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In this work, two numerical methodologies are proposed for the solution of unilateral contact prob-
lems between a structural member (beam or arch) and an elastic foundation. In the first approach,
the finite element method is used to discretize the structure and elastic foundation and the contact
problem is formulated as a constrained optimization problem. Only the original variables of the
problem are used, subjected to inequality constraints, and the relevant equations are written as a
linear complementary problem (LCP). The second approach is based on the Ritz method, where
the coordinates defining the limits of the contact regions are considered as additional variables of
the problem. The contact problem here is treated as an unconstrained optimum design problem.
These proposed methodologies are then tested and compared using results from specific problems
involving structures under unilateral contact constraints.
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1. Introduction

Foundations of structures can be divided into shallow and deep foundations. In the model-
ing of shallow foundations, structural elements such as beams, arches, plates, and shells are
supported by a continuous substrate. The primary difficulty in the analysis of the structure-
substrate system lies in the determination of the contact pressure in the interface. Usually the
substrate is modeled as an elastic foundation. Most constitutive models consider that the foun-
dation reacts both under tension and compression. However, certain types of soil and most
liquids only react under compression. In these circumstances, the structure may lose contact
with the foundation in certain regions, leading to unexpected contact pressure concentration
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with a consequent variation of the structure’s internal forces. Problems where the structure can
enter in or lose contact with other bodies, or even slide on its support, are usually found in the
literature under the denomination of “unilateral contact problems” [1, 2].

The first step in obtaining the numerical solutions of contact problems involving contin-
uous systems generally consists in reformulating the problems in approximation spaces. To this
end, numerical techniques such as the Ritz, finite element, or boundary element methods are
employed. After discretization, a proper methodology to adequately treat the unilateral contact
constraints must be selected. This usually requires the problem to have a finite dimension.
Among the options found in the literature, two are noteworthy.

(i) Transformation of the contact problem into a minimization problem without restriction by
applying usual formulations of the structural mechanics—differentiable functional and
bilateral constraints—to the case of unilateral contact constraints. There is no guarantee
of convergence of these procedures, which by their nature are unavoidably incremental-
iterative. These procedures, however, introduce no new concepts. So, existing codes for
nonlinear analyses that can be adapted to this particular case, resulting in efficient com-
putational time, granted that there is no change in the contact region between two load
steps [3–7].

(ii) Use of mathematical programming techniques. This approach allows the solution of the
contact problem with or without explicit elimination of unilateral constraints. Methods
such as Lagrange’s multipliers or penalties allow the elimination of the unilateral con-
straints. Usually these methods are based on the use of special finite elements derived to
simulate the impenetrability condition between two surfaces [8]. On the other hand, the
unilateral constraints can be maintained in the formulation, retaining the original math-
ematical characteristics of the problem, and alternative linear complementary problems
(LCP) can be obtained and solved by specific algorithms such as those developed by
Lemke and Dantzig [1, 2, 8–24].

Since the seventies, these two general approaches have been employed for the numeri-
cal treatment of different types of contact problems. Following the first approach, Stadter and
Weiss [3] used special gap elements and an iterative procedure which adjust the modulus
of these elements to model the contact process between structures. An analytical model of
the postbuckling behavior of a beam under unilateral contact constraints imposed by a rigid
smooth surface was derived by Adan et al. [4], and Holmes et al. [5] studied the elastic buck-
ling of an inextensible beam with hinged ends in the presence of rigid, frictionless sidewalls
which constraint the lateral displacements. A nonlinear modal solution methodology capa-
ble of solving equilibrium problems of structural systems (beams and arches) with contact
constraints was presented by Silveira and Gonçalves [6]. More recently, Li and Berger [7] pre-
sented a semi-analytical approach for 3D elastostatic normal contact problems with friction.

Numerical simulation of contact problems based on mathematical programming can also
be easily found in literature. Fundamentals of the unilateral contact boundary value problem,
including friction, together with finite element applications to the solution of the variational
inequalities arising in static and dynamic structural contact problems can be found in Pana-
giotopoulos’ articles [9–12]. Stavroulakis et al. [12] give additionally the mechanical interpre-
tation of Lemke’s algorithm [13, 14] for the contact problem. More specific applications of
numerical methods for the unilateral contact problem between plates and an elastic founda-
tion are presented in [15–17]. Contact constraints present in the stability of rods and large
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postbuckling behavior are presented, respectively, by Stein and Wriggers [18] and Simo et al.
[19]. Algorithms designed to trace the nonlinear response using path-following techniques,
such as arc-length procedures [20], are proposed by Wriggers et al. [21], Koo and Kwak [22],
and Silveira and Gonçalves [23]. A good review and discussion of the complexity of physical
effects that can occur at the contacting surfaces are presented by Barber and Ciavarella [25].
Finally, algorithms and discretization techniques for structural contact problems can be found
on Wriggers’ book [24].

These two general approaches are employed in this work for the treatment of unilateral
contact constraints. Since 1990, the authors have analyzed several contact problems involving
a deformable structure and an elastic foundation [2, 6, 17, 23]. These works attempted to estab-
lish reliable numerical methodologies for the analysis of structures with unilateral boundary
conditions. This article is an extension of these previous works where the comparison of alter-
native formulations for the analysis of structures resting unilaterally on an elastic foundation
may be considered as a new contribution to the field.

The basic structural unilateral contact equations and inequations are stated in the next
section. Two numerical methodologies are then proposed to solve the contact problem. In the
first methodology, the contact problem is treated as a constrained optimization problem and
the finite element method is used for the structure and for the Winkler-type elastic foundation.
Two alternative linear complementary problems (LCPs) are derived and solved by Lemke’s
algorithm [13, 14]. The second proposed approach for treating contact problems is a semi-
analytical model that uses a Ritz-type methodology with moveable boundaries where the co-
ordinates defining the limits of the contact regions are considered as additional variables. The
unilateral contact problem is treated as an unconstrained optimum design problem. At the end,
three particular structural elements under unilateral contact constraints (tensionless founda-
tion) are used to validate the proposed formulations. The first method is more general and
can be extended to a large number of problems, including three-dimensional problems. How-
ever, the second approach may lead to accurate low-dimensional models, as shown herein,
with analytic coefficients which can be used in, for example, sensitivity analyses, optimization,
feedback control problems, and parametric analyses.

2. Structural unilateral contact problem: basic equations

Consider the structural contact problem shown in Figure 1. Note that the elastic foundation re-
acts only in compression. The structure is defined as a solid elastic continuum which occupies a
domain V, limited by three different regular boundaries: Sc, Su, and Sf . The displacements are
prescribed in Su and the forces in Sf . Sc is the region where boundary conditions are “ambigu-
ous.” For the structure, the equilibrium equations, the cinematic relations, and the constitutive
equations are given by

σij,j = 0 , (2.1a)

εij =
(ui,j + uj,i)

2
, (2.1b)

σij,j = Cijklεkl, (2.1c)

where σij are the Cauchy stress components, εij are the infinitesimal strain components, ui are
the displacements, and Cijkl are the material parameters.
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Figure 1: Structure under unilateral contact constraints imposed by an elastic foundation.

If the elastic foundation is described by Winkler’s model, then the following constitutive
relation can be written:

rb = Cbub, (2.2)

where ub and rb are the displacement and reaction, respectively, of the elastic foundation and
Cb is the foundation modulus.

For the structural system studied here, the following boundary conditions must be sat-
isfied:

ui = ui on Su, (2.3a)

Fi = σijnj on Sf , (2.3b)

ϕ = ub − ui ≥ 0 on Sc, (2.3c)

where ui is the deflection of the structure orthogonal to the foundation and ϕ is the gap between
the structure and the foundation in the potential contact region Sc. Inequality (2.3c) is the
compatibility condition that represents the impenetrability between the bodies. Contact occurs
when ϕ = 0. If ϕ > 0, there is no contact.

As the elastic foundation reacts only to compression, the following inequality must also
be satisfied on Sc:

rb ≥ 0, (2.4)

where compressive reactions are assumed to be positive. Finally, in the potential contact region,
the following complementarity relationship between ϕ and rb should be verified:∫

Sc

rbϕdSc = 0. (2.5)
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Figure 2: Domain of validity of the contact constraints.

These restrictions define in a complete way the contact as being unilateral. Figure 2
shows the domain of validity of these three relations and the contact law.

The solution of the unilateral contact problem can be obtained by solving (2.1a), using
(2.1b) and (2.1c), together with boundary conditions (2.3a) and (2.3b), contact inequalities
(2.3c) and (2.4), and the complementarity condition (2.5). The nonlinearity due to the uni-
lateral constraints makes it difficult to solve the contact problem directly. For this reason, an
equivalent minimization problem is formulated which is particularly suitable for numerical
analysis. It can be shown that the optimization problem [2, 16, 17]where

Π =
1
2

∫
V

CijklεklεijdV +
1
2

∫
Sc

Cbu
2
bdSc −

∫
Sf

FiuidSf , (2.6)

is equivalent to the contact problem described above. Based on these equations, two alternative
solution strategies are proposed in the next sections for the numerical analysis of structures
resting on a tensionless foundation.

3. Constrained contact problem formulation

According to Ascione and Grimaldi [15], restrictions (2.3c), (2.4), and (2.5) can be substituted
by the variational inequality

∫
Sc

τϕdSc ≥ 0, (3.1)

where τ belongs to the positive cone J, in which the admissible reactions rb are the elements of

J =
{
rb ∈ Y ′,

∫
Sc

rbw dSc ≥ 0, ∀w ∈ Y, w ≥ 0
}

(3.2)

and Y ′ and Y are the vectorial spaces that contain the solutions of rb and ϕ, respectively. See
that the satisfaction of the variational inequality (3.1) for all τ belonging to J is equivalent to
the contact constraints (2.3c), (2.4), and (2.5). Thus, the contact constraint may be eliminated
from the analysis by writing

Π1 =
1
2

∫
V

CijklεklεijdV +
1
2

∫
Sc

Cbu
2
bdSc −

∫
Sc

rbφ dSc −
∫
Sf

FiuidSf . (3.3)



6 Mathematical Problems in Engineering

The first variation of Π1, after eliminating ub from the previous equation by way of rela-
tion (2.3c) and according to (3.1), is given by the following variational inequality:

δΠ1 =
∫
V

CijklεklδεijdV +
∫
Sc

Cb(φ + u)δudSc +
∫
Sc

[
Cb(φ + u) − rb

]
δφ dSc

−
∫
Sc

φδrbdSc −
∫
Sf

FiδuidSf ≤ 0.
(3.4)

Elimination of ϕ from (3.4), by the use of (2.2) and (2.3c), leads to a variational inequality
in terms of u and rb only, which corresponds to the first variation of the following functional:

Π1 =
1
2

∫
v

Cijklεklεijdv −
1
2

∫
Sc

Dbr
2
bdSc +

∫
Sc

rbu dSc −
∫
Sf

FiuidSf , (3.5)

where Db = C−1
b

. The variables u and rb must be obtained in such a way that the first variation
of the functional Π2 satisfies the inequality δΠ1(u, rb) ≤ 0.

Using the finite element method, one can assume that for a generic structure and a foun-
dation finite element the displacement and reaction fields within the element, u and rb, are
related to the nodal displacements u and nodal reactions rb by

u = Nu,

rb = Hbrb,
(3.6)

where N and Hb are the matrices that contain the interpolation functions that describe, respec-
tively, the behavior of the structure and elastic base.

From these definitions and adding the contributions of each finite element, one arrives
at the discretized functional of the problem in the global form

Π1 =
1
2

uTKu − 1
2

rTbTrb + rTbCu − uTFe, (3.7)

where Fe is the nodal load vector, K is the stiffness matrix of the structure, C is the joining
matrix between the structure and the elastic foundation, and T is the flexibility matrix of the
elastic foundation. These last two matrices are defined by

C =
∑
mc

∫
Sc

HT
bN dSc,

T =
∑
mc

∫
Sc

HT
bDbHb dSc,

(3.8)

where mc is the number of elements of the contact region.
After the first variation of (3.7), one arrives at the following linear complementarity

problem (LCP) in terms of the structure displacements and foundation reaction [15, 17]:

Ku + CTrb − Fe = 0, (3.9)

Cu − Trb ≤ 0, rb ≥ 0,
(
Cu − Trb

)Trb = 0. (3.10)
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Equation (3.9), when considering the constraints (3.10), may be solved using mathemat-
ical programming methods, in particular, pivoting techniques developed for complementary
problems [13, 14]. However, it is first necessary to reduce the previous relations to a standard
LCP form. This can be obtained through the use of the following definitions:

u = u+ + u−, z1 = Trb −Au, z2 = Ku + ATrb − R, z3 = −z2, (3.11)

where u+ ≥ 0 and u− ≥ 0 are the positive and negative parts of the vector u [26].
Using these new variables, it is possible to rewrite (3.9) and (3.10) in the following form:

w = q + Mz, (3.12)

w ≥ 0, z ≥ 0, wTz = 0 (3.13)

with

M =

⎡
⎣ K −K CT

−K K −CT

−C C T

⎤
⎦ , q =

⎧⎨
⎩
−Fe
Fe
0

⎫⎬
⎭ , z =

⎧⎨
⎩

u+

u−

rb

⎫⎬
⎭ , w =

⎧⎨
⎩

z2

z3

z1

⎫⎬
⎭ . (3.14)

Equation (3.12) and constraints (3.13) correspond to a standard LCP which is solved here using
Lemke’s algorithm [14].

3.1. The dual formulation

If the stiffness matrix K in (3.9) is positive definite, it is possible to establish a relationship
between u and rb as follows:

u = K−1(Fe − CTrb
)
. (3.15)

Substituting (3.15) in (3.7), one arrives at a variational expression that is function of the
nodal values of the base reaction rb only, that is,

Π2 = −1
2

rTb P rb + rTb J − v, (3.16)

in which P is a symmetric positive definite matrix, J is a vector, and v is a constant, and are
defined as follows:

P = CK−1CT + T, J = CK−1Fe, v =

(
FTeK−1Fe

)
2

. (3.17)

Equation (3.16), with the foundation reaction constraint, characterizes the following
quadratic programming problem (QPP):

Thus, considering the Kuhn-Tucker conditions of this QPP, one can derive a standard
LCP similar to the one described by (3.12) and (3.13), where now,

M = P, q = −J, z = rb (3.18)

with w defined as a Lagrange multiplier introduced to represent the impenetrability condition
between the bodies. Once known rb, u can be obtained from (3.15).
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4. Unconstrained contact problem formulation

A different strategy of solution is now proposed. This strategy assumes that the contact con-
straints (2.3c), (2.4), and (2.5) on Sc as well as the elastic foundation displacements can be
indirectly introduced into the analysis by explicitly considering the coordinates defining the
limits of the contact regions (tk) as additional variables of the problem (see Figure 1(c)). Thus,
for the structural element in contact with a tensionless Winkler-type elastic foundation and
subject to conservative loads, the total potential energy functional can be rewritten as

Π3(u,Sc) = U(u,Sc) − FTeu, (4.1)

where U is the strain energy which is a function of displacement vector u and of the vector
Sc which contains the coordinates defining the limits of the contact regions (tk). Note that the
length of each contact region is a function of the system parameters and is not known a priori.
Fe is the external load vector.

If the Ritz method is applied, the following displacement field, written in matrix form,
can be used to approximate Π3:

u = ΨA, (4.2)

where the matrix Ψ contains the functions that satisfy the boundary conditions on Su and the
vector A contains the unknown coefficients.

Thus, substituting (4.2) into (4.1), considering a small variation in the total potential
energy, and expanding (4.1) in a Taylor series, one obtain:

δΠ3 =
∂Π3

∂A
δA +

∂Π3

∂Sc
δSc +

1
2

[
δAT ∂

2Π3

∂A2
δA + 2δAT ∂2Π3

∂A∂Sc
δSc + δST

c

∂2Π3

∂Sc
2
δSc

]
+ 0

(
δA3, δS3

c

)

(4.3)

or using a more compact matrix notation,

δΠ3 = gTδW +
1
2
(
δWT MδW

)
+ 0

(
δW3), (4.4)

in which the vector W contains the unknown variables of the problem (A and Sc), g is the gra-
dient vector (out-of-balance load vector), and M is the Hessian matrix (representative stiffness
matrix) of the structural system, which can be organized as follows:

M =

[
K C
CT S

]
=

⎡
⎢⎢⎢⎢⎣

∂2Π3

∂A2

∂2Π3

∂A∂Sc

∂2Π3

∂Sc∂A
∂2Π3

δS2
c

⎤
⎥⎥⎥⎥⎦ , (4.5)

where K, S, and C are the stiffness, contact, and joining matrices, respectively. For equilib-
rium, the change in (4.4) should be stationary irrespective of δA and hence, the equilibrium
equations (gradient vector) are

∂Π3

∂W
= gT =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂Π3

∂A

∂Π3

∂Sc

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

{
0
0

}
(4.6)
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(1) Initialize: W 0 (A and Sc)
(2) Iterations (equilibrium problem): k = 1, 2, . . . , Imax

(i) Compute: M (k−1)

(ii) Compute: g (k−1)

(iii) Check convergence: ‖gk‖/‖Fe‖ ≤ ξ
Yes: Go to step (3)
No: Compute the corrections: δWk = −[M(k−1)]

−1
g(k−1)

Updated variables: Wk = W(k−1) + δWk, go to step (2)
(3) Print the variables and stop

Algorithm 1: Nonlinear solution strategy based on the second-order Newton method.

which consist of a highly nonlinear set of algebraic equations, involving polynomial or tran-
scendental functions of tk.

Algorithm 1 shows the iterative solution strategy used to solve (4.6). This numerical so-
lution is based on Newton’s method which uses the Hessian matrix (second-order derivatives)
to obtain the direction of the solution. In this scheme, there are two distinct phases required for
the successful completion of a single load step:

(i) a predictor phase, where initialization of A and Sc (W 0) are necessary;

(ii) a corrector phase, where these approximations are corrected to satisfy the equilibrium equa-
tions, the convergence criterion adopted here is based on the norm of the gradient vec-
tor g.

5. Numerical examples

Figure 3 shows the structural elements under unilateral contact constraints used to test the con-
strained and unconstrained solution strategies proposed in this research. A Winkler tensionless
elastic foundation of modulus K is assumed in all the examples. In the proposed unconstrained
nonlinear solution strategy, a convergence factor of ξ = 10−3 is adopted and consistent units are
used in all examples.

Consider as a first problem a beam of length L, bending stiffness EI, and moments M
applied at the ends, as illustrated in Figure 3(a). For such a load system, the expected behavior
of the beam is shown in Figure 3(b), where one region of contact is expected. Note that t,
which represents the length of the contact region between the bar and the elastic foundation
and is not known a priori, constitutes the additional variable of the problem. The results of this
contact problem are presented in Figure 4, where the deflection along the beam axis is given
for different values of the foundation modulus k = KL 4/EI. The unconstrained results (Ritz
method) are compared with those obtained using a finite element model and mathematical
programming techniques (primal and dual constrained solutions), and are obtained using the
following linear combination of harmonic functions:

w =
n∑
i

Wi sen
(
iπx

L

)
(5.1)
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Figure 3: Structural elements under unilateral contact constraints and corresponding deformation patterns.

to approximate the displacement field. Here, i is the number of half-waves, n is the total num-
ber of modes necessary to achieve convergence, and Wi are the modal amplitudes. Excellent
agreement is observed between these three different solution strategies. Note also that the con-
tact region (and the corresponding displacements) decreases steadily as k increases, while the
displacements of the noncontact region increase. One of the main characteristics of tensionless
foundation is the dependence of the contact area on the foundation stiffness.

Now, consider the beam shown in Figure 3(c). It is subjected to moments at the ends and
a load P at the center and rests on a Winkler tensionless elastic foundation of modulus K. The
corresponding deformation pattern is shown in Figure 3(d), where two contact regions and
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one central noncontact region are observed. Here, ti and tf constitute the additional variables
of the problem. Figure 5 shows the influence of the foundation stiffness on the behavior of
the beam, where the lateral deflection along the beam axis is given for different values of the
k = KL 4/EI. Once more, there is good agreement between the results obtained by the dual-
constrained numerical formulation and the Ritz method, in which the same displacement field
(5.1) is adopted. Under unilateral constraints, the beam displacement w increases in the central
region while the contact regions between the bodies decrease.
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The last example, illustrated in Figure 3(e), is a slender circular arch of radius R, length
2γR, bending stiffness EI, and membrane stiffness EA in contact with a Winkler tensionless
elastic foundation of modulus K. For this structural system, the expected deformation pattern
is shown in Figure 3(f), where a central contact region defined by the angles ± t is expected.
Results obtained using the unconstrained and constrained solution strategies are presented
in Figures 6 and 7 for an arch with [27] R/h = 500, γ = 10◦, EI = 1.4, EA = 420, and P =
0.1. For the unconstrained Ritz solution approach, the following approximations are used for
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the tangential and transversal displacements, respectively, of a point along the arch centroidal
axis:

u =
m∑
i

Ui sin
(
(2i − 1)πθ

2γ

)
, w =

n∑
j

Wj cos
(
(2j − 1)πθ

2γ

)
, (5.2)

where i and j are the number of half waves, and Ui and Wj are the modal amplitudes.
In Figure 6, the variation of the lateral displacement w, considering half the arc, is plot-

ted as a function of the angle θ for the foundation parameter k = KR 4/EI = 106. The conven-
tional foundation model (bilateral contact) was also considered. One can observe that under
unilateral contact constraints the arch displacement w increases on the noncontact region. The
contact angle between the bodies 2φ = 7.46◦is the same for all formulations. Figure 7 shows the
variation of elastic foundation reaction with the angle θ.

6. Conclusions

Two numerical approaches to solve the unilateral contact problem between a structure and
a tensionless elastic foundation are proposed in this work. The first proposed formulation
is based on the finite element method and mathematical programming techniques. Two al-
ternative linear complementary problems (LCPs) are derived—primal and dual—and solved
by Lemke’s algorithm. These formulations consider explicitly the inequality constraints that
characterize the unilateral contact problem. The primal formulation can be used without re-
strictions in several structural problems while the dual formulation is restricted to structural
systems in which the structure’s stiffness matrix is positive definite. However, the primal for-
mulation leads to higher-order matrices and, consequently, to lower-computational efficiency
and more processing time and sometimes present numerical instability.

The second formulation, named here unconstrained formulation, is based on the Ritz
method and an iterative solution strategy. This methodology is particularly suited for the anal-
ysis of simple problems where the number and location of the contact regions are known a pri-
ori but not its length. This methodology can substitute in these cases large and time-consuming
finite element packages. It may also be used as a benchmark for more general and complex
formulations. However, this methodology leads to highly nonlinear equilibrium equations
(due to the existence of unknown boundaries). So efficient iterative strategies, as proposed
in Algorithm 1, should be used to solve such problems.

The examples involving beams and arches under contact constraints show that there is
an excellent agreement among the results obtained from the different formulations, corrobo-
rating the effectiveness of all procedures in the analysis of unilateral contact problems. Finally,
the results clarify the influence of the unilateral contact on the behavior of the structure.
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