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The homotopy perturbation method is applied to solve reaction-diffusion equations. In this method,
the trial function (initial solution) is chosen with some unknown parameters, which are identified
using the method of weighted residuals. Some examples are given. The obtained results are
compared with the exact solutions, revealing that this method is very efficient and the obtained
solutions are of high accuracy.
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1. Introduction

In this paper, we consider a reaction-diffusion process governed by the nonlinear ordinary
differential equation [1]:

y′′(x) + yn(x) = 0, 0 < x < L, (1.1)

with boundary conditions

y(0) = y(L) = 0, (1.2)

where y(x) represents the steady-state temperature for the corresponding reaction-diffusion
equation with the reaction term yn; n is the power of the reaction term (heat source), generally
it follows n > 0, L is the length of the sample (heat conductor). The physical interpretation of
(1.1) was given in [1].

Recently, various different analytical methods were applied to nonlinear equations
arising in engineering applications, such as the homotopy perturbation method [2–10], and
exp-function method [11, 12], a complete review is available in [13]. This problem was studied
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by Lesnic using Adomian method [1], and by Mo [14] using variational method. In this paper,
the homotopy perturbation method [2, 3, 13] is applied to the discussed problem, and the
obtained results show that the method is very effective and simple.

2. Homotopy perturbation method

In order to use the homotopy perturbation, we construct a homotopy in the form [2, 3, 13]

(1 − p)
(
y′′ − y′′0

)
+ p

(
y′′ + yn

)
= 0 (2.1)

with initial approximation

y0(x) = ax(1 − x) = ax − ax2, (2.2)

where a is an unkown constant to be further determined. It is obvious that (2.2) satisfies the
boundary conditions.

We rewrite (2.1) in the form of

y′′ + 2a − p
(
2a − yn

)
= 0. (2.3)

We suppose the solution of (2.3) has the form

y(x) = y0(x) + py1(x) + p2y2(x) + · · · . (2.4)

Substituting (2.4) into (1.1) and equating the terms with the identical powers of p, we can solve
y0, y1, y2, . . . sequentially with ease. Setting p = 1, we obtain the approximate solution of (1.1)
in the form of

y(x) = y0(x) + y1(x) + y2(x) + · · · . (2.5)

To illustrate its solution procedure, we consider some special cases.

Case 1 (n = 2). Under such case, we can easily obtain sequentially

y′′0 = −2a,

y′′1 = 2a − y2
0 ,

y′′2 = −2y0y1.

(2.6)

We, therefore, obtain the approximate solution in the form of

y(x) = ax(1 − x) + ax2 − a2
(

1
30
x6 − 1

10
x5 +

1
12
x4
)
−
(
a − 1

60
a2
)
x. (2.7)

In order to identify the unknown constant a in (2.7), we apply the method of weighted
residuals. Subsituting (2.7) into (1.1) results in the following residual:

R(x, a) = y′′(x) + yn(x). (2.8)

It is obvious that R(0, a) = 0 and R(1, a) = 0. We locate at x = 1/3, and set R(1/3, a) = 0,
yielding the result

a = 45.4205. (2.9)
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(a) n = 2
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(b) n = 3
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(c) n = 4

Figure 1: Comparison of approximate solutions with exact ones. Continued line: approximate solution;
discontinued line: exact solution.
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Case 2 (n = 3). The solution procedure is the same as that for Case 1. We can easily obtain the
following linear equations:

a = 14.2657,

y′′1 = 2a − y3
0 ,

y′′2 = −3y2
0y1.

(2.10)

We obtain the following second-order approximate solution:

y(x) = ax(1 − x) + ax2 − a3
(
− 1

56
x8 +

1
14
x7 − 1

10
x6 +

1
20
x5
)
−
(
a − 1

280
a3
)
x. (2.11)

Similarly, we locate at x = 1/3, and set R(1/3, a) = 0 to identify the unknown constant, which
reads a = 14.2657.

Case 3 (n = 4). By the same manuplation as illustrated in above cases, we obtain

y′′0 = −2a,

y′′1 = 2a − y4
0 ,

y′′2 = −4y3
0y1,

y(x) = ax(1 − x) + ax2 − a4
(

1
90
x10 − 1

18
x9 +

3
28
x8 − 2

21
x7 +

1
30
x6
)
−
(
a − 7.9410−4a4)x.

(2.12)

Using the method of weighted residuals, we set R(1/3a) = 0, resulting in a = 9.6320.

Figure 1 shows the remarkable accuracy of the obtained results.

3. Conclusion

The homotopy perturbation method deforms a complex problem under study to a simple
problem routinely. If initial guess is suitably chosen, one iteration is enough, making the
method a most attractive one. The method is of remarkable simplicity, while the obtained
results are of utter accuracy on the whole solution domain. The method can be applied to
various other nonlinear problems without any difficulty.
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