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This study focuses on modeling the probe dynamics in scratching and indenting thin solid films
at micro- and nanoscales. The model identifies bifurcation conditions that define the stick-slip
oscillation patterns of the tip. It is found that the local energy fluctuations as a function of the
inelastic deformation, defect formation, material properties, and contact parameters determine
the oscillation behavior. The transient variation of the localized function makes the response
nonlinear at the adhesion junction. By quantifying the relation between the bifurcation parameters
and the oscillation behavior, this model gives a realistic representation of the complex adhesion
dynamics. Specifically, the model establishes the link between the stick-slip behavior and the
inelastic deformation and the local potentials. This model justifies the experimental observations
and the molecular dynamics simulation of the adhesion and friction dynamics in both the micro-
and nanoscale contact.
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1. Introduction

The adhesion and delamination at the interface of micro- and nanoscale thin films are of
interest in semiconductor thin films, microstructures, and many other applications. Under
stress, defects such as dislocations, twins, and grain boundaries initiate and nucleate. The
accumulation of the defects intensifies the local stress field, which eventually induces
cracks to release energy. Such a stress and relaxation process continues before the material
eventually breaks down at the limit of the adhesive strength of the interfacial material to
cause delamination, or at the limit of the coherence strength of the singular material itself
that leads to rupture.

An experimental study of the thin film’s adhesion property commonly uses a
scratching test to determine the adhesion or coherence strength in terms of the critical
load with respect to the tip’s penetration depth. A diamond stylus scratches the film to
generate stresses up to the critical stress intensity till fracture [1, 2]. Experimental observation
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indicates that many factors, including material properties and the test conditions, such as
the scratching velocity, probing load, and stylus geometry, play a role in the penetration
process of the probing tip. Moreover, the tip exhibits oscillatory behavior, in contrast to a
direct penetration, subject to the constant driving force or constant driving velocity. This
oscillation is generally referred to as the stick-slip behavior in adhesion and friction dynamics,
a common phenomenon observed in atomic force microscopy or nanoindentation [3]. The
stick-slip behavior is also prevalent in microscale friction dynamics [4]. Savkoor and Briggs
also found that during the scratching, a moderate peeling occurs as a result of an increasing
shear force. This indicates an irreversible inelastic deformation of the thin film up to fracture.
The stick-slip behavior prior to, during, and after the crack initiations suggests highly
nonlinear relations between the inelastic deformation, material properties, the forcing, and
the contact parameters [5, 6].

Experimental studies have confirmed that interfacial adhesion depends on deforma-
tions and accumulating defects such as dislocation, stacking faults, steps, vacancies, pining
junctions, and cracks. Studies of adhesion phenomena have taken different perspectives in
examining the contact mechanisms at the adhesion junctions. Many of the previous studies
have focused on the threshold energy at the initiation of the cracks subjected to different
stress fields. The most highlighted theories on adhesion strength are the JKR [7] and DMT
models [8, 9]. Both the JKR and DMT models examine the contacting spheres based on
Griffith’s concept in normal mode fracture. However, a difference exists between the two
theories in representing the adhesion forces and the contacting areas. This discrepancy leads
to different predicted pull off forces by each theory [10]. Other than these two well-known
models, Bradley [11] also evaluated the adhesion threshold strength of two contact bodies
by incorporating both the surface energy and the cohesive force based on the Leonard-Jones
potential.

For shear-mode fracture, Rice deduced that the stress intensity at the periphery of the
contact region is expected to nucleate glide dislocations by an effective Peierls stress [12]. We
should mention that Peierls stress refers to a periodic relation between the shear stress and the
dislocation-induced sliding at an atomic scale. The Peierls stress arises from the periodicity
of the atomic lattice structure. Rice found that the shear stress increases proportionally to the
contact size, determined by the unstable stacking fault energy [12]. Hurtado and Kim also
developed a model based on a Peierls stress concept [13]. Their model prescribes a slip zone
circulating the dislocation region driven by an effective Peierls force.

Until recently, studies on the mixed mode crack, due to a shear force interacting
with the normal force in sliding friction, have remained a challenge, both theoretically
and experimentally [14]. In addition to the dislocation-induced shear mode crack, which is
regarded as the major source of the sliding friction and the initiation of plasticity [12, 13],
other defects play a role in the mixed mode fracture, including steps, twins, vacancies, and
interstitials [15]. Johnson [10] studied the interaction between the adhesion and friction
following Hutchinson’s model for joint normal and shear mode fractures [16]. Johnson
concluded that the relation between the normal and the shear forces cannot be found by
continuum mechanics in a linear model; rather, the response to a combination of normal
and tangential forces involves specific characteristics of the nanoscale adhesion junction.
The reason is that the nature of this interaction comes from the interface interaction at the
periphery of the contact area [10]. Such a mixed mode adhesion or friction problem is typical
of the scratching and the nanoindentation of thin solid films using a multifaceted Berkovich
tip, shown in Figure 1(a). The driving force pushes the tip into the film as the probe moves
forward, which generates both shear and normal forces around the tip. Other configurations
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Figure 1: Probe geometry.

of tip profile, such as the parabolic or spherical tips, also give rise to both shear and normal
deformation around the tip. The atomic scale molecular dynamics (MD) simulation suggests
that the plasticity due to nucleation and the translation of the dislocations is the source of the
dynamic stress field around the tip of the indenter, which causes penetration of the tip in a
stick-slip behavior [6, 17]. The MD simulation verified the adhesion and friction dynamics
at the nanoscale, as observed in experiments. Moreover, both the experiments and the MD
computations confirmed that the strain rate-dependent plasticity governs the behavior of
nanostructure metals, such as Al and Cu [5, 17].

Different formulations have been used to characterize adhesion and friction dynamics
for the stick-slip phenomena of a mechanical system. Persson and Volokitin used a linear
vibration model to account for the friction oscillation [4]. The nonlinear model for the friction
dynamics by Dankowicz and Nordmark [18] focuses on the chaos and bifurcations in the
stick-slip behavior induced by a discontinuous force. The model by Heslot et al. [19] predicts
that under a constant driving force, the motion of the contact solids is often unsteady and
oscillatory. Both models support the experimental observation of the contact dynamics. These
studies analyzed the complexity of the nonlinear behavior in the stick-slip oscillation based
on a generalized vibration model. However, these models are not adaptable to explain the
stick-slip behavior associated with different deformation mechanisms at the contact interface;
in particular, when inelastic deformation is required to account for the strain rate-dependent
behavior. Fundamentally, inelastic deformation occurs prior to the crack initiation [20–22].



4 Mathematical Problems in Engineering

The underpinning of the inelasticity or plasticity is the irreversible process at the atomic scale
due to dislocations and formation of other types of defect, such as twins and grain boundaries
[23, 24], which in part, is the cause of the stick-slip oscillation.

It is apparent that the probe dynamics phenomenon of two contacting solids at the
adhesion junction should be justified by the deformation mechanisms involved. Although
an MD computation can simulate the dynamic behavior of the probe tip, the computation
does not prescribe a direct constitutive relation to explain the adhesion dynamics in relation
to their deformation mechanisms. On the other hand, the existing formulations for the stick-
slip behavior do not incorporate inelastic deformation mechanisms. Therefore, the objective
of this study is to develop a model to explain adhesion dynamics associated with both the
elastic and inelastic deformations of thin solid films at the micro- and nanoscales. This model
builds on Griffith’s concept of fracture and inelastic deformation theory for the mixed mode
deformation around the probe tip when penetrating thin films subjected to constant driving
velocity. By relating the energy release rate to the inelastic deformation of the solid film, we
arrive at a relaxation equation to explain the stick-slip behavior in the tip’s dynamics at the
adhesion junction.

In the following, we will first obtain the equation of motion to describe the dynamics
of the probe tip. Further, the stability analysis identifies the bifurcation conditions that
define the transitions between a direct sliding penetration mode and a stick-slip relaxation
oscillation mode. These bifurcation conditions quantify the dynamics of the tip influenced by
a collection of parameters, determined by the local energy function, the contact parameters,
and the inelastic material properties for both micro- and nanoscale thin films. Subsequently,
the computation illustrates the tip’s dynamics in either a direct penetration or a stick-slip
behavior. Finally, the paper concludes with a discussion of the adhesion dynamics with
respect to the underlying physics of the deformable solids, and the scale effect.

2. Equation of motion

We assume that a probe approaches the thin film at a constant driving velocity V , as shown
in Figure 1(c). The probe penetrates the material with both normal and tangential forces at
the contacting surfaces, while the multifaceted probe keeps the angle θ close to 10 degrees.
Denoting v as the actual velocity of the tip along the penetration direction, ε̇ the strain rate
of the thin film, V the driving velocity of the probe, and h the displacement of the tip, the
relation between these parameters is

V = v + hε̇, (2.1)

where ε = δh/h is the strain of the thin film along the probe direction, and v = ḣ is the actual
velocity of the penetration. The relation (2.1) comes from the derivative of the total travel
distance L of the tip, which is given by

L = h + hε. (2.2)

This relation holds when the probe traverses through the atomic lattice and displaces the
atoms for dislocations at the nanoscale, or when the penetration induces inelastic deformation
in the creeping of the microscale thin films. Along with the penetration, defects migrate and
accumulate to produce a high stress field to slow down the tip’s motion, whereas the probe



Xiaoling He 5

overcomes the energy barrier to proceed. This process repeats until the incipient of cracks,
which gives the energy release rate per unit contact area as

Gc = φ(v) + ϕ(v) + I
(
v̇
)
. (2.3)

Here φ(v) is the inelastic energy loss near the crack tip, which is proportional to the surface
energy, ϕ(v) is the inelastic energy loss away from the crack tip, and I(v̇) is the inertia
energy. Since the far-field energy release ϕ(v) is negligible due to the localized deformation
surrounding the tip, the energy release rate simplifies to

Gc = φ(v) + I
(
v̇
)
. (2.4)

The equivalent mass associated with the inertia in the unit contact length is

m =
I
(
v̇
)

dv̇
. (2.5)

This leads to

dGc

dt
= mv̈ + v̇

d
(
φ(v)

)

dv
. (2.6)

On the other hand, the strain energy release balances against the increase in the surface
energy [14], which means

Gc = σh + τΩ = σh(1 + η) = σ̃h. (2.7)

Here σ and τ are the normal stress and shear stress, respectively; σ̃ represents the combined
stress of a joint normal and shear stress field, Ω stands for the total surface area of the
activation volume of the contact plane, and η = τΩ/σh is the shear factor. This factor is
an indicator for the major deformation in either shear or normal mode, which makes the
oscillation represent either the friction or the adhesion dynamics, respectively. The derivative
of the energy release rate with respect to time gives

Ġc =
dGc

dt
=

∂
(
σ̃h

)

∂t
=
( ˙̃σ + σ̃ε̇

)
h. (2.8)

This suggests that the energy release rate of the inelastic deformation depends on the time-
dependent strain rate. In reference to the theory of time-dependent plasticity in solids by
Persson [15], the mean stress filed σ with respect to the mean strain field ε and the strain rate
ε̇ can be described by the relation of

Eε̇ = σ̇ + λ̃(t)σ. (2.9)
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Here E is Young’s modulus; λ̃(t) and η(t) are parameters associated with the deformation
mechanisms and material properties, and they are related by λ̃(t) = E/η(t). The solution to
(2.9) as a first-order ordinary differential equation is in the general form of

σ(t) =
E

μ(t)

[∫ t

0
μ(t)ε(t)dt + σ0

]
, μ(t) = e

∫ t
0λ̃t = eλt. (2.10a)

This can be further approximated in a series expression, as:

σ(t) =
E

λ
ε̇(t) −

(
E

λ2

)

ε̈(t) + · · · (−1)n+1

(
E

λn

)

ε(n) + σ0, ε(n) =
d(n)ε

dt(n)
. (2.10b)

After dropping the higher-order strain-rate, we obtain

σ̃ ∼= A0ε + B0ε̇ − C0ε̈, A0 = E, B0 =
E

λ
, C0 =

E

λ2
, (2.11)

where σ0 = Eε represents the yield stress at the limit of elastic deformation; B0ε̇ and C0ε̈
result from the inelastic deformation that is strain rate-dependent. To justify the negative
strain effect, that is, the strain softening along with a plastic flow when the tip passes through
a trail of voiding, or the strain hardening due to a high energy barrier while experiencing a
reduced deformation, the coefficient λ, or effectively B0, can be negative. A positive coefficient
B0 stands for an increasing deformation along with an intensified stress field. Both coefficients
B0 and C0 can be regarded as time-dependent localized functions determined by defect
formations, localized energy functions, material properties, and contact parameters, such as
the activation volume or contact length.

Ignoring the second-order strain terms, the time derivative of the energy release rate
becomes

Ġc = ˙̃σh =
(
Aε̇ + Bε̈ − C...

ε
)
h, (2.12a)

where all coefficients can be time-dependent functions and given by

A = E + Ḃ0, B = B0 − Ċ0, C = C0. (2.12b)

From the velocity analysis, the time-dependent strain rate is related to the velocity by

ε̇ =
V − v
h

, (2.13)

which yields

ε̈ = − (V − v)v
h2

− v̇

h
. (2.14)
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Since (V − v)� v, we have

ε̈ ≈ − v̇
h
,

...
ε = − v̈

h
. (2.15)

Using (2.12a) and (2.12b), we obtain

dσ̃

dt
= Aε̇ + Bε̈ − C...

ε

= A

(
V − v
h

)
+ B

(
− v̇

h

)
+ C

v̈

h
.

(2.16)

Equations (2.16) and (2.6) lead to

v̇
dφ

dv
+mv̈ =

[
A(V − v) − Bv̇ + Cv̈

]
, (2.17)

which is equivalent to

v̈ + μω

(
dφ

dv
+ B

)
v̇ +ω2(v − V ) = 0, (2.18a)

where

ω2 =
A

m̃
, μ =

1
m̃ω

=

√
1

m̃A
, m̃ = m − C. (2.18b)

This is Leonard’s equation in a typical relaxation oscillation that describes the jerky motion
of the probing dynamics. The parameters in this equation quantify the influence of the elastic
and inelastic deformation moduli, contacting parameters, and the driving velocity on the
probing dynamics. The equation indicates that the oscillation frequency is determined by
both the elastic and inelastic deformation moduli and the mass contained in the activation
volume, that is,

ω2 =
E + Ḃ

ρΩ − C. (2.19)

The unit mass m = ρΩ is related to the inertia energy release by (2.5). The forcing of this jerky
motion is

dF

dt
= ω2V =

(
E + Ḃ

)
V

ρΩ
. (2.20)

Equation (2.20) indicates that an intensified forcing comes from a reduced contact area or a
smaller volume of mass, and from the high elasticity, a time-dependent variation of inelastic
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modulus and a high driving velocity. Another term in (2.18a) is μω(dφ/dv + B), which
represents the friction damping in the probing process. The antidamping coefficient μ is
defined as

μ =
1

m̃ω
=

√
1

m̃
(
E + Ḃ

) =

√
1

ρ
(
E + Ḃ

)
Ω

> 0. (2.21)

Under constant driving velocity, it is natural to assume that the inelastic energy
dissipation at the interface is a function of the driving velocity and the local energy release.
Introducing the function χ(φ) = dφ/dv, (2.18a) becomes

v̈ + μω
(
χ(φ) + B

)
v̇ +ω2(v − V ) = 0. (2.22)

χ(φ) measures the inelastic energy release rate at the tip with respect to the penetration
rate. This function can be a time-dependent function during the penetration, even though
the driving velocity is constant. In conjunction with the inelastic deformation modulus
B, (χ(φ)+B) reflects the localized energy dissipation or energy accumulation rate, influenced
by the local energy barriers, and the inelastic deformation mechanisms at different length
scales. For example, dislocation at the atomic level requires energy that is several orders less
than that for creeping at the microscale. On the other hand, the contact parameters could also
differ by the same order between the two length scales. Such combinations could produce a
product in μ(χ(φ) + B) that is the same for the two different length scales to prescribe similar
oscillation behavior of the tip, as analyzed below.

Note that the energy release rate for cracks or defect formation implies that

dφ

dv
= χ(φ) > 0. (2.23)

This is because the energy release function φ(v) > 0 symbolizes an energy loss at the tip, and
φ(v) < 0 an energy gain due to an intensified stress field. Therefore, the motion at φ(v) < 0
has a reduced penetration rate due to an increasing energy barrier, that is, v < 0 and φ(v) =
χ(φ)v < 0. On the other hand, φ(v) > 0 corresponds to an increasing penetration rate at v > 0
with energy dissipation, and φ(v) = χ(φ)v > 0.

3. Stability analysis

The bifurcation conditions determine the oscillation patterns and their stabilities. In matrix
form, (2.22) becomes

{
u̇
v̇

}

=
[
−μω

(
χ(φ) + B

)
−ω2

1 0

]{
u
v

}
+

{
ω2V

0

}

, (3.1)

where u = v̇ is the acceleration. The eigenvalues of this linear system are

λ1,2 =
ω

2

(
− μ

(
χ(φ) + B

)
±
√
μ2
(
χ(φ) + B

)2 − 4
)
. (3.2)
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The eigenvalues indicate that there are several oscillation patterns in the phase diagram,
which are determined by the collective parameter μω(χ(φ) + B) [25]. It is apparent that
both the elastic and the inelastic deformation rate influence the oscillation stability or the
bifurcation behavior, as analyzed below.

(a) (χ(φ) + B) = 0, λ1,2 = ±iω, periodic oscillation

This is the condition for the Hopf bifurcation. The velocity is periodic, given as

v̈ +ω2v = ω2V. (3.3)

The condition χ(φ) + B = 0 indicates a balance between the inelastic energy release rate
and an inelastic deformation energy variation in a negative strain effect, B < 0. This occurs
when the tip goes through vacancies to cause the reduced stress intensity due to strain
softening, while discharging energy along with the penetration. Alternatively, a higher
energy barrier develops at a reduced deformation at B < 0 for strain hardening when
accumulated defects prevent the tip from further penetrating the film. When χ(φ) + B = 0,
there is insufficient energy to stop the motion completely by the high energy barrier, or to
sustain a continuous penetration. Instead, a cyclic velocity occurs, alternating between v > 0
and v < 0, respectively. This corresponds to two phases of negative strain fields, that is, the
strain softening and hardening, which give rise to the stick-slip oscillation.

(b) (χ(φ) + B) > 0, Re(λ1,2) < 0, stable oscillations

From (3.2), if μ(χ(φ) + B) ≥ 2, there are two real negative eigenvalues. The oscillation
converges to a stable node in the phase diagram, reaching the driving velocity after a transient
oscillation. This allows for a continuous penetration with energy release through deformation
or crack. If 0 < μ(χ(φ) + B) < 2, the complex conjugate eigenvalues, λ1,2 = Re(λ1,2) ± i Im(λ1,2)
with a negative real part, define the subcritical Hopf bifurcation, in which the penetration
velocity oscillates in a spiral pattern to the nodal velocity at V . The spiral motion is the
consequence of two alternating stress field: that is, the intensified stress field due to the strain
hardening, and a reduced stress field associated with a moderate creeping or voiding. In this
case, the penetration is partially constrained by energy barriers from strain hardening effect.

(c) (χ(φ) + B) < 0, Re(λ1,2) > 0, unstable oscillations

If μ(χ(φ) + B) ≤ −2, two positive real eigenvalues make an unstable nodal oscillation.
On the other hand, if 0 > μ(χ(φ) + B) > −2, then λ1,2 = Re(λ1,2) ± i Im(λ1,2) defines a
supercritical Hopf bifurcation in an unstable spiral motion. In both cases, there is a dominant
negative strain effect to make (χ(φ) + B) < 0 due to the strain softening. The velocity keeps
increasing deviating from the driving velocity due to the predominant creeping or voiding,
which results in a straight forward penetration. A spiral oscillatory velocity occurs when
the creeping is intertwined with the intermittent energy barriers or energy releases through
cracks.

The bifurcation conditions indicate that the oscillation pattern is determined mainly by
the parameter (χ(φ) + B) associated with the local energy barriers and inelastic deformation.
The fluctuation of the collective parameter in the form μ(χ(φ) + B) gives rise to transitions
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Figure 2: Periodic oscillation.

among different bifurcations. The antidamping coefficient μ influences such transitions by
variable contact area and material properties.

4. Numerical computation

The computation is based on the normalized equation (2.22) using the time scale τ = ωt,
which yields

d2v

dτ2
+ μ

(
χ(φ) + B

)dv
dτ

+ (v − V ) = 0. (4.1)

The time step is Δτ = 0.1 s using the 4th-order Runge-Kutta method. The bifurcation
condition is specified in the form of μ(χ(φ) + B) = 2k, where k is a constant chosen for
each case. Using different values of μ and (χ(φ) + B) for the contact, deformation, and the
energy release rate at different length scales of the Cu thin film, the numerical results below
illustrate the oscillatory patterns determined by the above bifurcation conditions for contact
at both micro- and nanoscales.

4.1. Microscale thin film behavior

We choose E = 105 [GPa], G = 42 [GPa] for the microscale Cu thin film, the same as the
bulk material properties. We also set B a constant, or Ḃ = 0. The density of the Cu film is
ρ = 8.9 [g/cm3]. The driving velocity is V = 20 [μm/s]. The contact area is Ac = 22.67h2

0 [μm2]
at a fixed contact length of h0 = 0.4 [μm]. Figure 2(a) shows the periodic oscillation of
the velocity with respect to the travel distance for the bifurcation case 1: (χ(φ) + B) = 0.
The velocity-distance phase diagram traces back to the ellipsoid phase portrait for the
acceleration and velocity represented by (3.3). Figure 2(b) is the periodic penetration depth
with respect to time in a stick-slip oscillation, which shows a repeated forward and an
almost standstill motion due to a cyclic velocity variation. The penetration in a forward
motion traverses a distance about 100μm in each stroke. As already explained, such a
periodic behavior indicates a penetration cycle where the creeping deformation alternates
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Figure 3: Stable oscillation for μ(χ(V ) + B) > 0.

with the strain hardening motion due to the defect-induced energy barriers. The higher
energy barrier pushes the tip to nearly a standstill before the external energy overcomes the
barrier to move the tip forward again.

For the bifurcation case 2: (χ(φ)+B) > 0. Figures 3(a) and 3(b) illustrate the oscillation
in a stable spiral pattern, whereas Figures 3(c) and 3(d) are in a stable nodal pattern,
respectively. For the stable spiral oscillation, the parameters are set as μ(χ(φ) + B) = 6 at
k = 3, while the stable node oscillation corresponds to μ(χ(φ) + B) = 1 at k = 0.5. The
velocity approaches the node in both phase diagrams, reaching v = V = 20 [μm/s]. Notably,
the stable oscillation in either a spiral pattern or a nodal pattern makes the tip traverse in a
direct penetration at the driving velocity at the steady state. A slight difference exists in the
penetration rate between these two cases, as shown in Figures 3(c) and 3(d), respectively,
owing to different transient oscillations.

For case 3: μ(χ(φ) + B) < 0. Figures 4(a) and 4(b) illustrate the unstable spiral motion
while Figures 4(c) and 4(d) are for the unstable nodal pattern. The unstable spiral is subjected
to μ(χ(φ) + B) = −1 for k = −0.5, while the unstable node corresponds to μ(χ(φ) + B) = −4
at k = −2. Both unstable oscillations make the velocity increases continuously. The spiral
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Figure 4: Unstable oscillation for μ(χ(V ) + B) < 0.

velocity introduces a backward and forward stick-slip behavior, as shown in Figure 4(b). On
the other hand, the unstable nodal pattern enables a direct penetration shown in Figure 4(d).
Note that nodal-type unstable penetration may not occur in reality, the unlimited creeping is
unlikely to occur to produce an unstable nodal type penetration, due to defects that induce
energy barriers to effectively constrain tip’s motion.

4.2. The influence of periodic potentials

The above results confirm that the tip’s penetration behavior is determined by the
deformation mechanisms that are reflected by the bifurcation conditions. As illustrated in
both Figures 2(b) and 4(b), the stick-slip behavior occurs when the velocity is in either a
periodic oscillation or an unstable spiral motion, corresponding to the Hopf bifurcation or
the supercritical Hopf bifurcation, respectively. The stick-slip penetration could also be a
manifestation of the continuous transitions among different bifurcations due to the variable
bifurcation parameters. This could occur because the localized defects and deformation
introduce instantaneous changes of the local potentials, contact areas, and energy release rate.
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(c) Penetration distance-velocity diagram at a periodic
potential k = 1 and j = 3
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Figure 5: Nonperiodic oscillations subject to a periodic potential μ(χ(V ) + B) cos(kτ/j).

To simulate the influence of a periodic variation of the local potentials associated
with the energy release rate, the collective bifurcation parameter is set in a time-dependent
trigonometric function, that is, μ(χ(φ) + B) cos(kτ/j) = 2k cos(kτ/j). Figures 5(a) and 5(b)
show the stick-slip behavior corresponding to the potential function at k = 2 and j = 3, which
leads to μ(χ(φ) + B) cos(kτ/j) oscillating periodically within [−4, 4]. The phase diagram in
Figure 5(a) shows a nonperiodic velocity that is almost all positive, which makes the stick-
slip penetration in a forward-standstill pattern, as shown in Figure 5(b). The penetration
behavior is due to the instantaneous transitions among all five bifurcations described above
in each cycle. By varying the parameters, for example, k = 1 and j = 3, identical bifurcation
transitions take place, since the range of μ(χ(φ) + B) cos(kτ/j) is [−2, 2]. Here three types of
the Hopf bifurcations dominate, that is, the oscillation transits mainly among the stable spiral,
unstable spiral, and periodic oscillations. However, both the backward and forward stick-slip
motion are present in each cycle due to the velocity alternating between positive and negative
values, as shown in Figures 5(c) and 5(d). Each stroke of the slip motion traverses a different
distance. These results demonstrate that a periodic energy barrier leads to a quasiperiodic
stick-slip oscillation owing to transitional bifurcations. Effectively, the periodic energy release
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and inelastic deformation transform the system into a nonlinear relaxation model. As a result,
the oscillation is no longer in a fixed frequency in each cycle; instead, a variable frequency
oscillation occurs.

The influence of the periodic bifurcation parameters in another form, that is, μ(χ(φ) +
B cos(kτ/j)), a periodic inelastic deformation that goes along with a constant energy release
rate χ(φ), indicates that an unstable oscillation prevails when the transitional bifurcation
parameter μ(χ(φ) + B cos(kτ/j)) < 0. For example, an unstable spiral for μ(χ(φ) +
B cos(kτ/j)) = −4 + 2 cos(kτ/j) < 0 generates a stick-slip oscillation, similar to that shown in
Figure 4(b). On the contrary, a stable oscillation emerges to give rise to a forward penetration
when μ(χ(φ) + B cos(kτ/j)) = 2 + 2 cos(kτ/j) = [4, 0].

The difference in the forms of the periodic potential affects both the transient and
the steady-state oscillation behavior. Physically, these periodic variations can be attributed
to different material behavior and factors at the adhesion junction, including the contact area,
the elastic and inelastic deformation moduli, the energy dissipation and the external forcing,
among others. Note that periodic potential variation directly reflects the atomic potentials of
crystals in a periodic structure that gives rise to Peierls stress in shear mode deformation,
which constitutes the energy barrier for sliding dislocations.

We should also point out that a variable contact area contributes to the dynamic
variation of the bifurcation conditions. This is because the depth of the penetration influences
the contact area, which indirectly affects the parameter μ and the bifurcation condition
μ(χ(φ) + B). During the probing, the tip remains in contact with the solid film until the crack
debris peels off from the thin film, upon which the contact length may reduce to zero, or to a
critical length. This is because cracks counterbalance the increasing activation volume or the
contact length around the tip. The critical contact length defines the transition upon which
the penetration process repeats itself. Therefore, the contact area variation can be regarded as
a source of the periodic or an irregular variation of local energy release rate. The wider range
variations of the local energy potentials can lead to complex dynamics in the tip’s oscillation,
compared to that under the periodic potentials. This also means that the real tip’s nonlinear
stick-slip behavior becomes more complex, due to the instantaneous fluctuation of the contact
parameters and energy functions.

4.3. Contact dynamics at the nanoscale

As has been shown, the computation results phenomenologically agree with the experimental
observation of the stick-slip or the direct penetration behavior in the microscale thin films. By
examining (4.1) it is apparent that an identical relaxation behavior exists with the nanoscale
thin films at a different energy level. This is because the collective parameter μ(χ(φ) + B)
defines the oscillation behavior, even though different energy function (χ(φ)+B) and contact
parameter μ are specified. This makes the model adaptable to describe both the micro- and
the nanoscale phenomena. In fact, the model in (2.22) agrees with the dislocation dynamics
equation that accounts for the dislocation displacement fluctuation at the atomic lattice when
overcoming a finite mass at the pining junction, as described by Osip’yan and Vardanian in
[26].

To illustrate the tip dynamics when penetrating a nanoscale thin film, we use a periodic
potential in the form μ(χ(φ) cos(kτ/j) + B), for the periodic energy releases accompanied by
a constant inelastic deformation module B > 0. Figures 6(a)–6(d) compare the transition
of the penetration behaviors for a fixed contact area and a continuously variable contact
area. The bifurcation parameters vary in the range μχ(φ)(cos(kτ/j) − 2) = [18, 6] with
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(d) Stick-slip penetration at a variable contact area

Figure 6: Nanoscale oscillations with μχ(V )(cos(kτ/j) − 2), μχ(V ) = 2k, k = −3, and j = 3.

μχ(φ) = 2k, k = −3, j = 3. For the fixed contact area with a contact length of h0 = 0.4 nm,
the condition defines a stable oscillation approaching a constant nodal velocity at the steady
state, as shown in Figure 6(a), giving rise to a direct penetration as displayed in Figure 6(b).
However, an increasing contact area of the form Ac = αh2 transforms the nodal-type
velocity and acceleration phase diagram into a quasiperiodic oscillation pattern, as shown
in Figure 6(c). This indicates the effective transitions of the bifurcation parameters due to a
decreasing antidamping coefficient μ as a result of an increasing contact area. The velocity
oscillates in a positive but declining range and the penetration is in a forward-standstill type
stick-slip behavior, as shown in Figure 6(d). At a driving velocity of V = 0.06 nm/s, the
stick-slip oscillation reveals that each stroke is of the order of the atomic lattice parameter
a = 0.364 nm for Cu. This suggests that dislocations occur at the Berger’s vector length, since
the Berger’s vector |�b| = a for a perfect dislocation [27].

For the Cu nanoscale thin film interacting with the tip, the above computation used
the ideal shear strength τmax = 2.5 GPa [28, 29], which renders the dislocation line energy
Eb = 2 eV/nm, based on Eb = G�b2 for a perfect dislocation [27]. This energy level agrees
with established results for a dislocation and void initiation, which is generally in the order
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of Eb = 5 eV per Berger’s vector [30]. The MD simulation of the Cu void growth and
dislocation process indicates that the activation energy is Eb = 2.3∼ 3.5 eV/nm [31]. Note
that the dislocation energy through dissociation is found to be Ed = 1.3∼ 2.7 eV from a higher
to lower temperature range [32]. The dislocation nucleation and parallel formation require an
energy level that is less than that for a perfect dislocation, as confirmed by the MD simulation
[5, 6]. Similarly, twins and the stacking faults formed along with the dislocation nucleation,
all of which are activated at a reduced energy level compared to that for a perfect dislocation.
Therefore, the stick-slip behavior indicates the onset of plasticity due to dislocations and other
defects, including vacancies, twins, stacking faults, and so forth. Alternatively, it can be said
that the stick-slip oscillation is a reflection of the process whereby defects initiate and nucleate
to induce a periodic or an arbitrary fluctuation of the energy release rate at the atomic scale
due the tip’s probe of the thin film.

5. Discussion

(1) The present study discusses a model that distinguishes the scale effect by local
energy functions, namely, the inelastic deformation and energy dissipation, as well as contact
parameters at the adhesion junction. The localized energy function at the microscale is
associated with the creep due to strain rate-dependent inelastic deformation and cracks,
while the energy function at the nanoscale is due to the dislocation-induced plasticity and
nucleation of other defects. The local contact parameter, energy fluctuations, and inelastic
deformation at the adhesion interface define a collective bifurcation parameter to describe the
stick-slip behavior at both micro- and nanoscales. Although each parameter can be explicitly
specified, it is the collective parameter μ(χ(φ) + B) that defines the stick-slip behavior.

(2) This model bridges the inelastic deformation mechanism and local energy release
with the tip’s oscillation patterns. By incorporating a variable energy release along with the
inelastic deformation, this model reveals that the variations of the potential, the inelastic
deformation modulus, or the contact parameters, in a periodic or an arbitrary manner, are
the underlying mechanisms of the nonlinear stick-slip behavior. The transitional bifurcation
behavior justified the underpinning physics of adhesion dynamics. By relating the stick-
slip behavior of the tip to thin film’s deformation mechanisms, interfacial energy release,
defects, contact parameters, material properties, and forcing conditions at the peripheral of
the contact, this model brings the analytical prediction closer to the experimental observation
of the stick-slip phenomena.

(3) The stick-slip oscillation at both the nanoscale and microscale suggests that the
Griffith concept for the energy release at the crack tip is adaptable to describing the onset of
plasticity by dislocation migration and nucleation at the nanoscale. Furthermore, the periodic
bifurcation condition adopted in the computation represents the typical energy fluctuation
at the atomic scale, since it is consistent with the Peierls stress concept associated with the
sliding dislocations of the atomic lattice. Such variations also represent the energy barrier at
the microscale deformation influenced by the cyclic contact parameters and repeated energy
release through cracks. In addition to the adaptability of the model to the tip’s dynamics at
both micro- and nanoscale, the model allows for an arbitrary energy fluctuation for complex
interfacial contact behaviors.

(4) Although this model describes the adhesion dynamics in a scratching process, the
stress field and the tip oscillation behavior are identical to the friction dynamics observed in
the nanoindentation, when a higher shear factor characterizes the motion [6]. This is because
the friction force in the nanoindentation involves deformations in both normal and shear
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modes. Essentially, this model is capable of describing the nonlinear dynamics at the tip-solid
interface of both the friction and adhesion dynamics.

6. Conclusion

This work develops a model to describe the adhesion and friction dynamics at the interface of
two contacting solids for the tip and thin solid film interaction, such as those during an AFM
adhesion microscopy or nanoindentation process. The bifurcation conditions generated from
this model give a proper account of the interplay between the localized energy functions, the
elastic and inelastic deformations, the material properties, and the contact parameters that
collectively influence the tip’s dynamics at the adhesion junction. The bifurcation conditions
attribute the stick-slip behavior of the tip to the Hopf bifurcations and the transitional
bifurcations associated with a periodic or an arbitrary potential variation, defect formations,
and inelastic deformations at the contact interface. The model reveals that these interactive
parameters give rise to the nonlinear oscillation in penetration patterns. The collective
parameters determine the adhesion and friction dynamics at the periphery of the contact
of both micro- and nanoscales.
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