is due to the decrease
in the natural frequency caused by the imperfection. For comparison, the static buckling



Paulo B. Gonçalves and D. M. Santee 9

0

0.2

0.4

F

−1 0 1
x

Fe S-N

D1

(a) Ω = 0.70

0

0.3

0.6

F

−1 0 1
x

Fe
D2

D1

(b) Ω = 1.00

0

0.3

0.6

F

−1 0 1
x

Fe

D1

D2

(c) Ω = 1.50

0

0.4

0.8

F

−1 0 1
x

Fe

D1

D2

(d) Ω = 1.90

Figure 7: Bifurcation diagrams of the slowly evolving system for selected values of the excitation frequency,
Ω. Bifurcations connected with the stability boundaries in force control space: S-N: saddle-node bifurcation;
D1: first period doubling bifurcation; D2: second period doubling bifurcation; Fe: escape load. η = 0.05, ε =
0, ω0 = 1, and β = −1.

load of the imperfect system is also shown in Figure 9. While in some frequency ranges the
imperfection sensitivity of the escape load is of the same order or even higher than that of the
static case, in other regions the escape load is almost insensitive to imperfections. However, the
escape load of the slowly evolving system represents only an upper bound of the actual load
bearing capacity of the structure under harmonic loading. Because of dynamic perturbations,
an imperfection-sensitive structure can escape at load levels much lower than at the escape
load, as will be shown herein through the analysis of the basins of attraction.
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3. Basin of attraction of the forced system and structural stability

Mathematically, the basin of attraction of a periodic solution is the set of all initial conditions
that lead to a solution (attractor) as time goes to infinity. This means that if a periodic solution
has a large compact basin of attraction, it will be stable under finite perturbations. On the other
hand, if it has a small, or fragmented, basin of attraction, small finite perturbations can lead the
solution to escape even if the solution is stable. Thus, a measure of the stability of the structure,
in particular its safety, has to be based on a global view of the behavior of the structure. This
global view can be expressed mathematically by the characteristics of the basin of attraction
and its boundary.

The concept of basin of attraction is based on the limit t→∞. Because of limitations in
the numerical integration, a practical concept for basin of attraction is used. This practical
concept is the basin of r-attraction [10–13]. A basin of r-attraction is the set of all initial conditions
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Figure 11: Variation of the basin area of the damped forced system. Black and gray: steady-state bounded
solutions. White: unbounded solutions. η = 0.5, ε = 0, ω2

0 = 1, β = −1, and Ω = 0.43.

that lead to the neighborhood of the respective periodic solution in r times the forcing period
T = 2π/Ω. As the integration time increases, the basin of r-attraction tends asymptotically to
the basin of attraction. Our experience has shown that a basin of 32-attraction is a reasonable
approximation.

Numerical explorations have shown that the way the basin of attraction changes as
the load level F increases can be classified into one of two groups: (a) it gradually decreases
until it vanishes completely; (b) its shape remains the same as the load level increases, until
it suddenly becomes fractal [7]. In these two types of basin of attraction evolution, the area
decreases as the load increases and becomes zero at F = Fe. The two types of behavior are
illustrated in Figures 10 and 11. One important fact to note is that, even at the eminence of
escape, when the basin of attraction is very small, the periodic solution represented by the
fixed point of the Poincaré map is a stable solution. This shows that when one uses the stability
of the periodic solution as a measure of the structure’s stability, this value furnishes only an
upper bound to the true stable load.
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Figure 12 shows the variation of the basin area parameterized by the basin area of the
corresponding unloaded system, A/A0, as a function of the force ratio F/Fe, for three different
values of Ω.

For higher and lower values of the excitation frequency, the variation of the basin area
becomes smoother, decreasing the relative length of the initial plateau. The variation of the
basin area, as will be shown in the next item, is closely related to the sensitivity of the dynamic
buckling loads to perturbations and uncertainties.

As a safety measure, the designer can specify a maximum erosion level with respect to
the initial safe area of the structure, A0, and determine the corresponding maximum load that
can be applied during the service life of the structure. In the autonomous case, this load level
is given by (2.8). For the system under harmonic excitation, curves of constant A/A0 ratio,
obtained numerically, are depicted in Figure 13 and compared with the previously deduced
escape boundaries. From Figures 12 and 13, one can conclude that the erosion of the safe basin
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area varies with the value the forcing frequency. For the excitation frequency corresponding to
the lowest escape load (Ω ∼= 0.82), the safe area remains practically constant up to the critical
value and then drops suddenly to zero.

4. Influence of uncertainties in system parameters on the dynamic buckling load

4.1. Nondeterministic force

The analysis conducted up to this point considered a harmonic excitation. This is rarely true
in practical situations where loads do not lend themselves to explicit time description, being
random or including at least some kind of noise. So, it is important to know how departures
from an ideally perfect harmonic excitation may affect the performance of the system. Consider
that the applied load is composed of a harmonic deterministic portion plus a random term such
that

Ft(t) = F cos(Ωt) +G(t;F,Ω), (4.1)

where the random term G(t;F,Ω) depends on the deterministic parameters F and Ω.
For the numerical simulation, the following hypotheses about G are adopted in the

present work [7, 31].
(i) A force that varies randomly in time is mathematically a stochastic process. A

stochastic process is a random variable where the probability distribution depends on a
parameter. If the parameter is continuous, the process is called continuous. In the present case,
this parameter is time. If the statistics of the process (mean and variance) are time-independent,
the process is called stationary.

(ii) An ergodic process is a process where the statistics of the random variableG(t;F,Ω) are
the same as the statistics of only a sample of the random process taken along time. An ergodic
process is always stationary, but a stationary process may not be ergodic. In this work, it is
assumed that the random term G(t;F,Ω) is an ergodic process and, consequently, stationary.

Another hypothesis is that G has expected value zero, that is,

E
[
G(t;F,Ω)

]
= 0. (4.2)

The description of a stochastic process is usually made in the frequency domain. Here, it
is assumed that the random term has a spectral density function given by

ΦGG(ω) =
σ2
GG

2ωl
for Ω − ωl

2
< ω < Ω +

ωl

2
, (4.3)

where σ2
GG is the variance of the random force amplitude and ωl is the frequency bandwidth.

Additionally, it is considered that the standard deviation of the random force amplitude
is proportional to the deterministic force amplitude, thus

σGG = aF, (4.4)

where a is the standard deviation parameter. Here, the random force depends on the frequency
and amplitude of the deterministic term.
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Physically, the random term is a noise that increases with an increase in the applied
force. Another point to be emphasized is that the random term depends on two prescribed
parameters: the standard deviation parameter a with respect to the deterministic force
amplitude F, and the frequency bandwidth ωl around the forcing frequency Ω. The numerical
methodology used to generate the random force in time domain is presented in the appendix.

The influence of the random noise on the dynamic buckling load is studied considering
the following system parameters: η0 = 0.05, ω2

0 = 1.00, and β0 = −1. For each excitation
frequency, five to ten load samples are considered, depending on the dispersion, and the
dynamic buckling load, Fe, is computed numerically. The results considering two values of
the standard deviation parameter a (0.1F and 0.3F) are shown in Figure 14 and compared with
the results obtained for the deterministic load. Figure 15 shows the results considering two
values of the bandwidth ωl (0.1 and 0.3).

The real values of the systems parameters, such as mass, damping, and stiffness, are
dependent on the quality of the fabrication process. They can be, and usually are, different
from the value assumed at the design stage. In order to quantify the influence of variations
on system parameters in the vicinity of the design values on the dynamic buckling load, a
parametric analysis is carried out herein.

Uncertainties in the following system parameters are considered: ε, η, ω2
0, and β. For

each control parameter, the following probability density function is assumed:

f(α) =

⎧
⎪⎨

⎪⎩

100
2α0 Q

, if α0 −
α0 Q

100
< α < α0 +

α0 Q

100
,

0, otherwise,
(4.5)

where α is the system parameter, α0 is the mean value of the chosen parameter, and Q is a
parameter which expresses the quality of the fabrication process as a percentage of the mean
value, α0.

The mean values (design values) considered in the analysis are ε0 = −0.05, η0 = 0.05, ω2
0

= 1.00, β0 = −1, and Q = 10 (10%). In the parametric analysis, for each excitation frequency,
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Figure 15: Influence of the bandwidth parameter of the radom force, ωl, on the dynamic buckling load of
the structure. Comparison with the dynamic buckling load of the system under deterministic harmonic
forcing
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Figure 16: Influence of uncertainties in the stiffness parameter, ω0 =
√
(λcr − λ)/m, on the dynamic

buckling load. GA load: gradually applied harmonic load. SA load: suddenly applied harmonic load.

ten samples of the perturbed parameter are considered and the escape load is computed
considering both a gradually applied harmonic load and a suddenly applied harmonic load,
as in the previous deterministic analysis. An example of such analysis is shown in Figure 16
where the influence of small variations on the system stiffness parameter, and, consequently,
natural frequency (ω0 =

√
(λcr − λ)/m), is considered. Similar distribution is observed when

the other parameters are considered. The scatter of results shows the strong influence of the
stiffness value on the dynamic buckling load and the sensitivity of the load carrying capacity
of the structure to small variations in system parameters.

It is interesting to notice that the scatter of results presented in Figures 14–16 follows
the pattern of variation of the basin area shown in Figure 13. So, it becomes clear that there
is a close relation between the variation of the basin of attraction and the scatter of dynamic
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Figure 17: The change in the stable and unstable manifolds as the load F increases.

buckling loads. It is also clear that, in the present case, the scatter is a function of the excitation
frequency. The results show that the escape load of the perturbed system is mostly lower than
the escape load under deterministic harmonic forcing. One can also observe that the scatter of
buckling loads is highly dependent on the forcing frequency.

5. Stable and unstable manifolds: Melnikov criterion

When an imperfection-sensitive damped structure described by (2.1) is unloaded (F = 0),
the system has only one stable equilibrium point and one saddle point. In this situation, the
saddle point’s stable manifold goes smoothly around the stable equilibrium point defining the
boundary of the basin of attraction of this point. One of the branches of the unstable manifold
lies inside the safe basin of attraction, converging to the stable equilibrium solution. The other
branch lies outside the basin of attraction and tends to infinity.

Figure 17 shows how the stable and unstable manifolds change as a function of the load.
As the load increases, they approach each other and, at a certain load level FM, the stable
and unstable manifolds cross transversally. When the stable and unstable manifolds cross
transversally at one point, they cross at an infinite number of points, thus this crossing indicates
the beginning of the erosion of the basin of attraction [16, 17].

The prediction of the first crossing of the stable and unstable manifolds can be obtained
by the Melnikov function. This function gives a measure of the distance of the stable and unstable
manifolds, when this distance is small [16, 17]. It applies to problems where the damping is
small, which is usually the case of slender structures, and when the algebraic expressions for
the stable and unstable manifolds for zero damping are known.

When both the damping and the externally applied forces are small, the vector field of
the system can be expressed generically as [16]

ẋ =
∂E

∂v
+ ξ g1,

v̇ = −∂E
∂x

+ ξ g2,

(5.1)

where the vector g = g(x, v, t) = (g1, g2), ξ is a small parameter, and E(x, v) is the total energy
of the unforced, undamped system (ξ = 0). Also admit that g(t) is periodic, that is, it satisfies
the relation

g(t + T) = g(t). (5.2)
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The Melnikov function is given by

M
(
t0
)
=
∫∞

−∞
g∗ · ∇E

(
x∗, v∗

)
dt (5.3)

where g∗ = g(x∗, v∗, t+ t0). x∗(t) and v∗(t) are the algebraic expressions of position and velocity
of the stable and unstable manifolds of the conservative system.

The two manifolds cross when this distance is zero, that is,

M
(
t0
)
= 0. (5.4)

Equation (5.4) leads to an algebraic expression that can be used to calculate the load level
FM at which the tangling of the stable and unstable manifolds first occurs. Next, we apply the
Melnikov method to imperfection-sensitive structures whose motion is described by (2.1).

In the case of structures liable to asymmetric bifurcation with no imperfection (ε = 0), it
is possible to obtain an analytic solution for the homoclinic orbit using the law of conservation
of energy [7]. The solution is

xp(t) = −
ω2

0

β

e2ω0 t − 4 eω0 t + 1
e2ω0 t + 2 eω0 t + 1

. (5.5)

The effect of the imperfection parameter ε can be introduced by observing that it does
not change qualitatively the solution (the homoclinic orbit continues to be a homoclinic orbit),
but changes only the position of the center and saddle points. Thus, the approximate solution
can be expressed by

x(t) = A(ε) + L(ε)xp
[
a(ε) t

]
. (5.6)

The coefficients A and L in (5.6) can be obtained by the restrictions

lim
t→∞

x(t) = xsaddle,

x(0) = xmax.
(5.7)

This leads to

A(ε) = − ε

ω2
0

,

L(ε) = 1 −
2 β ε

ω4
0

.

(5.8)

The time scale coefficient a(ε) in (5.6) can be obtained by applying Galerkin method on
the residue

R(t) =
1
2
ẋ2 +

1
2
ω2

0 x
2 + ε x +

1
3
β x3 − Esaddle (5.9)
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Figure 18: Comparison of the scatter of buckling load with the Melnikov load ωl = 0.1 and two values of
σGG.

and by using the weight function δx = x(t). This leads to

a(ε) = 1 −
β ε

ω4
0

. (5.10)

Remembering that v = dx/dt, the Melnikov function becomes

M
(
t0
)
=
∫∞

−∞
F v cos

[
Ω
(
t + t0

)]
dt − 2ηω0

∫∞

−∞
v2dt. (5.11)

In (5.11), F = ξF, η = ξη, and ξ is the small perturbation parameter. By substituting x(t)
into (5.11) and calculating the integrals, one obtains

M
(
t0
)
= F sin

(
Ω t0

)
[
− 6Lπ Ω2

a2 β sinh(π Ω/aω0)

]
− 2ηω0

[6Laω5
0

5 β2

]
. (5.12)

Thus, the first crossing occurs when M(t0) = 0, which leads to

FM =
η

π

[ 2ω6
0

5 βΩ2
−
εω2

0

Ω2

]
sinh

[
π Ω
ω0

+
π Ω β ε

ω5
0

]
. (5.13)

This expression can thus be used to calculate the load level above which the structure’s
basin of attraction starts to loose its integrity.

6. Melnikov lower bound

The algebraic expressions for the Melnikov load given by (5.13) allows the prediction of
the load above which the stable solution’s basin of attraction begins to loose its integrity by
the tangling of the stable and unstable manifolds of the respective saddle point. Figure 18
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Figure 19: Comparing Melnikov load with the buckling load of a realistic imperfection-sensitive structure.

compares the Melnikov load with the scatter of the dynamic buckling results shown in
Figure 14. As one can observe, all results lie above the Melnikov load, indicating that (5.13) can
be considered as a safe lower bound in the whole range of excitation frequencies considered
in the present work. Reference [7] presents similar comparisons considering uncertainties in
all parameters. In all cases, the scatter of results, considering reliable deviations from design
values, lies above the present lower bound.

The uncertainties in the structure’s parameters (stiffness, nonlinearity, natural frequency,
etc.) and random deviations of the applied load make real structures become nondeterministic.
In this sense, the random perturbation of the parameters is a numerical simulation of a real
structure. Note that the random perturbation of 10% of the actual design value generates a
large scatter in the values of the escape loads. Despite the large variation of the escape loads,
the Melnikov load is always smaller indicating that it is a safe lower bound.

Finally, in Figure 19, the lower bound is compared with the curves of constant basin
area, already shown in Figure 13, and the scatter of buckling loads obtained considering
uncertainties in all system parameters, except the external load (Q = 10). The results
corroborate the lower bound character of the Melnikov load. However, if a good quality control
is considered at the fabrication stage, the designer may use a less conservative estimate of the
dynamic buckling load based on the safe basin area. In fact, one can observe in Figure 19 that
almost all results in this numerical experiment are above the curve corresponding to a safe
basin with an area equal to 40% of the reference basin of the unloaded system A0.

7. Conclusions

For a structure liable to asymmetric bifurcation, the critical load of the perfect or imperfect
structure is an upper bound of its buckling load, since it corresponds to a safe basin with
null area. So, any disturbance, however small, leads to buckling. To preserve the integrity
of the structure, the designer should prescribe a nonzero compact basin surrounding the
fixed point of the desired solution. In this paper, initially, the integrity of the structure
under static load is investigated by the variation of the safe basin of attraction as a function
of the system parameters, including initial imperfections. The results show that the safe
basin decreases exponentially as one approaches the critical value. Next, the behavior of
the harmonically excited structure is analyzed and the stability boundaries in force control
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space are obtained considering different loading histories. The results show that uncertainties
in system parameters or small random perturbations of the applied load lead to dynamic
buckling loads that are mostly lower than the load of the unperturbed ideal system. The
scatter of results varies with the forcing frequency and is governed by the variation of the
safe basin of attraction. The variation of the safe basin is dictated by the evolution of the
stable and unstable manifolds of the saddle connected with the safe basin boundary. Melnikov
developed a procedure to determine an approximation for the first crossing of the stable and
unstable manifolds of the saddle-point related to the fundamental stable solution. When the
stable and unstable manifolds cross transversally at one point, they cross transversally at an
infinite number of discrete points. Since the unstable manifold is the fundamental solution’s
basin of attraction boundary, this indicates that the basin of attractions becomes, at least
partially, fractal. Thus, the load level at which the tangling of the stable and unstable manifolds
first occurs can be taken as the load that marks the beginning of the loss of stability of the
structure, consequently a lower bound for the structure load carrying capacity. The proposed
lower bound, based on a mathematical reasoning that accounts for the effects of imperfection
and dynamical perturbations on the structure, compares well with the scatter of dynamic
buckling loads and can be used as a safe design recommendation for imperfection-sensitive
structures under periodic loads. Finally, the proposed procedure can be applied to a variety of
imperfection-sensitive structures, in particular structural systems liable to unstable symmetric
or asymmetric bifurcation.

Appendices

A. Simulation of the random force

In the following, the theoretical fundaments and methodology used to generate the random
force in time domain are presented [7].

The idea of an algorithm to generate a stochastic process sample G(t) comes from the
expression of the process variance in terms of the spectral density function

σ2
GG =

∫∞

−∞
ΦGG(ω)dω (A.1)

Assuming that the process is ergodic, the variance can also be calculated in time domain
as

σ2
GG = lim

T0→∞

1
T0

∫T0

0
g2(t)dt ∼=

1
T0

∫T0

0
g2(t)dt, (A.2)

where T0 is the force duration and g(t) is a sample of the stochastic process G(t).
Based on (A.1) and (A.2), the following relation between the time function g(t) and the

spectral density function is obtained:

1
T0

∫T0

0
g2(t)dt ∼=

∫∞

−∞
ΦGG(ω)dω. (A.3)
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Discretizing (A.3), one obtains

1
N

N−1∑

m=0

g2(mΔt) ∼= 2
N/2∑

k=1

ΦGG

(
kω0

)
ω0, (A.4)

where Δt = T0/N and Δω = ω0 = 2π/T0.
Parceval theorem [31], which relates the amplitude of a stochastic process in time with

the process amplitude on frequency domain, states that

1
N

N−1∑

m=0

g2(mΔt) ∼=
N−1∑

k=0

∣∣Cg(kΔω)
∣∣2
, (A.5)

where Cg(ω) is the discrete Fourier transform (DFT) coefficient of the process sample g(t).
Substituting (A.5) on the right-hand side of (A.4) and remembering that, for g(t) to be

real, it is necessary that Cg(N/2 + i) = C∗g(N/2 − i), (A.4) can be rewritten as

2
N/2∑

k=1

∣∣Cg

(
kω0

)∣∣2 ∼= 2
N/2∑

k=1

ΦGG

(
kω0

)
ω0. (A.6)

The above expression is true if

∣∣Cg

(
kω0

)∣∣ =
√
ΦGG

(
kω0

)
ω0, k = 1, . . . ,

N

2
. (A.7)

This expression allows determining the modulus of the coefficients Cg of a discrete
Fourier transform sample of the stochastic process G(t) in a way that it has a specified spectral
density function. Finally, each DFT coefficient of g(t) can be calculated from

Cg

(
kω0

)
=
∣∣Cg

(
kω0

)∣∣cos
(
θk
)
+ i

∣∣Cg

(
kω0

)∣∣sin
(
θk
)
, (A.8)

where the phase angles θk are random variables with constant distribution between 0 and 2π .
Samples of the random variables can be obtained using a random number generator. In order
to use expression (A.8), the following initial values are necessary:

(i) T0: random process duration,

(ii) N: number of points analyzed on the process,

(iii) ΦGG(ω): specified spectral density function.

B. Structural system liable to asymmetric bifurcation

Consider the well-known SDOF structural system shown in Figure 20 comprising an inverted
pendulum of length L and mass m, supported laterally by a linear spring of stiffness K in
both tension and compression and inclined initially at 45 degrees. The structure is loaded by
a vertical dead load of magnitude P (which includes the weight of the mass m). To generate a
family of imperfect systems, a small perturbation moment M is applied to the system. This
can be caused, for example, by a small load eccentricity, or any other moment generating



22 Mathematical Problems in Engineering

L

x

L

K

M

m

P

Figure 20: Laterally supported inverted pendulum submitted to an axial force P and a small disturbance
M.

disturbance. The effects of various imperfections on the response of the model are very similar.
The rotation of the inverted pendulum is denoted by x.

The potential energy of the system in terms of the rotation x is given by

V = KL2
[√

1 + sin(x) − 1
]2
− PL

[
1 − cos(x)

]
−Mx. (B.1)

The kinetic energy of the pendulum is

T =
mL2

2
ẋ2. (B.2)

By expanding the potential energy in Taylor series and retaining all terms up to the third order,
one obtains the following nonlinear equilibrium equation:

−M +
[
KL2

2
− PL

]
x − 3KL2

8
x2 = 0. (B.3)

If the load imperfection M is not considered in the analysis, one obtains from the linearized
equilibrium equation the following critical load:

Pcr =
KL2

2
. (B.4)

The associated equation of motion is given by

mL2ẍ −M + L
[
Pcr − P

]
x − 3KL2

8
x2 = 0. (B.5)

By introducing the following auxiliary parameters (notice that we use the usual symbols found
in literature for load, imperfection, and nonlinearity parameters):

λcr =
Pcr

L
, λ =

P

L
, ε = − M

mL2
, β = −3K

8m
, (B.6)
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the following equation of motion is obtained:

ẍ + ε +ω2
0 x + β x2 = 0, (B.7)

where

ω0 =

√
λcr − λ
m

. (B.8)

The term Kef = (λcr−λ) is usually referred to as effective stiffness in the technical literature and
the parameter λ is usually referred to as load parameter.
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