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the theory of interacting continua, that is, the mixture theory. We first provide a brief review
of mixture theory, and then discuss certain issues in constitutive modeling of a two-component
mixture. In the present formulation, we ignore the biochemistry of blood and assume that blood is
composed of red blood cells (RBCs) suspended in plasma, where the plasma behaves as a linearly
viscous fluid and the RBCs are modeled as an anisotropic nonlinear density-gradient-type fluid.
We obtain a constitutive relation for blood, based on the simplified constitutive relations derived
for plasma and RBCs. A simple shear flow is discussed, and an exact solution is obtained for a
very special case; for more general cases, it is necessary to solve the nonlinear coupled equations
numerically.
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1. Introduction

Amongst the multiphase (more accurately multicomponent) flows occurring in nature, one
can identify blood, mud slides, avalanches, and so forth, and amongst the many flows found
in the chemical industries, one can name fluidization and gasification, and in agricultural
and pharmaceutical applications, one can name the transport, storage, drying of grains, and
so forth. In most applications, the phases are not of the same material and thus it is more
appropriate and accurate to refer to these cases as “multicomponent” problems. Historically,
two distinct approaches have been used in modeling multicomponent flows (for simplicity in
the remainder of the paper, we assume a two-component flow). In the first case, the amount
of the dispersed component is so small that the motion of this component (measured by a
field variable such as concentration) does not greatly affect the motion of the continuous
component (the other component). This is generally known as the “dilute phase approach,”
sometimes also called the Lagrangean approach. This method is used extensively in
applications such as atomization, sprays, and in flows where bubbles, droplets, and particles
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are treated as the dispersed rather than a continuous component. In the second approach,
known as the “dense phase approach,” sometimes also called the Eulerian (or the two-fluid)
formulation, the two components interact with each other to such an extent that each compo-
nent directly influences the motion and the behavior of the other component. This method
is used extensively in fluidization, gas-solid flows, pneumatic conveying, suspensions,
polymeric solutions, and so forth, (see Kaloni et al. [1], Massoudi [2] and references therein).

The large number of articles published concerning two-component flows typically
employs one of the two continuum theories developed to describe such situations: mixture
theory (the theory of interacting continua) (Rajagopal and Tao [3]) or Averaging Method(s)
(Ishii [4]). Both approaches are based on the underlying assumption that each component
may be mathematically described as a continuum. The averaging method directly modifies
the classical transport equations to account for the discontinuities or “jump” conditions at
moving boundaries between the components (cf., Anderson and Jackson [5], Drew and Segal
[6], Gidaspow [7], Jung et al. [8]). The modified balance equations must then be averaged
in either space or time (hence the name averaging) to arrive at an acceptable local form. In
this approach point-wise equations of motion, valid for a single fluid or a single particle, are
modified to account for the presence of the other component and the interactions between
components. These equations are then averaged over time or some suitable volume that is
large compared with a characteristic dimension (e.g., particle spacing or the diameter of the
particles) but small compared to the dimensions of the whole system. From the mathematical
manipulation of the averaged quantities, a number of terms, some of unknown physical
origin, arise. These terms are usually interpreted as some form of interaction between the
constituents. Although the twomethods seem similar, the way they approach the formulation
of constitutive models is very different. In fact, as shown in Massoudi [2], many of the
interactionmodels used by researchers in the averaging community are not frame-indifferent,
thus violating basic principles in physics. Other differences between the two approaches are
explained in Johnson et al. [9, 10], and Massoudi et al. [11, 12].

Mixture theory, or the Theory of Interacting Continua, traces its origins to the work of
Fick (1855) (see Rajagopal [13]) and was first presented within the framework of continuum
mechanics by Truesdell [14]. It is a means of generalizing the equations and principles of the
mechanics of a single continuum to include any number of superimposed continua. In an
important paper, Rajagopal [13], within the confines of mixture theory, outlines a procedure
to obtain a hierarchy of approximate models, used in multicomponent situations, including
those of Fick and Darcy. mixture theory is in a sense a homogenization approach in which
each component is regarded as a single continuum and at each instant of time, every point
in space is considered to be occupied by a particle belonging to each component of the
mixture (cf., Truesdell [15]). It provides a means for studying the motions of bodies made
up of several constituents by generalizing the equations and principles of the mechanics
of a single continuum and in recent years it has been applied to a variety of applications
such as fluid-solid particles, lubrication with binary-mixtures of bubbly oil, viscoelastic
porous mixtures, swelling porous media with microstructure, reacting immiscible mixtures,
polymeric solutions, growth and remodeling of soft tissues, and ionized fluid mixtures
(see Massoudi [16]). More detailed information, including an account of the historical
development, is available in the articles by Atkin and Craine [17, 18], Bowen [19], Bedford
and Drumheller [20], and in the books by Truesdell [15], Samohyl [21], and Rajagopal and
Tao [3]. mixture theory has also been used in a variety of biomechanics applications (see, e.g.,
Ateshian et al. [22], Garikipati et al. [23], Humphrey and Rajagopal [24], Klisch and Lotz [25],
Lemon et al. [26], Tao et al. [27], Ramtani [28]).
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It is known that in large vessels (whole) blood behaves as a Navier-Stokes
(Newtonian) fluid (see Fung [29, Chapter 3]); however, in a vessel whose characteristic
dimension (diameter, e.g.) is about the same size as the characteristic size of blood cells, blood
behaves as a non-Newtonian fluid, exhibiting shear-thinning and stress relaxation. Thurston
[30, 31] pointed out the viscoelastic behavior of blood while stating that the stress relaxation
is more significant for cases where the shear rate is low. With respect to modeling blood, it
has been observed that as the geometry of the flow changes, the rheological characteristics of
blood also change and as pointed out by Humphrey and Delange [32, page 357], when blood
flows in capillaries (5–8μm in diameter), “the red blood cells go through one at a time, with
plasma in between.” Flow in larger vessels, in the range of 500–50μm (see Fung [29, page
173]), exhibits a unique phenomenon known as the Fahraeus-Lindqvist effect, whereby red
blood cells migrate towards the centerline, creating a thin layer of cell-depleted plasma near
the vessel wall. As they indicate, in such a case, the blood should be treated as a solid and
fluid mixture.

In this paper, we first provide a brief review of mixture theory, and then discuss certain
issues in constitutive modeling of blood. In the present formulation, we assume blood to form
a mixture consisting of RBCs suspended in plasma, while ignoring the platelets, the white
blood cells (WBCs), and the proteins in the sample. No biochemical effects or interconversion
of mass are considered in this model. The volume fraction (or the concentration of the RBCs)
is treated as a field variable in this model. We further assume that the plasma behaves as a
linearly viscous fluid and the RBCs as an anisotropic nonlinear density-gradient-type fluid.
We obtain a constitutive relation for blood, based on the simplified constitutive relations
derived for plasma and RBCs. It is noted that we have only discussed the development a
model and that specific boundary value problems need to be solved to test the efficacy of the
model. A simple shear flow is studied and an exact solution is obtained for a very special case;
for more general cases, it is necessary to solve the nonlinear coupled equations numerically.

2. A brief review of (a two-component) mixture theory

In this section, we will provide a brief review of the essential ideas and equations of a two-
component mixture. At each instant of time, t, it is assumed that each point in space is
occupied by particles belonging to both S1 and S2. Let X1 and X2 denote the positions of
particles of S1 and S2 in the reference configuration, where (see Bowen [19], Truesdell [15])

x1 = χ̃1(X1, t), x2 = χ̃2(X2, t). (2.1)

These motions are assumed to be one-to-one, continuous, and invertible. The kinematical
quantities associated with these motions are

v1 =
D1χ̃1

Dt
, v2 =

D2χ̃2

Dt
,

a1 =
D1v1
Dt

, a2 =
D2v2
Dt

,

L1 =
∂v1
∂x1

, L2 =
∂v2
∂x2

,

W1 =
1
2
(L1 − LT

1 ), W2 =
1
2
(L2 − LT

2 ),

D1 =
1
2
(L1 + LT

1 ), D2 =
1
2
(L2 + LT

2 ),

(2.2)
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where v denotes the velocity vector, a the acceleration vector, L the velocity gradient, D
denotes the symmetric part of the velocity gradient, and W the spin tensor. D1/Dt denotes
differentiation with respect to t, holding X1 fixed, and D2/Dt denotes the same operation
holding X2 fixed; in general for any scalar β, D(α)β/Dt = ∂β/∂t + v(α) ·grad β, α = 1, 2, and
(for any vector w), D(α)w/Dt = ∂w/∂t + (grad w)v(α). Also, ρ1 and ρ2 are the bulk densities
of the mixture components given by

ρ1 = γρ10, ρ2 = φρ20, (2.3)

where ρ10 = ρf is the density of the first component (e.g., a fluid) in the reference
configuration, ρ20 = ρs is the density of the second component (e.g., solid particles) in its
reference configuration, γ is the volume fraction of the fluid component, and φ is the volume
fraction of the solid. For a saturated mixture γ = 1 − φ. The mixture density ρm is given by

ρm = ρ1 + ρ2, (2.4)

and the mean velocity wm of the mixture is defined by

ρmwm = ρ1v1 + ρ2v2. (2.5)

Once the individual stress tensors are derived (or proposed), a mixture stress tensor can be
defined as

Tm = T1 + T2, (2.6)

where

T1 = (1 − φ)Tf , T2 = Ts, (2.7)

so that the mixture stress tensor reduces to that of a pure fluid as φ → 0 and to that of the
solid particles (e.g., a densely packed granular material) as γ → 0. T2 may also be written
as T2 = φ̂Ts, where ̂Ts may be thought of as representing the stress tensor in the reference
configuration of the granular material. In the absence of any thermochemical and electro-
magnetic effects, the governing equations are those of the conservation of mass and linear
momentum.

2.1. Conservation of mass

Assuming no interconversion of mass between the two constituents, the equations for the
conservation of mass for the two components are

∂ρ1
∂t

+ div(ρ1v1) = 0, (2.8)

∂ρ2
∂t

+ div(ρ2v2) = 0. (2.9)

2.2. Conservation of linear momentum

Let T1 and T2 denote the partial stress tensors. Then, the balance of linear momentum
equations for the two components is given by

ρ1
D1v1
Dt

= divT1 + ρ1b1 + fI , (2.10)

ρ2
D2v2
Dt

= divT2 + ρ2b2 − fI , (2.11)

where b represents the body force and fI represents the mechanical interaction (local
exchange of momentum) between the components.
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2.3. Conservation of angular momentum

The balance of moment of momentum implies that

T1 + T2 = TT
1 + TT

2 . (2.12)

The partial stresses however do not need to be symmetric. Equations (2.8)–(2.11) represent
the basic governing equations for two-component flows, where the effects of electromagnetic
and temperature fields are ignored. These equations have to be supplemented with
constitutive relations for T1, T2, and fI. This is known as the “closure” problem. In addition
to the above balance equations (note that we have ignored the balance of energy and the
entropy equation), we need to discuss certain constraints which might have to be considered
in mixture theory.

2.4. Volume additivity constraint

Mills [33] derived the volume additivity constraint by defining an incompressible mixture as
one:

1
ρ10

dm1

dV 1
+

1
ρ20

dm2

dV 2
= 1, (2.13)

where “m” denotes mass and “V” the volume, and where dV 1 + dV 2 = dV , dm1 + dm2 = dm,
ρ10 = dm1/dV 1, and ρ20 = dm2/dV 2. Now, the densities in the current configuration, that is,
in the mixture are given by ρ1 = dm1/dV , ρ2 = dm2/dV . Thus,

ρ1
ρ10

+
ρ2
ρ20

= 1. (2.14)

Other types of constraints such as incompressibility and inextensibility can also be
incorporated in mixture theory.

2.5. Surface (boundary) conditions

In continuummechanics, in addition to the balance (governing) equations, possibly subjected
to some constraints, one must also specify meaningful (physical) boundary conditions, in
order to have a well-posed problem. If the equations are nonlinear, the multiple solutions
and stability of those solutions are very often of interest. The typical boundary conditions
used in analytical/numerical procedures to solve any differential equations are (i) Dirichlet
boundary conditions where the value of the unknowns is prescribed on the boundary, (ii)
Neumann condition where the normal gradient of the unknowns is specified, and (iii)
boundary conditions where a combination of the unknown quantities and their normal
gradients is specified. The need for additional boundary conditions arises in many areas of
mechanics, whenever nonlinear or microstructural theories are used. For example, in higher
grade fluids in the mechanics of non-Newtonian fluids (see Rajagopal and Kaloni [34]), in
polar fluids (see Atkin et al. [35]), in liquid crystals (see Leslie [36] and Ericksen [37]), or in
mixture theory (see Rajagopal et al. [38]), the need is discussed and suggestions are offered.

One of the fundamental questions in mixture theory is concerned with the boundary
conditions and how to split the (total) traction vector, related to the (total) stress tensor,
or the (total) velocity vector (see Ramtani [39]). In an important paper, Rajagopal et al.
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[38] developed a novel scheme to split the total stress for a class of problems in which the
boundary of the mixture is assumed to be in a state of saturation. These problems deal
with diffusion of fluids through nonlinear elastic materials, such as rubber. This additional
boundary condition is obtained by prescribing the variation of the Gibbs free energy of
dilution being zero. As a result of this thermodynamic restriction, a relationship between
the total stress tensor, the stretch tensor, and the volume fraction of the solid component
is obtained. This saturation condition is explained by Rajagopal and Tao [3, page 31] as
“. . .a state in which a small element of the solid adjacent to the fluid is in a state in which
it cannot absorb any more fluid, that is whatever fluid enters the elemental volume along the
boundary has to exit through the elemental volume so that there is no accumulation of the
fluid.” Later, Tao and Rajagopal [3] suggested a purely mechanical method for the splitting of
the traction. If x is a point on the boundary surface of the mixture region and ts and tf are the
surface tractions at x associated with the solid and the fluid components respectively, then

ts = (Ts)Tn,

tf = (Tf)Tn,
(2.15)

where n is the unit outward normal vector at x. They assumed that the boundary surface
fraction δSf/δS occupied by the fluid component at x is given by δSf/δS = δV f/δV , where
δV f is the volume occupied by the fluid component in δV . Then, the traction vector tf at x is
given by

tf =
δSf

δS
t, (2.16a)

where t is the total applied surface traction at x. They also showed that

(Tf)Tn =
ρf

ρ
f

R

t, (2.16b)

(Ts)Tn =
ρs

ρsR
t, (2.16c)

where ρsR and ρ
f

R are the mass densities of the solid component and the fluid component
in their reference states, and ρs and ρf denote their mass densities in the current state. In
Rajagopal and Massoudi’s model (see Massoudi et al. [12] for details), it is not the tractions
which are of interest in general but the velocities. In their approach, the solid particles
and fluid component are assumed to both move and diffuse through each other, thereby
transforming the issue of traction boundary conditions to one of velocities at the boundary.
For free surface flows, on the other hand, the splitting of the traction vector remains the main
difficulty (see Ravindran et al. [40]). Sometimes these additional boundary conditions can
be provided from experimental data, and sometimes they can be based on other theories or
physical insights.

In Rajagopal and Massoudi’s approach no couple stresses are allowed. Nevertheless,
due to the higher order gradients of volume fraction, they also find it necessary to provide
additional boundary conditions for solving practical and simple boundary value problems
(see Massoudi [41] for a discussion of boundary conditions). For most practical applications,
these can sometimes be satisfied by certain symmetry conditions; in certain cases, the values
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of the unknowns or their derivatives have to be specified as surface conditions at the solid
walls or at the free surface.

For problems with bounded domains and with a certain degree of symmetry, such as
fully developed flow in a vertical pipe (see Gudhe et al. [42]), one can prescribe at the center
of the pipe the following condition:

dφ

dr
= 0, (2.17a)

dv

dr
=

du

dr
= 0, (2.17b)

where u and v are the velocities. It is much more difficult to specify the value of the
volume fraction (or concentration) at the solid surfaces. For example, based on experimental
evidence, or artificially and manually gluing particles (or a thin layer) to the wall, one can
prescribe a value such as

φ = φw (at the wall). (2.18a)

Other helpful conditions, though strictly speaking not a boundary condition, are integral
conditions such as a mass flux, which provide an average value. For example, for the case of
pipe flow, we can use

N = 2π
∫ r

0
φr dr, (2.18b)

where the value of N is an input to the problem. In most cases, it can be assumed that the
no-slip boundary condition applies to the velocity components. Therefore,

u = v = 0 at the boundaries. (2.19a)

However, in many situations slip may occur at the wall, and therefore the classical
assumption of adherence boundary condition at the wall no longer applies. For most
applications, a generalization of Navier’s hypothesis can be used (see Rajagopal [43])

u · t = −k(Tn · t), k > 0, (2.19b)

where u is the velocity vector of the fluid, T the stress tensor for the fluid, t and n are the
unit tangent and normal vectors at the boundary, and k, in general, can depend on the normal
stress as well as the shear rate. Massoudi and Phuoc [44] proposed that for granular materials
the slip velocity is proportional to the stress vector at the wall, that is, us = g[(Tsn)x, (Tsn)y],
where Ts is the stress tensor for the granular component, n is the unit normal vector, and g in
general could be a function of surface roughness, volume fraction (density), shear rate, and
so forth.

For free surface flows, in general, the location of the free surface is not known and one
must find this surface as part of the solution. For steady flows, one can use the kinematical
constraint

u ·n = 0. (2.20)
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For unsteady flows, the problem of specifying the boundary conditions is more complicated.
On the free surface it is known that the stress is zero, that is, one has the traction-free
boundary condition. For a mixture, however, it is not clear whether the total traction vector
t is zero, or whether the individual traction vectors ts and tf are zero. For a fully developed
flow, where the location of the free surface, that is, the constant height of the free surface
is known a priori, and based on the work of Tao and Rajagopal [45], Ravindran et al. [40]
assumed that the tangential components of the individual traction vectors are zero, while the
normal components are weighted according to the volume fraction. That is, they assumed
that the atmospheric pressure on the top surface is split between the two components in the
ratio of their respective volume fractions:

Ts

(

0

1

)

=

(

0

φPatm

)

, (2.21a)

and for the fluid, we have

Tf

(

0

1

)

=

(

0

(1 − φ)Patm

)

. (2.21b)

In general, if one attempts to eliminate the pressure term via cross-differentiation, the order of
the equations increases, and one needs additional boundary condition. This can be obtained
by specifying the flow rate of the mixture (see Beevers and Craine [46]):

Qvolumetric =
∫1

0
Vm dY =

∫1

0
[(1 − φ)u + φv]dY. (2.22a)

Alternatively, the flow rate of the mixture can be prescribed. The mass flow rate for a two-
component mixture is defined as

Qm =
∫1

0
ρmVm dY =

∫1

0
[(1 − φ)ρf + φρs][(1 − φ)u + φv]dY. (2.22b)

When the mixture is neutrally buoyant, that is, ρf = ρs = ρ, these two quantities are related
by Qm = ρQ.

Finally, for a complete study of a thermomechanical problem, not only in mixture
theory, but in continuum mechanics in general, the second law of thermodynamics has
to be considered. In other words, in addition to other principles in continuum mechanics
such as material symmetry, and frame indifference, the second law imposes important
restrictions on the type of motion and/or the constitutive parameters (for a thorough
discussion of important concepts in constitutive equations of mechanics, we refer the reader
to the books by Antman [47] Maugin [48], Coussot [49], Liu [50], Batra [51]). Since, there
is no general agreement on the functional form of the constitutive relation and since the
Helmholtz free energy is not known, a complete thermodynamical treatment of the model
used in our studies is lacking. In recent years, Rajagopal and colleagues (see, e.g., Rajagopal
and Srinivasa [52, 53]) have devised a thermodynamic framework, the multiple natural
configuration theory, by appealing to the maximization of the rate of entropy production
to obtain a class of constitutive relations for many different types of materials. Unlike the
traditional thermodynamic approach whereby a form for the stress is assumed (or derived)
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and restriction on the material parameters is obtained by invoking the Clausius-Duhem
inequality, in their thermodynamic framework, they assume specific forms for the Helmholtz
potential and the rate of dissipation—reflecting on how the energy is stored in the body and
the way in which the body dissipates it. In the next section, we discuss a general method on
how to obtain the balance equations of mixture if the balance equations of each component
are given.

3. Equations of motion for the mixture

To obtain the conservation of mass for the mixture, we add (2.8) and (2.9) to obtain

∂(ρ1 + ρ2)
∂t

+ div(ρ1v1 + ρ2v2) = 0. (3.1)

Now, the mass-weighted velocity of the mixture is defined as (see Bowen [19])

ρmwm = ρ1v1 + ρ2v2. (3.2)

Thus, substituting this equation and recalling that ρm = ρ1 +ρ2, we obtain the conservation of
mass for the mixture:

∂ρm
∂t

+ div(ρmwm) = 0. (3.3)

Similarly, to obtain the conservation of linear momentum for the mixture, we can add (2.10)
and (2.11):

ρ1
D1v1
Dt

+ ρ2
D2v2
Dt

= div(T1 + T2) + ρ1b1 + ρ2b2. (3.4)

Defining

ρmbm = ρ1b1 + ρ2b2. (3.5)

Equation (3.4) is rewritten as, using (2.6),

ρ1
D1v1
Dt

+ ρ2
D2v2
Dt

= divTm + ρmbm. (3.6)

This is the balance of linear momentum for the mixture, and unlike (3.3)which looks similar
to the conservation of mass for a single continuum, this equation appears different from that
of the linear momentum equation for a single component continuum, due to the two time
derivatives on the left-hand side of the equation. An alternative form for the balance of linear
momentum for the mixture as a whole, as prescribed in the classical mixture theory (see, e.g.,
Müller [54], Bowen [19]), is given by

ρm
Dwm

Dt
= div Tmix + ρmbm, (3.7)

where now

Tmix = T(1) + T(2) −
2
∑

α=1

ραq(α) ⊗ q(α), (3.8)
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where q(α) is the diffusion velocity vector for the αth constituent at (x, t) defined by

q(α) = V(α) −w, (3.9)

where

V(1) = u, (3.10a)

V(2) = v. (3.10b)

Thus,

Tmix = T(1) + T(2) − [ρ1(u −w) ⊗ (u −w) + ρ2(v −w) ⊗ (v −w)]. (3.11)

It is clearly seen that with this definition for mixture stress tensor, the balance of linear
momentum for the mixture, (3.7), would appear differently, since the terms included in the
bracket on the right-hand side of (3.11) nowwould appear in (3.7). As indicated byMassoudi
[16], this form is not very amenable to practical engineering problems where one is interested
in mixture properties, such as viscosity. As mentioned earlier, another way of defining the
mixture stress tensor is due to Green and Naghdi [55, 56], where

Tm = T(1) + T(2), (3.12)

where T(1) and T(2) are the constituent (partial) stress tensor relations for the two components
as used in the above equations. Whether we use (3.11) or (3.12), the specific forms of T(1) and
T(2) depend upon the way in which the constitutive relations are obtained and the types of
restrictions imposed on the materials properties. The advantage of presenting the balance
equations for the mixture, (3.3) and (3.4), as opposed to the balance equations for each
component, is that in this formulation the interaction forces cancel each other and one no
longer needs to consider constitutive relations for interaction forces. The disadvantage of this
approach is that one can no longer obtain detailed information about velocity, pressure, and
concentration distributions.

In the next section, we will discuss the approach of Massoudi and Rajagopal, as one of
the possible approaches within mixture theory, in formulating constitutive equations for the
stress tensors and the interaction forces.

4. Constitutive relations

Mathematically, the purpose of the constitutive relations is to supply connections between
kinematical, mechanical, electromagnetic, and thermal fields that are compatible with the
balance equations and that, in conjunction with them, provide a theory that is solvable
for properly posed problems. Deriving constitutive relations for the stress tensors and the
interaction forces is among the outstanding issues of research in multicomponent flows. In
general, the constitutive expressions for T1 and T2 depend on the kinematical quantities
associated with both the constituents. However, it can be assumed that T1 and T2 depend
only on the kinematical quantities associated with the particles (component 1) and fluid
(component 2), respectively (sometimes called the principle of component separation, see
Adkins [57, 58]).
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In this part of the paper, we provide a brief description of Massoudi and Rajagopal
[M-R] approach. We then modify the M-R model to obtain a constitutive relation for blood.
The M-R model considers a mixture of an incompressible fluid infused with solid particles,
wherein the principles of mechanics of granular materials are used to describe the behavior of
particles. This model has been used and discussed in Massoudi [2, 16, 41, 59–62], Johnson et
al. [9, 10], Rajagopal et al. [63–65], Massoudi et al. [12], Massoudi and Johnson [66], Massoudi
and Lakshmana Rao [67], and Ravindran et al. [40].

4.1. Stress tensor for the fluid component

In most practical engineering problems studied by Massoudi and Rajagopal, the fluid can be
assumed to behave as a linearly viscous fluid:

T1 = [−p(ρ1) + λ1(ρ1)trD1]1 + 2μ1(ρ1)D1, (4.1)

where p is the fluid pressure, μ1 is the viscosity, and D1 is the symmetric part of the velocity
gradient of the fluid, and λ1 is the second coefficient of viscosity. Obviously, this assumption
can be modified if the fluid component is a nonlinear (non-Newtonian) fluid.

4.2. Stress tensor for the solid component

The stress tensor T2 in a flowing granular material may depend on the manner in which the
granular material is distributed, that is, the volume fraction φ and possibly also its gradient,
and the symmetric part of the velocity gradient tensor D2. Based on this observation, they
assume that (see also Cowin [68])

T2 = f(φ,∇φ,D2). (4.2)

Using standard arguments in mechanics, restrictions can be found on the form of the above
constitutive expression based on the assumption of frame-indifference, isotropy, and so
forth. There could be further restrictions on the form of the constitutive expression because
of internal constraints, such as, incompressibility and thermodynamics restrictions due to
Clausius-Duhem inequality. A constitutive model that predicts the possibility of normal
stress-differences and is properly frame invariant was given by Rajagopal and Massoudi [69]

T2 = [βo + β1∇φ · ∇φ + β2trD2]1 + β3D2 + β4∇φ ⊗ ∇φ + β5D2
2, (4.3)

where

D2 =
1
2
[∇v2 + (∇v2)

T ], (4.4)

where ρ2 = ρsφ, with ρs being constant, and the β’s are material properties, which in
general are functions of the appropriate principal invariants of the density gradient and the
symmetric part of the velocity gradient. They assumed the following forms:

βo = kφ, k < 0, (4.5)

β1 = β∗1(1 + φ + φ2),

β2 = β∗2(φ + φ2),

β3 = β∗3(φ + φ2),

β4 = β∗4(1 + φ + φ2),

β5 = β∗5(1 + φ + φ2).

(4.6)



12 Mathematical Problems in Engineering

The above representation can be viewed as Taylor series approximation for the material
parameters (Rajagopal et al. [65]). Such a quadratic dependence, at least for the viscosity β3,
is on the basis of dynamic simulations of particle interactions (Walton and Braun [70, 71]).
Further restrictions on the coefficients have been obtained by using the argument that the
stress should vanish as φ → 0, therefore

β50 = β30 = β20. (4.7)

This is a principle of the limiting case, that is, if there are no particles, then φ and gradφ
are zero, and the stress should be zero. Since, the kinematical terms D2, D2

2 , and tr D2

multiplied by β2, β3, and β5 do not necessarily go to zero when there are no particles, the
above restrictions are necessary. Furthermore, Rajagopal and Massoudi [69] and Rajagopal
et al. [63] have shown that

β1 + β4 > 0,

k < 0,
(4.8)

as compression should lead to densification of the material. They suggested the following
rheological interpretation to the material parameters: β0(φ) is similar to pressure in a
compressible fluid and is to be given by an equation of state, β2(φ) is like the second
coefficient of viscosity in a compressible fluid, β1(φ) and β4(φ) are the material parameters
connectedwith the distribution of the granular materials, β3(φ) is the viscosity of the granular
materials, and β5(φ) is similar to the viscosity term in the Reiner-Rivlin model (Reiner
[72, 73], Rivlin [74]), often referred to as the cross-viscosity. For the rheological parameters, β2,
β3, and β5, one can use the methods available in the mechanics of non-Newtonian fluids to
find out more information about the signs. Obviously, since β3 is related to the shear viscosity,
it is assumed to be positive. The simulation studies of Walton and Braun [70, 71] suggest a
structure of β3 similar to the one assumed by Rajagopal andMassoudi. As shown in Rajagopal
et al. [65] by using an orthogonal rheometer, and measuring the forces and moments exerted
on the disks, one can characterize thematerials moduli β’s. Rajagopal et al. [75] and Baek et al.
[76] discuss the details of experimental techniques using orthogonal and torsional rheometers
to measure the material properties β1 and β4. In a certain sense, the model represented by
(4.3) has the same structure as the Reiner-Rivlin model, whereby the effects of density (or
volume fraction) gradients are also included. This model has been used in a variety of simple
applications such as inclined flow and flow in a vertical pipe.

Looking at (4.3) with (4.5)–(4.7), it can be shown that this model is capable of
predicting both normal stress differences in a simple shear flow problem (for details see
Massoudi and Mehrabadi [77]). The volume fraction field φ(x, t) plays a major role in this
model. That is, even though we talk of distinct solid particles with a certain diameter, in
this theory, the particles through the introduction of the volume fraction field have been
homogenized. In other words, it is assumed that the material properties of the ensemble are
continuous functions of position. That is, the material may be divided indefinitely without
losing any of its defining properties (see also Collins [78]). A distributed volume Vt =

∫

φ dV
and a distributed massM =

∫

ρsφ dV can be defined, where the function φ is an independent
kinematical variable called the volume distribution function and has the property

0 ≤ φ(x, t) < φmax < 1. (4.9)
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The function φ is represented as a continuous function of position and time; in reality, φ in
a granular system is either one or zero at any position and time, depending upon whether
one is pointing to a granule or to the void space at that position. That is, the real volume
distribution content has been averaged, in some sense, over the neighborhood of any given
position. It should be mentioned that in practice φ is never equal to one; its maximum
value, generally designated as the maximum packing fraction, depends on the shape, size,
method of packing, and so forth. (For a review of constitutive modelling of (flowing)
granular materials, see Massoudi [79]). This further complicates experimental identification
of constitutive parameters, since it is not possible to study a “pure” sample of the granular
phase.

4.3. Constitutive relation for the interaction forces

The interaction force, in general, depends on the fluid pressure gradient, the density gradient
(the buoyancy forces), the relative velocity (the drag force on the particles), the relative
acceleration (the virtual mass of the particles), the magnitude of the rate of the deformation
tensor of the fluid (the lift force on the particles), the spinning motion, as well as the
translation of particles (the Faxen’s force), the particles tendency to move toward the region
of higher velocity (the Magnus force), the history of the particle motion (the Bassett force),
the temperature gradient, and so forth. For laminar flow of a mixture of an incompressible
fluid infused with particles, the mechanical interaction force can be assumed to be of the form
(Johnson et al. [80])

fI =A1 gradφ+A2F(φ)(v2−v1)+A3φ(2trD2
1)

−1/4D1(v2−v1)+A4φ(W2 −W1)(v2 − v1)+A5avm,
(4.10)

where W2 and W1 are the spin tensors for the two components. The terms on the right-
hand side of this equation reflect the presence of (nonuniform) concentration distribution
(diffusion), drag, slip-shear lift, spin lift, and virtual mass. If the flow is assumed to be steady,
the virtual mass effects can be neglected. Most of these coefficients have not beenmeasured or
extensively studied for general two-component flows. Johnson et al. [80], based on previous
experimental observations and certain analytical approximations, suggested the following
coefficients:

A2 =
9
2
μf

a2
; A3 =

3(6.46)
4π

ρ1/2
f

μ1/2
f

a
, A4 =

3
4
ρf , A5 = 2

π

3
a3φ

1 + 2φ
1 − φ

. (4.11)

Most of these coefficients are given either as a generalization of single particle result or as a
result of some other limiting conditions. If the particles are nonspherical, such as fibers, or a
blood cell then the directionality may become an important element, and in that case we need
to use (or develop) the constitutive relations which take the microstructure and directionality,
that is, anisotropic nature of the material, into account (cf., Ericksen [37, 81], Leslie [82]).
There are obvious “gray” areas that await further studies for clarification. For example, there
have been no investigations as to what form A1 may have. The remaining coefficients have
not been extensively studied for general two-component flows; thus, the forms given above
are ad hoc applications of results that are strictly valid under more restricted conditions.
Despite the assumptions involved, these expressions effectively describe how the interaction
forces vary with the system parameters. The coefficients can be considered functions of φ only
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(because φ varies with position in the flow) for the purpose of performing numerical studies.
The way in which Massoudi and Rajagopal use (4.10) along with (4.11) is that since the
governing equations are made dimensionless, the material parameters such as viscosity and
density along with the numerical coefficients appearing in these correlations are absorbed in
the dimensionless numbers. Therefore, the actual numerical values of these experimentally
obtained coefficients do not enter into their calculations directly; instead they perform a
parametric study for a range of these dimensionless numbers. Massoudi [2, 62] has recently
reviewed the subject of interaction mechanisms in multicomponent flows. In the next section,
we discuss a possible extension of the fluid-solidmixture theory formulation ofMassoudi and
Rajagopal to blood.

5. Constitutive relations for plasma and red blood cells

The physical and biological processes governing the flow of blood are intimately responsible
for safety and efficacy of all blood-wetted medical devices. The quest to design improved
cardiovascular devices is however stifled by the inadequacies of current understanding
of blood trauma and thrombosis. Contemporary design relies upon formula for blood
describing (1) rheology, (2) cell trauma (hemolysis), and (3) thrombosis, that are based
primarily on empiricism. These relations are application-specific at best, and are more
descriptive than predictive. Furthermore, we now understand that these three phenomena are
more closely coupled than that previously appreciated. Unfortunately, the deficiencies of
accurate predictive mathematical models have prevented engineering rigor to supplant the
common practices which rely on intuition and experimental trial-and-error. Chief on the list
of biological phenomena that are difficult to predict a priori is thrombosis and hemolysis,
collectively referred to as blood trauma. It is becoming evident that red cells may have a
significant influence on hemostasis and thrombosis; the nature of the effect is related to the
flow conditions.

One of the most important rheological consequences of the multicomponent nature
of blood in small vessels is the migration of red cells towards the core of the flow and
commensurate enhancement of platelet concentration near the boundaries. Several investi-
gators attempting to simulate the deposition of platelets on biological and artificial surfaces
have found that single-continuum models significantly under-predict the concentration of
platelets near the boundary (see Sorenson et al. [83, 84], Jordan et al. [85], Anand et al.
[86], and Goodman et al. [87]). This error was attributed to the absence of RBC-induced
platelet margination which enhances the lateral diffusion of platelets towards the wall. The
conclusions of Sorensen et al. and Jordan et al. strongly suggest the existence of an anisotropic
(directionally-dependent) diffusivity of platelets.

The mechanism for the above phenomenon, whereby platelets in flowing blood are
propelled towards the surface, can be understood in terms of their interaction with red blood
cells. Extensive experimental studies dating to the late 1920s (see Fahraeus and Lindqvist
[88, 89]) have demonstrated the phenomenon of lateral migration of RBCs, resulting in an
excess layer of plasma (and platelets) near thewall. The pioneeringwork performed by Chien
et al. [90–92], Sutera et al. [93], Blackshear et al. [94, 95], Goldsmith [96–98], and Hochmuth
et al. [99] should be acknowledged. These investigators provided the earliest insights to
understand the microstructural basis for blood rheology. Most notable is the microscopic
“freeze-capture” experiments by Goldsmith et al. to visualize the margination of red cells
in small (65 to 200mm dia.) cylindrical glass tubes. The associated phenomenon of near-wall
excess of platelets was subsequently studied by Eckstein et al. [100, 101] andAarts et al. [102],
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who empirically revealed the importance of several independent parameters, including shear
rate, hematocrit, the size and concentration of platelets (or platelet-sized particles), and vessel
geometry.

In general, blood can be viewed as a suspension and modeled using the techniques
of non-Newtonian fluid mechanics. We, however, assume that blood is a two-component
mixture, composed of the red blood cells (RBCs) suspended in a (platelet rich) plasma. In the
following description, the plasma in the mixture will be represented by S1 and the RBCs by
S2. We also assume that φ represents the concentration of the RBCs, also commonly referred
to as hematocrit. Now, ρ1 and ρ2 are the bulk densities of the mixture components given by
ρ1 = γρP, ρ2 = φρRBC, where ρP is the density of the plasma, ρRBC is the density of the RBCs,
φ is the volume fraction of the RBCs, and γ is the volume fraction of the plasma. Once the
individual stress tensors are derived (or proposed), a mixture stress tensor can be defined as
Tm = T1 + T2, where T1 = (1 − φ)TP andT2 = TR, so that the mixture stress tensor reduces
to that of plasma as φ → 0 and to that of a RBCs as φ → 1. Note that T2 may also be written
as T2 = φ̂TR, where ̂TR may be thought of as representing the stress tensor in a reference
configuration.

We assume that the mixture is saturated, that is, γ = 1 − φ and that the plasma can be
represented by the fluid component of M-R model, where

p(ρ1) = p(1 − φ),

λ1(ρ1) = λ(1 − φ),

μ1(ρ1) = μ(1 − φ).

(5.1)

And thus (4.1) becomes

T1 = [−p(1 − φ) + λ(1 − φ)trD1]1 + 2μ(1 − φ)D1, (5.2)

where p is the pressure, μ is the viscosity, andD1 is the symmetric part of the velocity gradient
of the plasma, and λ is the second coefficient of viscosity.

Modelling the RBCs is practically more complicated since they are anisotropic and
deformable. The main reason for this difficulty is the orientation or the alignment of these
nonspherical cells. Materials possessing microstructures, for example, with the internal
couples or couple stresses, were first studied in the early twentieth century by D. Cosserat
and F. Cosserat (Truesdell and Toupin [103]). To study this effect, there are at least two
distinct yet related methods based on continuum mechanics. The first method is to use an
orientation distribution function, whereby one derives orientation tensors to characterize the
behavior of the particles, in this case, RBCs. The general idea of using orientation tensors to
account, in an averaged sense, for the distribution of fibers in a fluid, in a general situation,
was suggested by Hand [104, 105]. The details of these techniques are given in Advani and
Tucker [106], Advani [107], and Petrie [108]. The second method is to use the continuum
mechanics theories whereby the microstructure is in some sense incorporated into the theory,
for example, as is done in the micropolar or director theories (Truesdell and Noll [109]). A
very powerful use of this method is the theory of liquid crystals developed by Ericksen and
later generalized byHand, Leslie, and others. In this approach, a unit vector n is introduced as
one of the independent constitutive variables, and as a result the stress tensor would depend
on n and its derivatives, as well as other important constitutive parameters such as velocity,
velocity gradient, temperature, and so forth, in an appropriate frame-invariant form.
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To model the stress tensor for the RBCs, we modify the constitutive relation derived
by Massoudi [110] for an anisotropic granular media, where the granules were assumed to
have a principal direction, denoted with a unit normal vector n. A general representation for
the stress tensor was given. Similar constitutive relations have been obtained, for example,
by Rajagopal and Wineman [64] and Rajagopal and Ružička [111] within the context of
continuum mechanics of electrorheological materials:

T2 = a11 + a2m ⊗m + a3n ⊗ n + a4(m ⊗ n + n ⊗m) + a5D2 + a6D2
2

+ a7(m ⊗D2m +D2m ⊗m) + a8(m ⊗D2
2m +D2

2m ⊗m)

+ a9(n ⊗D2n +D2n ⊗ n) + a10(n ⊗D2
2n +D2

2n ⊗ n)

+ a11[(m ⊗D2n +D2n ⊗m) − (n ⊗D2m +D2m ⊗ n)],

(5.3)

or

Tij = a1δij + a2mimj + a3ninj + a4(minj + nimj) + a5Dij + a6D
2
ij

+ a7(miDjkmk +Dikmkmj) + a8(miD
2
jkmk +D2

ikmkmj)

+ a9(niDjknk +Diknknj) + a10(niD
2
jknk +D2

iknknj)

+ a11[(miDjknk +Diknkmj) − (niDjkmk +Dikmknj)],

(5.4)

where a1–a11 are scalar functions of the set of invariants (see Spencer [112], Wang [113–115],
Zheng [116]):

I1 = trD2, I2 = trD2
2, I3 = trD2

3,

I4 = tr [m ⊗m], I5 = tr [n ⊗ n], I6 = tr [m ⊗ n + n ⊗m],

I7 = tr [m ⊗D2 m], I8 = tr [m ⊗D22
2m], I9 = tr [n ⊗D2 n],

I10 = tr [n ⊗D2
2n], I11 = tr [m ⊗D2 n], I12 = tr [m ⊗D2

2n],

(5.5)

where D2 = (1/2)[∇v2 + (∇v2)
T ], and

M = m ⊗m = grad ρ ⊗ grad ρ, (5.6a)

Mij = ρ,iρ,j , (5.6b)

N = n ⊗ n, (5.7a)

Nij = ninj . (5.7b)

This general equation not only depends on D2 (the symmetric part of the velocity gradient)
and its higher order powers, but also on the density gradient and the RBCs orientation vector
n (a measure of their anisotropy). There are at least 11 material coefficients in (5.3) which
in some ways have to be specified before a meaningful study can be carried out. Again, for
certain cases, without performing any stability (see Rajagopal et al. [63]) or thermodynamic
analysis, we can gain some information about the sign of these parameters. Some of the
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rheological properties can be measured, for example, using orthogonal rheometers (see
Rajagopal et al. [75]). If, for simplicity, we assume

a3 = a4 = a7 = a8 = a9 = a10 = a11 = 0 (5.8)

corresponding to, for example, a dispersed component such as spherical particles, where
there is a degree of symmetry and the anisotropy of the material does not play a role.
However, density (or volume fraction) gradient is still important. For such a medium, (5.3)
becomes

T = b11 + b2m ⊗m + b3D2 + b4D2
2, (5.9)

where b1–b4are now scalar functions of the appropriate invariants. Let us furthermore assume

b1 = b1(ρ, trD2, tr(m ⊗m)),

b2 = b2(ρ), b3 = b3(ρ), b4 = b4(ρ).
(5.10)

Now, if b1 is given by

b1 = β0(ρ) + β1 grad ρ ·grad ρ + β2(ρ)trD2, (5.11)

then (5.9) can be written as

T = [β0(ρ) + β1(ρ)grad ρ · grad ρ + β2(ρ)trD2]1 + b2 grad ρ ⊗ grad ρ + b3D2 + b4D2
2. (5.12)

This equation was derived by Rajagopal and Massoudi [69]. A special case of this model,
with b4 = 0, has been used extensively byMassoudi and Rajagopal in a variety of applications
(Massoudi et al. [12]). If we furthermore, for the sake of simplicity, assume that the effects of
the volume fraction gradient are negligible, implying that

β1 = b2 = 0, (5.13)

then the stress tensor for the RBCs now has the structure

T2 = [βo(φ) + β2(φ)trD2]1 + β3(φ)D2 + β5(φ)D2
2, (5.14)

where (based on suggestions made by Massoudi and Rajagopal) the following additional
assumptions are made:

β0 = −pφ,
β2(φ) = β20(φ + φ2),

β3(φ) = β30(φ + φ2),

β5(φ) = β50(φ + φ2).

(5.15)

The first equation, namely, β0 = −pφ, is different from that suggested by Massoudi and
Rajagopal. This equation, in conjunction with (5.1)a, that is, p(ρ1) = p(1 − φ), implies that
the total pressure is weighted (distributed) among the two components according to the



18 Mathematical Problems in Engineering

volume fraction. This is an accepted assumption inmany two-component theories, and unless
there are clear experimental observations pointing otherwise, this seems to be a reasonable
assumption.

To account for the shear-thinning effects observed in blood flow, it is reasonable to
assume that the viscosity coefficient β3 should also depend on Π; that is

β3(φ, trD2) = β30(φ + φ2)Πm/2, (5.16)

where

Π =
1
2
tr[2D2]

2, (5.17)

when m < 0, the material is shear-thinning, and if m > 0, it is shear-thickening (see also
Pontrelli [117]). When m = 0, we recover the M-R model. Alternatively, the shear-thinning
effects of blood can also be included in the viscosity term in RBC by assuming (see
Yeleswarapu [118])

β30 = μ∞ + (μ0 − μ∞)
1 + ln(1 + κγ̇)

1 + κγ̇
, (5.18)

where μ∞ is a term related to asymptotic viscosity under infinity shear rate, μ0 is a term
related to viscosity at zero shear rate, γ̇ is the shear rate, and κ is a materials parameter
describing the shear thinning profile. Clearly, other types of viscoelastic fluid models such as
the modified Maxwell or the Oldroyd type fluid models can also be used here. Substituting
(5.15) and (5.16) into (5.14), we obtain, the stress tensor equation for the RBCs:

T2 = [−pφ + β20(φ + φ2)trD2]1 + β30(φ + φ2)Πm/2D2 + β50(φ + φ2)D2
2. (5.19)

If for simplicity, we define

λ2 = β20(φ + φ2),

μ2 = β30(φ + φ2)Πm/2,

δ2 = β50(φ + φ2).

(5.20)

Then,

T2 = [−pφ + λ2trD2]1 + μ2D2 + δ2D2
2, (5.21)

which interestingly has the same structure as a Reiner-Rivlin fluid where the material
coefficients are given by (5.20).

Finally, it needs to be mentioned that the RBCs themselves actually form a mixture
made of a central fluid-like region bounded by a viscoelastic solid. Many researchers have
measured the viscoelastic properties of RBCs. However, for the sake of simplicity, we have
decided to treat the RBCs not as a mixture, but as an isotropic granular-like material.
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6. A stress tensor for blood

Blood is a complex mixture composed of plasma, red blood cells (RBCs), white blood cells
(WBCs), platelets, and other proteins. A complete constitutive relation for the stress tensor
of the (whole) blood, not only must capture and describe the rheological characteristics of
its different components, but also must include the biochemistry and the chemical reactions
occurring. To date, no such comprehensive and universal constitutive relation exists. As
mentioned by Anand et al. [86]: “However, the numerous biochemical reactions that take
place leading to the formation and lysis of clots, and the exact influence of hemodynamic
factors in these reactions are incompletely understood.” In fact, the majority, if not all, of the
papers published on blood characteristics either deal with the biochemistry of clot formation
and other biochemical issues, ignoring completely the hemodynamic (see, e.g., Kuharsky
and Fogelson [119]), or deal exclusively with hemodynamic or homeostasis and pay no
attention to the biochemical reactions (see Sorensen et al. [83, 84]). Anand and Rajagopal
[120] developed a model for blood that is capable of incorporating platelet activation.
More recently, Rajagopal and colleagues (Anand et al. [86, 121, 122]) have provided a
framework whereby some of the biochemical aspects of blood along with certain rheological
(viscoelastic) properties of blood are included in their formulation.

It has been reported that at low shear rates, blood seems to have a high apparent
viscosity (due to RBC aggregation) while at high shear rates the opposite behavior is
observed (due to RBC disaggregation) (see Anand and Rajagopal [120, 123], Anand et
al. [86]). One of the successful models which has been able to capture the shear-thinning
behavior of blood over a wide range of shear rates is the one proposed by Yeleswarapu
[118] and Yeleswarapu et al. [124]; in this model, the authors proposed a generalization of a
three-constant Oldroyd-B fluid. Most of the modeling efforts to use the non-Newtonian fluid
mechanics approach to study blood fall into two categories: (i) those which predict shear-
thinning (power law models or Oldroyd type models), and (ii) models which exhibit yield
stress (Cassonmodel or Herschel-Bulkley typemodels). However, it is well known that many
suspensions composed of particle (deformable or nondeformable, spherical, or rod-like)
also show normal stress effects giving rise to phenomena such as die-swell or rod-climbing
(see, e.g., Macosko [125], Larson [126]). Interestingly there is not much experimental work
reported on this subject, that is, whether blood also exhibits normal stress effects. Massoudi
and Phuoc [127] modeled blood as a modified second grade fluid where the shear viscosity
and the normal stress coefficients depend on the shear rate. It was assumed that blood near
the wall behaves as Newtonian fluid, and at the core it behaves as non-Newtonian fluid.

An alternative way is to model blood as we have done here: a two-component mixture
composed of plasma and RBCs. If we are interested in describing the global behavior of blood,
then a stress tensor for blood can be assumed to be given by

Tblood = T(1)
plasma + T(2)

RBC, (6.1)

where by using (5.2) and (5.19), we have

Tblood = [−p(1 − φ) + λ(1 − φ)trD1]1 + 2μ(1 − φ)D1 + [−pφ + β20(φ + φ2)trD2]1

+ β30(φ + φ2)Πm/2D2 + β50(φ + φ2)D2
2.

(6.2)

This can be rewritten as

Tblood = [−p + λ(1 − φ)trD1 + β20(φ + φ2)trD2]1 + 2μ(1 − φ)D1

+ β30(φ + φ2)Πm/2D2 + β50(φ + φ2)D2
2.

(6.3)
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Now, if we assume that the two velocities are equal, that is,

v1 = v2 = v. (6.4)

This refers to an idealized case where the RBCs are basically being carried away with the
velocity of the plasma. It follows that

D1 = D2 = D, (6.5)

and (6.3) can be rewritten as

Tblood = {−p + [λ(1 − φ) + β20(φ + φ2)]trD}1
+ [2μ(1 − φ) + β30(φ + φ2)Πm/2]D + β50(φ + φ2)D2.

(6.6)

If we define

λblood = [λ(1 − φ) + β20(φ + φ2)], (6.7)

μblood = [2μ(1 − φ) + β30(φ + φ2)Πm/2], (6.8)

then a simple constitutive relation for blood is obtained

Tblood = [−p + λbloodtrD]1 + μbloodD + β50(φ + φ2)D2. (6.9)

Now, using a simple viscometer, the apparent blood viscosity can be measured, where μblood

is given by (6.8) indicating that there is a contribution from the plasma component, and a
contribution from the RBCs, appropriately weighted (see Massoudi [16] for a discussion of
this issue. Massoudi [16] proposed the following hypothesis: “The material properties of one
constituent which appear in the constitutive relation(s) of the other constituent(s), sometimes
referred to as the cross terms, should be multiplied by a function f(φ) such that as φ → 0
or as φ → 1, f(φ) → 0 (the simplest case being, φ(1 − φ)), which implies that the cross
terms approach zero, while all other material properties should be weighted according to the
respective volume fraction of that constituent.”). Furthermore, there is shear-rate dependence
from the RBCs and a nonlinear viscosity term, also a function of the RBCs concentration given
by the last term in the above equation.

Obviously, the form of (6.9) depends both on the form of the constitutive relations
for plasma, (5.2), and for the RBCs, (5.19). Had we assumed an anisotropic representation
for the RBCs, then the stress tensor for blood would have reflected a different fluid-type
characteristic. For example, if in (5.3) we set

a2 = a4 = a7 = a8 = a11 = 0, (6.10)

which means a flowing anisotropic material where density gradient does not have an impact
on the stress, then we have

T2 = α11 + α3n ⊗ n + α5D2 + α6D2
2 + α9(n ⊗D2n +D2n ⊗ n) + α10(n ⊗D2

2n +D2
2n ⊗ n),

(6.11)
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or

Tij = α1δij + α3ninj + α5Dij + α6D
2
ij + α9(niDjknk +Diknknj) + α10(niD

2
jknk +D2

iknknj),
(6.12)

which is the same as Leslie-Ericksen (see Leslie [82, Equation (1)], provided that

α1 = −p, (6.13a)

and the α’s are functions of

nini,Dijninj ,DikDkjninj ,DijDij , DikDkjDji. (6.13b)

Of course, this makes the problem more complicated in the sense that now, similar to
anisotropic liquids, one needs additional governing (balance) equations and one has to deal
with the unknown additional boundary conditions created by the associated nonlinearities
(see Massoudi [110] for details). The formulation in this section reveals that the rheological
behavior of blood, represented by (6.6), for example, is to a large extent determined and
controlled by the rheological behavior of the RBCs, as given, for example, by (5.19). We have
neglected the deformability of the cells. In the next section, we will look at a simple boundary
value problem.

7. Simple shear flow between two flat plates

For a simple shear flow, that is, flow between two horizontal plates a distance “h” apart, with
the lower plate fixed and the upper plate moving with a constant speed, the velocity field v
and the volume function φ are assumed to be of the form (Furthermore, we have assumed
that the walls are rigid and nondeformable; however, in reality the vessel walls are flexible
and viscoelastic.)

v = u(y)i, (7.1a)

φ = φ(y). (7.1b)

It then follows that

D =
1
2

⎛

⎜

⎜

⎝

0 u′ 0

u′ 0 0

0 0 0

⎞

⎟

⎟

⎠

, D2 =
1
4

⎛

⎜

⎜

⎝

(u′)2 0 0

0 (u′)2 0

0 0 0

⎞

⎟

⎟

⎠

. (7.2)

Also, notice that

trD = 0, (7.3a)

trD2 =
1
2

(

du

dy

)2

, (7.3b)

Πm/2 =
∣

∣

∣

∣

du

dy

∣

∣

∣

∣

m

. (7.3c)
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Now, using (7.1a), (7.1b), (7.2), (7.3a), (7.3b), and (7.3c) in (6.9), we find that

Txy =
1
2

[

μblood
du

dy

]

, (7.4a)

Txx − Tyy = 0, (7.4b)

Tyy − Tzz = [β50(φ + φ2)]
(

du

dy

)2

. (7.4c)

Therefore, we can see that according to (6.9), blood exhibits only one of the normal stress
differences. If the term β4(φ)∇φ ⊗ ∇φ were kept in the constitutive expression in (5.12), the
model would be capable of exhibiting both of the normal stress differences.

Recalling that the balance of linear momentum for blood as a mixture is given by (3.6),
and for the case of v1 = v2 = v, implying D1 = D2 = D, we have

(ρ1 + ρ2)
Dv
Dt

= divTm + (ρ1 + ρ2)b, (7.5)

where ρ1 = (1 − φ)ρplasma and ρ2 = φρRBC, and

Tm = Tblood = [−p + λbloodtrD]1 + μbloodD + β50(φ + φ2)D2. (7.6)

For the flowfield assumed by (7.1a), (7.1b), (7.5), with using (7.6), reduces to the three
components in the x, y, and z direction, respectively,

1
2

d

dy

[

μblood
du

dy

]

+ (ρ1 + ρ2)bx = 0, (7.7a)

d

dy

[

− p +
β50(φ + φ2)

4

(

du

dy

)2]

+ (ρ1 + ρ2)by = 0, (7.7b)

(ρ1 + ρ2)bz = 0, (7.7c)

where bx, by, and bz are the components of the external body force, and μblood is given by
(6.8). Thus, we see that a motion of the form of (7.1a) and (7.1b) is only possible if the z-
component of the body force field is zero.

Equations (7.7a) and (7.7b) form a system of two coupled second-order nonlinear
ordinary differential equations, and in general have to be solved numerically. Appropriate
boundary conditions are needed in order to have a well-posed problem. For the simple
shearing motion assumed by (7.1a) and (7.1b), we assume

u(0) = 0, (7.8a)

u(h) = V, (7.8b)

where “h” is the distance between the two plates. It is possible that the no-slip condition may
not be appropriate for all cases, as the RBCs might roll or slip at the boundaries. And for this
special case, where the gradients of volume fraction are ignored, we only need one boundary
condition for φ:

φ(0) = φ0, (7.9)
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where φ0 is a constant (for different types of boundary conditions, see Langtangen and
Munthe [128], and Massoudi [41]).

To obtain an analytical solution (closed form solution) to the above (7.7a), (7.7b) under
some idealized conditions, we furthermore assume

bx = by = bz = 0. (7.10)

Then, (7.7a) can be integrated once to give

[

μblood
du

dy

]

= C1, (7.11)

where C1 is a constant. Recalling that (7.3c), and (6.8), we have

μblood = [2μ(1 − φ) + β30(φ + φ2)Πm/2] = 2μ(1 − φ) + β30(φ + φ2)
∣

∣

∣

∣

du

dy

∣

∣

∣

∣

m

. (7.12)

Substituting this in (7.11), we have

[

2μ(1 − φ) + β30(φ + φ2)
∣

∣

∣

∣

du

dy

∣

∣

∣

∣

m]du

dy
= C1. (7.13)

Equation (7.13) can be integrated once to give us

−p +
β50(φ + φ2)

4

(

du

dy

)2

= C2, (7.14)

where C2 is a constant. Now, it can be shown that the above equations admit a solution of the
form

u = αy,

φ = k,
(7.15)

where α and k are constants. However, the system of (7.7a) and (7.7b) is nonlinear and might
admit additional solutions.

8. Comments

In this paper, we have discussed, based on the classical mixture theory and the approach
taken by Massoudi and Rajagopal, a framework for modeling the rheological behavior of
blood. The proposed constitutive relation depends on the form of the stress tensors for the
plasma and the red-blood cells. In general, the RBCs are assumed to behave as an anisotropic
density-gradient-dependent viscous fluid. As such the equations are highly nonlinear. After
making many simplifying assumptions, a relatively simple constitutive relation for the stress
tensor for blood is obtained (see (7.6)); its form is very similar to a Reiner-Rivlin fluid,
where the shear viscosity coefficient is not only a function of the shear rate, but also of
the concentration. It is noted that we have only discussed the development of a model and
that specific boundary value problems need to be solved to test the efficacy of the model.
A simple shear flow is studied, and an exact solution is obtained for a very special case;
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for more general cases, it is necessary to solve the nonlinear coupled equations numerically.
Furthermore, it should be mentioned that for higher order or higher gradient theories,
assigning boundary conditions for certain terms, which appear in the governing equations,
is a difficult task. Quite often these boundary conditions are not derived from first principles;
instead they are given as ad hoc assumptions, or they are simply specified as mathematical
conveniences. Sometimes experiments have been used successfully to specify these necessary
additional boundary conditions.

Furthermore, it goes without saying that the model developed here is only appropriate
for a healthy human, and it does not capture any blood disorder. It has also been shown that
with regular exercise and physical training certain characteristics of blood can change, and
blood undergoeswhat is known as “fluidification” (see Ernst andMatrai [129], Wannamethee
et al. [130]).

To include the formation and growth of clots, and lysis of blood cells in blood, in
general, the reaction-convection-diffusion equations are to be solved in conjunction with the
balance laws for mass, linear and angular momentum, and energy (for each component).
Although we have ignored the biochemical effects of blood in this paper, in principle, the
theory is amenable to extension (see Anand et al. [86]).

Nomenclature

a: Acceleration vector
b: Body force vector
D: Symmetric part of the velocity gradient
fI : Interaction force vector
I: Identity tensor
L: Gradient of velocity vector
p: Fluid pressure
T: Stress tensor
v: Velocity vector
W: Spin tensor
x: Position vector

Greek letters

λf : Second coefficient of (fluid) viscosity
μ: First coefficient of (fluid) viscosity
ν: Volume fraction of the solid
ρ: Density
ρo: Reference density
φ: Volume fraction of fluid

Subscripts

1, f : Referring to the fluid component
2, s: Referring to the solid component
m: Referring to the mixture
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Superscripts

T: Transpose
∗: Dimensionless quantity

Other symbols

div: Divergence operator
∇: Gradient operator
tr: Trace of a tensor
⊗: Outer product
·: Dot product
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