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Copyright q 2008 S. K. İşleyen and Ö. F. Baykoç. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

The classical Vehicle Routing Problem (VRP) is often defined as serving customers from a
central depot with a fleet of vehicles, each having a limited capacity. The objective of the
problem is to minimize either total transportation costs or total distance traveled. Each vehicle
must follow a valid initial tour and ending at the depot, and each customer must be visited
exactly once. The total service level required at the customer locations on the tour may not
exceed the capacity of the assigned vehicle. The classical VRP is an important problem in the
field of logistics and distribution. See Laporte and Osman [1], Toth and Vigo [2], Laporte
et al. [3], Tarantilis et al. [4] for more detailed studies of the deterministic VRP and its
extensions.

In the deterministic VRP, it is assumed that travel times, customer demands and cases
of customers’ existence are pre-determined. However, in real-life problems, one or more of
these parameters may not be precisely defined. Problem types occurring in such situations
are defined in the literature as a Stochastic Vehicle Routing Problem (SVRP). In the SVRPs,
customer sets that will be visited, customers’ demands or travel times are modeled as random
variables derived from a known probability distribution.
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Gendreau et al. [5] analyzed SVRP in three categories: the Vehicle Routing Problem
with Stochastic Demand (VRPSD), VRP with Stochastic Customers (VRPSC), and VRP with
Stochastic Customers and Demands (VRPSCD).

This paper considers the capacity-constrained vehicle routing problem with stochastic
demand (VRPSD), where only the customer demand is stochastic and all other parameters
are pre-determined. This problem appears in many practical situations, and prior applica-
tions include the delivery of home heating oil [6], cash collection from bank branches [7] and
sludge disposal [8].

In VRPSD problems, a vehicle with a finite capacity (termed Q) leaves the depot fully
loaded and services the set of customers whose demands are established only after reaching
the customer location. The planned route starts from the depot and ends by returning to the
depot after visiting each customer at least once. The planned route is called an “a priori tour”.
An a priori tour identifies which customers at which ranks will be serviced. However, the
real route also includes returns to the depot when required (as when reloading the vehicle).
In some cases, the vehicle may thus be unable to satisfy the customer’s demand when the
actual demand along the route exceeds the vehicle’s capacity. Such a situation is referred to
as a route failure. The vehicle routing problem with stochastic demands (VRPSD) consists of
minimizing the total cost of the planned routes and expected failures. To ensure feasibility of
solutions in case of route failure, recourse policies or corrective actions have to be designed.

Generally, there are three types of recourse policies used for studies. The first, known
as a simple recourse policy, states that when a route failure occurs (when its’ capacity
is exceeded), a vehicle returns to the depot, reloads and continues its tour by returning
to the node where the failure occurred [5, 9]. The second policy is termed a preventive
restocking policy. In this approach, before route failure occurs, instead of proceeding to the
next customer, the vehicle returns to the depot according to the remaining load quantity and
the location of the customer [10–12]. The third policy type, developed by Secomandi [13, 14]
applies neuro-dynamic programming techniques to VRPSD. The basis of this approach is
that, after the customer demands are known or, after each failure, the remaining portion of
the a priori tour must be optimized again, rather than completed as originally planned. While
this approach is able to provide outputs having smaller expected values than the preventive
stocking strategy, it is relatively difficult to compute.

In this paper, the Vehicle Routing Problem with Stochastic Demands (VRPSD) is
considered where customer demands are independent and identically distributed -each
customer demand is normally distributed and has the same mean and standard deviation.
This situation is referred to as the Special Case of the VRPSD (SC-VRPSD). The Special
Case scenario also presumes that the service policy is non-divisible, meaning that the entire
demand at each customer must be served in a single visit by a unique vehicle. In case of
route failure, the first (simple recourse) policy is used as a recourse action. The present study
proposes a new integer mathematical model for efficiently computing the expected length of
a tour. The methodology applies an Iterated Local Search (ILS) to SC-VRPSD problems which
are too large to be solved by the proposed mathematical model.

The rest of the paper is organized as follows; in the following section, the definition
and some studies related to the VRPSD problem are summarized. Section 3 investigates how
to calculate the expected cost of an a priori tour. In Section 4, the Special Case for VRPSD is
examined and a linear mathematical model is established for SC-VRPSDs. In Section 5, some
Traveling Salesman Problems (TSP) which are well known in the literature were converted
into SC-VRSPD problems and solutions were sought for several vehicle capacities by using
ILS. Section 6 presents conclusions and suggestions for future research.
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2. Formal description for VRPSD

The VRPSD problem is defined on a complete graph G = (V,A,D), where V = {0, 1, . . . , n} is
the set of nodes (customers). While node 0 represents the depot, A = {(i, j) : i /= j, i, j ∈ V } is
the set of arcs conjoining the nodes andD = {dij : i /= j, i, j ∈ V } is the travel times or distances
between the nodes. The distance matrix D is symmetrical and provides triangular inequality:
d(i, j) ≤ d(i, k) + d(k, j). The positive integer Q denotes the vehicle capacity. The present
study considers only a single vehicle. While a vehicle with capacity Q is providing service
according to the customer demands, the total expected travel distance is also minimized. If
vehicle capacity is exceeded during service, the vehicle returns to the depot to be restocked
to the capacity Q. When all demands have been served, the vehicle returns to the depot. The
following assumptions are made in VRPSD problems.

(i) Customer demands (ξi, ) are stochastic variables independently distributed with
known distributions ξi, i = 1, . . . ,n.

(ii) The real demand of each customer is only known when the vehicle reaches them.

(iii) Customer demands ξi cannot exceed the vehicle capacity Q and the demands may
be derived from the discrete or continuous probability distributions.

A feasible solution to the VRPSD is a permutation of the customers s = (s(0), s(1), . . . ,
s(n), s(0)), (s(0) = 0), and it is called an a priori tour. The vehicle visits the customers in
the order given by the a priori tour. The objective function to be minimized is the expected
cost of the a priori tour.

Gendreau et al. [15] presented an exact stochastic integer programming method for
VRP scenarios with both stochastic customers and stochastic demand (VRPSCD) (integer L-
shaped method). The same method has also been applied to VRPSs having only stochastic
demand (VRPSD). In the problems with both stochastic customers and demands (VRPSCD),
they presented solutions for scenarios with up to 46 nodes and, in the problems having
only stochastic demands (VRPSD), they presented solutions for scenarios with up to 70
nodes and two vehicles. The same researchers [16] have developed a Tabu search algorithm
(TABUSTOCH) for problems too large to be solved by the L-shaped method.

Teodorović and Pavković [17] proposed a Simulated Annealing algorithm for the
solution of VRPSD with multiple vehicles. This model permitted a maximum of one failure
on each route.

Isleyen and Baykoc [18] (article in press) suggested a model which effectively
calculated the expected cost of an a priori tour given for a vehicle routing problem with
stochastic demand in which the demands were normally distributed. They used a Monte-
Carlo Simulation for the determination of the correctness of their model.

Yang et al. [11] analyzed the VRPSD with single and multiple vehicles. They assumed
that the expected distance traveled by each vehicle cannot exceed a certain value. Researchers
have tested two heuristic algorithms, route-first/cluster-next and cluster-first/route-next.
These algorithms have been used to define sets of customers to be serviced by different
vehicles, and then to find the optimal route for each customer set. Both algorithms have
worked effectively for small problems involving up to 15 customers.

Bianchi et al. [12] analyzed the performance of meta-heuristics for solving VRPSDs
with discrete demand. Because of their computational ease, the researchers used the
“traveling salesman problem” (TSP) approach and Or-opt operations to compute the
objective function. Using these techniques, the researchers evaluated the performance of
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Figure 1: Service policy of the vehicle.

the following metaheuristics: Iterated Local Search, Tabu Search, Simulated Annealing, Ant
Colony Optimization, and Evolutionary Algorithm.

Dror and Trudeau [19] developed a model for computing the expected distance of the
a priori tour. However, their work considered only one failure and they assumed that service
must be given to customers individually for nodes at which route failure has occurred as well
as for the subsequent nodes.

Other approaches have been taken in the detailed studies of Bertsimas and Simchi-Levi
[20] and Kenyon and Morton [21].

The most difficult and the most important part of the VRPSD problem is to calculate
the expected cost of an a priori tour. In the following section, the expected cost will be
calculated for a VRPSD problem in which customer demands are normally distributed.

3. Expected cost of the a priori tour

In most VRPSD studies, stochastic demands are derived from a discrete probability
distribution. The current study differs from those in the existing literature in a number of
ways. In the present study, a continuous normal distribution is used rather than a discrete
distribution. In addition, the current model analyzes multiple failures that may occur on the
single route, which are included in computation of the expected tour length. Furthermore, the
current model assumes that the service policy is non-divisible, meaning that each customer’s
entire demand must be served in a single visit by a unique vehicle.

To illustrate the service policy, consider the following example. The a priori tour is
(0, 1, 2, 3, 4, 5, 6, 7, 0) where node 0 is the depot; the vehicle has a capacity of 20 and the
realization of the customer demands are ξ1 = 10, ξ2 = 8, ξ3 = 6, ξ4 = 7, ξ5 = 3, ξ6 = 4,
and ξ7 = 5. Under the service policy that the demands are not divisible, the resulting routes
are shown in Figure 1. Note that at nodes 3 and 7 the vehicle capacity is exceeded and the
vehicle is forced to return to the depot. Thus, the length of the a priori tour is increased by
the addition of the distances due to the route failures at these two nodes.

Notations

di,j = the distance between customer i and j during the route;

ξi, i = 1, . . . , n (Stochastic demands) independent random variable ξi, that is,
normally distributed with a finite mean μi and finite standard deviation σi;
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Q = vehicle capacity;

pi,j : Probability of meeting the demands of the customers from node i to node j on
a given a priori tour (i and j inclusive);

Ci: total route failure probability of customers in the ith service order;

Ti: the length of additional distance stemming from the route failure in the ith
service order;

If an a priori route is specified, the si = (s(0), s1(r), . . . , sn(r), s(0));

L: length of the a priori tour (TSP length);

L =
n−1∑

i=1

dsi(r),si+1(r) + ds(0),s1(r) + dsn(r),s(0),

Ci =
i−1∑

j=1

(
pj,i−1 − pj,i

)
∗ Cj i = 2, 3, . . . , n,

Ti = Ci ∗ 2 ∗ d0,i i = 2, 3, . . . , n.

(3.1)

With the boundary condition

C1 = 1. (3.2)

And it is assumed that ξi does not exceed the vehicle capacity Q (pi,i = 1, i = 1, . . . , n).
Total cost stemming from route failure

∑n
i=2Ti.

Finally, the expected length of the a priori tour is L +
∑n

i=2Ti.

In the model, pj,i−1 − pj,i is the probability of meeting the demands of customers from
node j to the node i−1 (including j and i−1) and not meeting the demand of the ith customer.

If a failure occurs in any node i, the extra distance that will be traveled by the vehicle is
2d0i which means traveling from the node to the depot and then returning to the same node
to resume the tour.

When non-failure probabilities are computed, the summation ability of the normal
distribution and standard normal distribution are used, as shown:

ξ1 ∼ N
(
μ1, σ1

)
,

ξ2 ∼ N
(
μ2, σ2

)
,

ξ1 + ξ2 ∼N
(
μ1 + μ2,

√
σ2

1 + σ2
2
)
,

p12 = P
[(
Q −

(
ξ1 + ξ2

))
≥ 0

]
,

p13 = P
[(
Q −

(
ξ1 + ξ2 + ξ3

))
≥ 0

]
,

...

pn−1,n = P
[(
Q −

(
ξn−1 + ξn

))
≥ 0

]
.

(3.3)
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Table 1: Dataset of sample problem.

Customers x coord y coord Average demand stdv
0 1 1 0 0
1 67 80 50 10
2 72 20 46 9.2
3 49 56 20 4
4 83 97 31 6.2
5 82 30 43 8.6
6 73 58 28 5.6
7 4 5 43 8.6
8 70 51 39 7.8

Total demand = 300 Vehicle capacity = 150

Table 2: Probabilities of meeting the demands.

p12 = 0.9999 p23 = 1 p34 = 1 p45 = 0.9999 p56 = 0.9999 p67 = 0.9999 p78 = 0.9999
p13 = 0.9918 p24 = 0.9999 p35 = 0.9999 p46 = 0.9999 p57 = 0.9964 p68 = 0.9990
p14 = 0.5769 p25 = 0.7534 p36 = 0.9866 p47 = 0.6326 p58 = 0.4232
p15 = 0.0119 p26 = 0.1248 p37 = 0.1633 p48 = 0.0208
p16 = 0.0001 p27 = 0.0003 p38 = 0.0008
p17 = 2.8678E-08 p28 = 1.4085E-07
p18 = 3.6350E-12

If we generalize;

pi,j = P

[(
Q −

j∑

l=i

ξl

)
≥ 0

]
. (3.4)

If we say
∑j

l=i
ξl = X

X ∼N
(
μX, σX

)
, (3.5)

P(X ≤ Q) = P
(
X − μX
σX

<
Q − μX
σX

)
, (3.6)

P(X ≤ Q) = P
(
Z <

Q − μX
σX

)
. (3.7)

From (3.7), nonfailure probabilities are computed.

Numerical example

A test problem with eight customers was generated in order to explain the model. Data
for the problem are given in Table 1. Distances between the customers (whose locations are
represented by x-y coordinates) were rounded to the nearest integer.

The probability of meeting customer demands for an a priori tour (route 0-1-2-3-4-5-6-
7-8-0) is shown in Table 2.
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Table 3: Route failure probabilities for 0-1-2-3-4-5-6-7-8-0 tour.

Service order 1 2 3 4 5 6 7 8
Initial tour 0 1 2 3 4 5 6 7 8 0
Ci 1 1E-04 0.00815 0.41488 0.565 0.0119 0.1613 0.579
d0i 73 73 126 86 92 5 85
Ti 0.0146 1.1899 104.5497 97.18 2.19 1.613 98.43

The length (L) of the 0-1-2-3-4-5-6-7-8-0 tour is 607 units (minimum possible distance,
not including additional costs arising from route-failures).

It holds that

C1 = 1,

C2 = p11 − p12 = 1e − 4,

C3 =
(
p12 − p13

)
∗ C1 +

(
p22 − p23

)
∗ C2 = 0.00815,

C4 =
(
p13 − p14

)
∗ C1 +

(
p23 − p24

)
∗ C2 +

(
p33 − p34

)
∗ C3 = 0.414889.

(3.8)

Other route failure probabilities are shown in Table 3.

∑
Ti = 305.175. (3.9)

The total expected length of tour (including additional costs arising from route-failures) is
= 607 + 305.175 = 912.175.

The probability of meeting demands in the VRPSD scenario depends on the given
initial tour. That means any change occurring in the a priori tour necessitates recalculating
the probability of meeting demands for the partial set (the remaining customers) However,
the present scenario determines that the demands of each customer have the same mean
and standard deviation. Examining the normal distribution, it will be clear that probabilities
of route failures in the service order will also be the same. In the next section, this special
case for VRPSD will be examined and a linear mathematical model for SC-VRPSD will be
established.

4. Special case of vehicle routing problem with stochastic demands (SC-VRPSD)

In the special case, the demands of each customer are assumed to be normally distributed,
and the mean and standard deviation of the stochastic demands are assumed to be same for
each customer.

ξi =N(μ, σ) ∀i. (4.1)

The most remarkable characteristic of the special case is that the failure probabilities in the
service order are always the same, In other words, failure probabilities are independent of
the a priori tour.

Consider the SC-VRPSD with three customers, i, j, and k. Suppose all customers
demands are normally distributed and have the same mean and standard deviation and the
vehicle capacity is Q.
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If a priori tour T1 = 0-i-j-k-0 and the other priori tour T2 = 0-j-k-i-0

ξi =N(μ, σ), ξj =N(μ, σ), ξk =N(μ, σ),

ξr = the demand of the customer in the rth service order.
(4.2)

Service order r r + 1 r + 2
Tour 1 (0-i-j-k-0) i j k
Tour 2 (0-j-k-i-0) j k i

There are 3 nonfailure probabilities Tour 1:

pi,j = P

[(
Q −

j∑

l=i

ξl

)
≥ 0

]
,

pr,r+1 = P

[(
Q −

r+1∑

l=r

ξl

)
≥ 0

]
,

ξr + ξr+1 =N ∼
(
μ + μ,

√
σ2 + σ2

)
=N ∼ (2μ,

√
2σ),

pr,r+1 = P
[(
Q −

[
N ∼ (2μ,

√
2σ)

)
≥ 0

]
(T1),

pr,r+2 = P
[(
Q −

[
N ∼ (3μ,

√
3σ)

])
≥ 0

]
(T1),

pr+1,r+2 = P
[(
Q −

[
N ∼ (2μ,

√
2σ)

])
≥ 0

]
(T1).

(4.3)

Similarly, nonfailure probabilities for Tour 2:

pr,r+1 = P
[(
Q −

[
N ∼ (2μ,

√
2σ)

])
≥ 0

]
(T2),

pr,r+2 = P
[(
Q −

[
N ∼ (3μ,

√
3σ)

])
≥ 0

]
(T2),

pr+1,r+2 = P
[(
Q −

[
N ∼ (2μ,

√
2σ)

])
≥ 0

]
(T2).

(4.4)

As a result,

T1
(
pr,r+1

)
= T2

(
pr,r+1

)
,

T1
(
pr,r+2

)
= T2

(
pr,r+2

)
,

T1
(
pr+1,r+2

)
= T2

(
pr+1,r+2

)
.

(4.5)

It is suggested that failure probabilities are independent from the initial tour.
For the problem with 8 customers, previously outlined in Section 3, if we assume that

all demands are ξi =N(μ, σ) ∀i and σ/μ = 0.2 and the vehicle capacity is 4μ.
The length (L) of the (0-1-2-3-4-5-6-7-8-0) a priori route = 607 units (based on the a

priori route and not including any un-planned returns to the depot to re-stock). In Table 4,
route failure probabilities and the length of additional distances stemming from the route
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Table 4: Route failure probabilities and additional distances for a priori tour 0-1-2-3-4-5-6-7-8-0.

Service order 1 2 3 4 5 6 7 8
A priori tour 0 1 2 3 4 5 6 7 8 0
Ci 1 0 0.002 0.498 0.487 0.015 0.25 0.485
d0i 73 73 126 86 92 5 85
Ti 0 0.292 125.496 83.764 2.76 2.5 82.45

Table 5: Route failure probabilities and additional distances for a priori tour 0-2-4-1-7-5-6-3-8-0.

Service order 1 2 3 4 5 6 7 8
priori tour 0 2 4 1 7 5 6 3 8 0
Ci 1 0 0.002 0.498 0.487 0.015 0.25 0.485
d0i 126 103 5 86 92 73 85
Ti 0 0.412 4.98 83.764 2.76 36.5 82.45

failures are shown for SC-VRPSD:

∑
Ti = 297.262. (4.6)

The expected length of the tour (0-1-2-3-4-5-6-7-8-0) is = 607 + 297.262 = 904.262.
Now if we take our route as 0-2-4-1-7-5-6-3-8-0 for the same sample problem, the length

of 0-2-4-1-7-5-6-3-8-0 tour is L = 514 units. In Table 5, route failure probabilities and the length
of additional distances stemming from the route failures are shown:

∑
Ti = 210.866. (4.7)

The expected length of the tour (0-2-4-1-7-5-6-3-8-0) is = 514 + 210.866 = 724.866.
As the route failure probabilities are independent from the a priori tour in case of

the SC-VRPSD, the problem was regarded as an assignment problem and the non-linear 0-1
integer mathematical model was established.

Nonlinear assignment model for SC-VRPSD

MIN 2 ∗A + B + C,

A =
n∑

r=1

Cr ∗
n∑

i=1

d0,i ∗Xi,r ,

B =
n∑

i=1

d0,i ∗Xi,1 +
n∑

i=1

d0,i ∗Xi,n

C =
n∑

i=1

n∑

j=1
j /= i

di,j ∗
n−1∑

r=1

Xi,r ∗Xj,r+1,

, (4.8)
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subject to

(1)
∑n

i=1Xi,r = 1 (r = 1, 2, . . . , n),

(2)
∑n

r=1Xi,r = 1 (i = 1, 2, . . . , n).

The symbols in the model:
0 is depot,
i = customer (i = 1, 2, . . . , n),
r = service order (r = 1, 2, . . . , n), Cr = total route failure probability in the rth service

order:

Xi,r = 1, if customer i is assigned to rth service order,

Xi,r = 0, otherwise,
(4.9)

di,j = the distance between customer i and customer j.
2∗A in the objective function of the model shows the cost of going back to the depot

and then returning to the customer in rth service order arising from the route failures, B
shows the distance between customers who are assigned to the first service order and to
the last service order from the depot and C shows the distance between customers who are
successively assigned to service orders.

Whereas the constraint set (1) ensures that one customer can only be assigned to one
service order, and the constraint set (2) ensures that no more than one customer can not be
assigned to the same service order.

As the model is not a linear model, it is comparatively difficult to solve. The
assignment problem was integrated with the TSP problem in the course of linearizing the
model and thus a new linear model was established for SC-VRPSD.

Linear model for SC-VRPSD (TSP model integrated with assignment model)

MINA + 2 ∗ B,

A =
n∑

i=0

n∑

j=0
j /= i

di,j ∗Xi,j ,

B =
n∑

i=1

n∑

j=1

Cj ∗ d0,i ∗ Zi,j

(4.10)

subject to

n∑

i=0

Xi,j = 1 ∀j , j /= i, (4.11)

n∑

j=0

Xi,j = 1 ∀i, i /= j, (4.12)

n∑

i=1

Zi,j = 1 ∀j , (j = 1, 2, . . . , n), (4.13)
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n∑

j=1

Zi,j = 1 ∀i, (i = 1, 2, . . . , n), (4.14)

X0,j ≤ Zj,1 ∀j , (j = 1, 2, . . . , n), (4.15)

Xj,0 ≤ Zj,n ∀j , (j = 1, 2, . . . , n), (4.16)

X0,j + Zj,1 ≤ 2 ∀j , (j = 1, 2, . . . , n), (4.17)

Xj,0 + Zn ≤ 2 ∀j , (j = 1, 2, . . . , n), (4.18)
(
Xi,j + Zi,k +

n∑

l=1
l /= k+1

Zj,l

)
≤ 2 ∀i, (i = 1, 2, . . . , n), ∀j , (j = 1, 2, . . . , n), j /= i,

∀k, (k = 1, 2, . . . , n − 1),

(4.19)

U(i) −U(j) + n ∗Xi,j ≤ n − 1 ∀i, (i = 1, 2, . . . , n), ∀j , (j = 1, 2, ..., n) . (4.20)

All Xi,j and Zi,j = 0 or 1 and all U(i) ≥ 0 and is a set of integers.
The following symbols are used in the model:

0 = depot,

i = customer (i = 1, 2, . . . , n),

r = service order (r = 1, 2, . . . , n),

Cr= total route failure probability in the rth service order,

di,j= the distance between customer i and customer j;

Xi,j = 1, if vehicle travels directly from customer i to customer j,

Xi,j = 0, otherwise,
(4.21)

Zi,j = 1, if customer i is assigned to jth service order,

Zi,j = 0, otherwise.
(4.22)

A in the objective function of the model shows the cost of the TSP tour. 2∗B shows the
cost of going back to the depot and then returning to the customers arising from route failures
at the jth service order. The constraint sets (4.11) and (4.12) are the constraint sets which
exist in classical TSP model, whereas constraint sets (4.13) and (4.14) are present in classical
assignment problem model. Constraints (4.15)–(4.19) ensure that two problems (Traveling
Salesman Problem and Assignment Problem) can be solved simultaneously. Constraint (4.20)
is the sub-tour elimination constraint in TSP model.

This method can be used to obtain an exact solution for the problem at a small size but
for larger size problems we present here an Iterated Local Search algorithm.

5. Iterated local search (ILS)

ILS which is developed between meta-heuristics for difficult problems is not only an
algorithm which produces effective solutions but it is also a random search method which
can be easily implemented in practice. It can be referred to as the first ILS study conducted
by Martin et al. [22] for Traveling Salesman Problem. Lourenço et al. [23] gained some
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information about the structure of ILS algorithm in their studies. The success of the iterated
local search is not limited to TSP. Many previous studies suggest that this method was also
successful in scheduling problems. Examples are Single-Machine Total Weighted Tardiness
Scheduling Problem [24], flow-shop scheduling problems [25, 26], and job-shop scheduling
problems [27], quadratic assignment problem [28]. For a detailed review of other applications
we refer to [29].

5.1. The general structure of ILS algorithm

The ILS algorithm, as mentioned previously, is a random search method developed for
NP-hard problems. The most important characteristic of the ILS algorithm is its ability to
jump to other points of the solution space (S) by masking the good characteristics of a
solution which is stuck to the local optimum. This jumping action is achieved by a process
called perturbation. There are four components that should be taken into consideration
while applying an ILS algorithm. These are initial solution, local search, perturbation, and
acceptance criterion.

5.2. Local search

Performance of ILS is remarkably sensitive to choice of embedded heuristic. In practice, there
may be many different algorithms that can be used for the embedded heuristic. Two different
local search heuristicss were used in this study in order to increase the effectiveness of the
solution of the ILS algorithm. These are as follows.

Two-node-exchange

Given an a priori tour, si = (s(0), s1(r), . . . , sn(r), s(0)), any two nodes in the current a priori
tour are exchanged. If this results in a better feasible tour the exchange is accepted. This
procedure is repeated until no further improvement is achieved.

2-p-opt

Given an a priori tour, si = (s(0), s1(r), . . . , sn(r), s(0)), its 2-p-opt neighborhood is the set of
tours obtained by reversing a section of s (i.e., a set of consecutive nodes) and adjusting the
arcs adjacent to the reversed section [30].
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A B C D

(a) Current tour before perturbation

A B C D

(b) New tour after perturbation

Figure 3: Double bridge move.

Procedure Iterated Local Search
s0 = Initial Solution
s∗ = Local Search (s0)
repeat

s′ = Perturbation (s∗)
s∗′ = Local Search (s′)
s∗ = Acceptance Criterion (s∗, s∗′)

until termination condition met
end procedure

Algorithm 1: General working principles of ILS.

5.3. Perturbation

The objective here is to escape from local optimum by applying perturbations to the current
local minimum. In Figure 2 [23], perturbation is applied the current tour (s∗ ) and this leads to
an intermediate state s′ and Local Search is applied to s′ and after local search a new solution
s∗′ is reached. If s∗′ passes an acceptance test, we accept the s∗′ as a current tour, otherwise
perturbation repeated on the s∗. Until the termination condition met, algorithm steps are
repeated. Algorithm 1 shows the general working principles of ILS.

The effect of the perturbation depends on how strong the perturbation is. If the
perturbation is too small, it is possible to reach the same local optimum. If the perturbation is
too large, then the ILS algorithm will behave like random restart type algorithm.

The present study selected a perturbation mechanism which is effective for TSP
and which is called double bridge move [23]. Double bridge move cuts the current tour at
three random positions and uses a particular way of reconnecting the four remaining tour
segments. Figure 3 shows the double bridge move as a perturbation mechanism.

In this study, the termination condition was established as a maximum number of
iterations and the algorithm was limited to the same number of iterations for all test problems.
The iteration number was taken to be the solution number applied perturbation and the
maximum number of iterations was set as 1,000. In the following section, test problems and
their results are discussed.

5.4. Computational results

The ILS algorithm was coded in Microsoft Visual C# language and run on a PC with 1.80 GHz
CPU and 2 GB RAM. Furthermore, proposed linear mathematical model was coded using
LINGO 8.0 package program. It was run for small-sized test problems up to 20 customers.
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Table 6: Comparison of ILS algorithm and the mathematical model for small-sized problems.

Problem
name

Vehicle
capacity

Mathematical
model result

Mean CPU time
(sec.) for
mathematical
model

ILS result Mean CPU time
(sec.) for ILS

Eil13
Q = 2.5μ 408.99

62
408.994

0.77Q = 5μ 272.364 272.364

Q = 10μ 216 216

Eil14
Q = 2.5μ 447.536

300
447.536

0.82Q = 5μ 282.344 282.344

Q = 10μ 227.988 227.988

Eil15
Q = 2.5μ 493.852

727
493.852

0.88Q = 5μ 310.268 310.268

Q = 10μ 248.048 248.048

Eil16
Q = 2.5μ 516.768

1025
516.768

0.94Q = 5μ 331.812 331.812

Q = 10μ 255.66 255.66

Eil17
Q = 2.5μ 551.722

7111
551.722

1.02Q = 5μ 350.912 350.912

Q = 10μ 259.408 259.408

Eil18 Q = 2.5μ 577.908 7951 577.908 1.09
Q = 5μ 365.13 365.13

Eil119 Q = 2.5μ 633.856 27621 633.856 1.19
Q = 5μ 396.706 396.706

Eil20 Q = 2.5μ 664.3 74421 664.3 1.32

Small-sized test problems were obtained by splitting the Eil51 problem to various sizes.
For example Eil20 was formed with the first 20 customers of Eil51. Similarly Eil13 includes
the first 13 customers of Eil51. In all test problems, we assume that customer demands are
normally distributed (ξi = N(μ, σ) ∀i σ/μ = 0.2) and the first customer was accepted as the
depot. At Table 6 mathematical model and ILS results were compared in terms of solution
quality and CPU times to evaluate the performance of the ILS algorithm.

In all small-sized problems ILS algorithm reached fast the optimum results which were
obtained by LINGO. LINGO run approximately 20.6 hours to obtain the optimum result of
Eil20, however ILS reached the same result in 1.32 seconds.

Showing the validity of the solutions at small-sized test problems using ILS, the
“traveling salesman” problems in the literature (Berlin52, Eil51, Eil76, Eil101, A280, KroA100,
KroC100, Pr76, Lin105) were converted into SC-VRPSD problems by assuming that customer
demands are normally distributed (ξi = N(μ, σ) ∀i σ/μ = 0.2). The first customer was again
accepted as the depot in all test problems. The results were obtained for several vehicle
capacities (Q=2.5μ, 5μ, 10μ, 20μ). The algorithm was run 5 times for each set and the best
results obtained from these 5 tests are shown in Table 7.

Test problems may be accessed online via http://www.iwr.uniheidelberg.de/groups/
comopt/software/TSPLIB95/.
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Table 7: Computational results for different problem sizes and vehicle capacities.

Problem name Number of customers Expected tour length for various vehicle capacities
Q = 2.5μ Q = 5μ Q = 10μ Q = 20μ

Eil51 51 1669.3 962.35 632.01 490.512
Berlin52 52 27700.498 16385.908 10865.498 8557.894
Eil76 76 2812.25 1550.808 943.856 650.714
Pr76 76 785557.476 408383.298 238931.054 158792.47
KroA100 100 152966.996 80303.686 47105.406 30644.136
KroC100 100 171777.932 88675.256 50903.832 32812.934
Eil101 101 3385.564 1861.12 1143.17 815.756
Lin105 105 178862.26 88474.332 48050.174 28946.026
A280 280 49040.85 23590.382 12443.506 7156.779

6. Conclusion

The present study defined a special case for the vehicle routing problem with stochastic
demands (SC-VRPSD) where customer demands are normally distributed. A new mathemat-
ical model was proposed for the calculation of the length of tour for SC-VRPSD. Proposed
model is based on the integration of the “Traveling Salesman Problem” (TSP) and the
Assignment Problem. However, the Iterated Local Search algorithm (ILS) was used in order
to reach an appropriate solution because the linear model could not produce solutions in
polynomial time for large-scale problems. Test problems were obtained from the conversion
of well-known TSP problems in the literature to SC-VRPSD. The results obtained for the
test problems may be used for comparison purposes for further research. The results may
be improved by further refinement of the algorithms and incorporation of suggestions from
other researchers.
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[25] T. Stützle, “Applying iterated local search to the permutation flow shop problem,” Tech. Rep. AIDA-
98-04, FG Intellektik, TU Darmstadt, Darmstadt, Germany, 1998.

[26] Y. Yang, S. Kreipl, and M. Pinedo, “Heuristics for minimizing total weighted tardiness in flexible flow
shops,” Journal of Scheduling, vol. 3, no. 2, pp. 89–108, 2000.

[27] E. Balas and A. Vazacopoulos, “Guided local search with shifting bottleneck for job shop scheduling,”
Management Science, vol. 44, no. 2, pp. 262–275, 1998.
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