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1. Introduction

Time-delay systems have received a lot of attention from both academics and industrial en-
gineers in the last decades. This can be verified by the great number of papers published in
this area. See, for example, [1–5] and the references therein. It is worthwhile to mention that
time delays affect both continuous and discrete-time systems and are presented in several sys-
tems like thermal processes, communication systems, internet dataflow, biological systems,
regenerative chatter in metal cutting, and so on [2, 4]. The presence of delay yields, in general,
performance degradation and, eventually, leads the system to instability.

There are two main classes of robust stability analysis that have been investigated,
namely, delay-dependent and delay-independent conditions. For a system whose stability does
not depend on the time-delay value, the analysis performed through delay-dependent con-
ditions can be very conservative. Also, delay-independent conditions cannot be obtained as
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a limit case of delay-dependent ones just by imposing the maximum delay value dmax → +∞,
leading to a gap between these two types of delay-stability conditions [4, page 146].

An important approach used in the last years to deal with delay in the states of the sys-
tems is the use of Lyapunov-Krasovskii functionals. This approach has been largely used to
obtain convex conditions mainly for continuous-time systems subject to retarded states and
for neutral systems [6]. On the other hand, discrete-time systems with state delay (DTSSD)
have received little attention compared with its continuous-time counterpart. The main reason
for this is that for precisely known discrete-time systems with constant time-delay, it is always
possible to obtain an augmented system without delayed states [7]. This approach, however,
does not seem to be suitable for time-varying delay, delay-independent stability character-
ization, and for robust-system stabilization. Despite the fact that the digital control has in-
creased in importance for practical robust control applications in the last decades, there are
few papers dealing with DTSSD. Besides this, the majority of the results available in the liter-
ature for DTSSD are formulated for norm-bounded uncertainty employing constant quadratic
Lyapunov-Krasovskii functionals, which may lead to conservative results [8]. This approach,
called quadratic stability, is the base of several results available in the literature as it can be
seen in [9–12].

Recent results on DTSSD can be found in [13] where the real stability radii of time-
invariant state-delayed systems have been considered. In [14], there has been presented the
descriptor approach to obtain stability and design conditions for discrete time-delay systems.
See also [15] where some nonconvex conditions were proposed to the synthesis problem. In
the context of systems with Markovian jumps, see [3, 16, 17] and references therein. More re-
cently, in [18, 19], robust stabilizing conditions have been proposed, but most of the results
have been obtained through quadratic stability approach and the state feedback gain is de-
signed directly from the Lyapunov-Krasovskii matrices. In [20], a dynamic controller is de-
signed achieving a guaranteed cost control for norm-bounded DTSSD, but the design condi-
tions are nonlinear. In [21], precisely known discrete-time systems with time-varying delays
in the state are investigated and convex conditions are given to design a memoryless control
law. The design conditions presented in [21] do not seem to be suitable to deal with poly-
topic systems since the matrices of the system multiply the Lyapunov-Krasovskii functional
matrices. Observe that convex extensions of these results to treat polytopic type of uncer-
tainty in the context of robust stability analysis and robust stabilization are not straightfor-
ward. Delay-independent conditions for robust stabilization of DTSSD have been considered
in [22], where a parameter-dependent functional has been used, but only for time-invariant
delays.

In this paper, new results for robust stability analysis as well as for robust stabilization
of uncertain DTSSD with time-varying delay are proposed as convex conditions depending on
the maximum and minimum values assumed by the delay, d and d , respectively. A Lyapunov-
Krasovskii functional similar to that employed in [21] is used. Differently from other results in
the literature, both analysis and synthesis conditions are formulated as LMI feasibility prob-
lems that can be solved efficiently in polynomial time by specialized numerical algorithms. The
main contribution of this paper is the improvement of the recently published results on DTSSD
with time-varying delay given in [21]. Furthermore, the scope of the results of [21] is extended
to deal with polytopic-type uncertainty affecting DTSSD and the possibility of design mem-
ory state feedback control gain. Parameter-dependent Lyapunov-Krasovskii functional used
conjoint some extra matrices to achieve less conservative results. The approach proposed here
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does not introduce any additional dynamics and leads to a product separation between the
matrices of the system and the matrices from the functional, allowing a convex formulation for
the synthesis problem.

In Section 2 some definitions and the problem formulation are provided. Then, in
Section 3, the main results are presented for both robust-stability analysis and for the synthesis
of state feedback gains assuring the robust stability of the closed-loop system. The computa-
tional complexity of the proposed conditions and decentralized control design are discussed.
In Section 4, some examples are given to illustrate the efficiency of the proposed conditions. In
Section 5 some conclusions are presented.

Notation. The notation used here is quite standard. R is the set of real numbers and N is the set
of natural numbers. In and 0 denote, respectively, the n × n identity matrix and the null matrix
of appropriate dimensions.M > 0 (M < 0) means that matrixM is positive (negative) definite.
M′ is the transpose of M. The symbol � stands for symmetric blocks in the LMIs.

2. Preliminaries and problem formulation

Consider the following discrete-time system with a time-varying delay in the state:

xk+1 = ˜A(α)xk + ˜Ad(α)xk−d(k) + ˜B(α)uk, xk = φ(k), k ∈ [−d, 0], (2.1)

where k is the sampling time, xk ∈ R
n is the state vector, uk ∈ R

n is the input control signal,
d(k) is the time-varying delay, where its time variation is bounded as

d ≤ d(k) ≤ d, (d , d) ∈ N × N (2.2)

with d and d being the minimum and maximum delay values, respectively. ( ˜A(α), ˜Ad(α),
˜B(α)) ≡ ( ˜A, ˜Ad, ˜B)(α) ∈ R

n×2n+� are unknown constant matrices belonging to a polytope ˜P,

˜P ≡
{

( ˜A, ˜Ad, ˜B)(α) : ( ˜A, ˜Ad, ˜B)(α) =
N
∑

i=1

( ˜A, ˜Ad, ˜B)iαi, α ∈ Ω

}

, (2.3)

Ω ≡
{

α : α ∈ R
N,

N
∑

i=1

αi = 1, αi ≥ 0

}

, (2.4)

where the vertices ( ˜Ai, ˜Adi, ˜Bi) ≡ ( ˜A, ˜Ad, ˜B)i are precisely known. In special, observe that if
d = d, then the delay is uncertain, belonging to [0, d], but it is time invariant. Note that if
d(k) = 0, then (2.1) is rewritten as xk+1 = ( ˜A(α) + ˜Ad(α))xk + ˜B(α)uk. Also define

β = d − d + 1. (2.5)

In this paper, the following control law is considered:

u(k) = Kx(k) +Kdx(k − d(k)), (2.6)

where (K,Kd) ∈ R
�×2n are the robust state feedback gains that assure the robust stability of

the closed-loop system, that is, the stability of (2.1)–(2.4) with (2.6) is assured for all α ∈ Ω.
Therefore, this uncertain closed-loop system is given by

xk+1 = A(α)xk +Ad(α)xk−d(k) (2.7)



4 Mathematical Problems in Engineering

with

A(α) ≡ ˜A(α) + ˜B(α)K, Ad(α) ≡ ˜Ad(α) + ˜B(α)Kd, (2.8)

where (A,Ad)(α) ∈ P with

P ≡
{

(A,Ad)(α) : (A,Ad)(α) =
N
∑

i=1

(A,Ad)iαi, α ∈ Ω

}

. (2.9)

It is worth to mention that if the delay d(k) is not known at each sample time k, then it is
enough to make Kd = 0 in (2.6). If d(k) is known at each sample time k, then the possibility of
using K and Kd may improve the performance of the closed-loop system (2.7).

The objective of this paper is to give convex conditions solving the following problems.

Problem 1. Given d and d subject to (2.2), determine if the uncertain DTSSD given in (2.7) is
robustly stable.

Problem 2. Find a pair of gains (K,Kd) such that the system (2.1)–(2.4) controlled by (2.6) is
robustly stable.

Remark 2.1. Generally speaking, in the cases where the time-delay depends on a physical pa-
rameter (such as velocity of a transport belt, the stem position of a valve, etc.) it may be possible
to determine the delay value at each sample-time. As a special case, consider the regenerative
chatter in metal cutting. In this process a cylindrical workpiece has an angular velocityω while
a machine tool (lathe) translates along the axis of this workpiece. For details, see [2, page 2].
In this case the delay depends on the velocity ω and thus, if this angular velocity can be mea-
sured, the delay could be determined at each instant. Note, however, that a detailed study on
physical application is not the focus of the paper.

3. Main results

First, sufficient LMI conditions to solve Problem 1 are given. The approach used here does not
introduce any dynamics and leads to a product separation between the matrices of the system
and those from the Lyapunov-Krasovskii functional. Then, these conditions are exploited to
provide some convex synthesis results. The following theorems provide some LMI conditions
depending on the values d and d to determine the robust stability of (2.7) or to design robust
state feedback gains K and Kd that assure the robust closed-loop stability.

3.1. Robust stability analysis

Theorem 3.1. System (2.7) subject to (2.2), (2.4), and (2.9) is robustly stable if there exist symmetric
matrices 0 < P(α) ∈ R

n×n and 0 < Q(α) ∈ R
n×n, such that one of the following equivalent conditions

is verified:
(a)

Γ(α) ≡

⎡

⎣

A(α)′P(α)A(α) + βQ(α) − P(α) A(α)′P(α)Ad(α)

� Ad(α)
′P(α)Ad(α) −Q(α)

⎤

⎦ < 0; (3.1)
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(b) there exist parameter-dependent matrices F(α) ∈ R
n×n, G(α) ∈ R

n×n, and H(α) ∈ R
n×n,

such that

M(α) ≡

⎡

⎢

⎢

⎣

P(α) + F(α)′ + F(α) G(α)′ − F(α)A(α) H(α)′ − F(α)Ad(α)

� ϑ22(α) −A(α)′H(α)′ −G(α)Ad(α)

� � ϑ33(α)

⎤

⎥

⎥

⎦

< 0, (3.2)

where ϑ22(α) denotes −A(α)′G(α)′ − G(α)A(α) + βQ(α) − P(α) and ϑ33(α) denotes −(Q(α) +
H(α)Ad(α) +Ad(α)

′H(α)′) with β given by (2.5). In this case, the functional

V (α, k) =
3
∑

v=1

Vv(α, k) > 0, (3.3)

with

V1(α, k) = x′kP(α)xk,

V2(α, k) =
k−1
∑

j=k−d(k)
x′jQ(α)xj,

V3(α, k) =
1−d
∑

�=2−d

k−1
∑

j=k+�−1

x′jQ(α)xj,

(3.4)

is such that

ΔV (α, k) < 0, ∀
[

x(k)′ x(k − d(k))′
]′
/= 0 (3.5)

and is called a Lyapunov-Krasovskii functional, assuring the robust stability of (2.7).

Proof. The positivity of the functional (3.3) is assured with the hypothesis of P(α) = P(α)′ > 0,
Q(α) = Q(α)′ > 0. For (3.3) is a Lyapunov-Krasovskii functional, besides its positivity, it is
necessary to verify (3.5) for allα ∈ Ω. From hereafter, the α dependency is omitted in the
expressions Vv(k), v = 1, . . . , 3, for simplicity of the notation. To calculate (3.5), consider

ΔV1(k) = x′k+1P(α)xk+1 − x′kP(α)xk, (3.6)

ΔV2(k) = x′kQ(α)xk − x′k−d(k)Q(α)xk−d(k) +
k−1
∑

i=k+1−d(k+1)

x′iQ(α)xi −
k−1
∑

i=k+1−d(k)
x′iQ(α)xi, (3.7)

ΔV3(k) = (d − d)x′kQ(α)xk −
k−d
∑

i=k+1−d

x′iQ(α)xi. (3.8)

Observe that the third term in (3.7) can be rewritten as

Ξk ≡
k−1
∑

i=k+1−d(k+1)

x′iQ(α)xi =
k−1
∑

i=k+1−d
x′iQ(α)xi +

k−d
∑

i=k+1−d(k+1)

x′iQ(α)xi

≤
k−1
∑

i=k+1−d(k)
x′iQ(α)xi +

k−d
∑

i=k+1−d

x′iQ(α)xi.

(3.9)
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Using (3.9) in (3.7), one gets

ΔV2(k) ≤ x′kQ(α)xk − x′k−d(k)Q(α)xk−d(k) +
k−d
∑

i=k+1−d

x′iQ(α)xi. (3.10)

So, taking into account (3.6), (3.8), and (3.10) the following upper bound for (3.5) can be ob-
tained:

ΔV (k) ≤ x′k+1P(α)xk+1 + x′k[βQ(α) − P(α)]xk − x′k−d(k)Q(α)xk−d(k) < 0. (3.11)

Replacing xk+1 in (3.11) by the right-hand side of (2.7) one gets (3.1). The equivalence between
(3.1) and (3.2) can be established as follows. First, note that (3.1) can be rewritten as

[

A(α)′P(α)

Ad(α)
′P(α)

]

P(α)−1
[

P(α)A(α) P(α)Ad(α)
]

−
[

P(α) − βQ(α) 0

0 Q(α)

]

< 0 (3.12)

which by Schur complement is equivalent to
⎡

⎢

⎣

−P(α) P(α)A(α) P(α)Ad(α)

� βQ(α) − P(α) 0

� � −Q(α)

⎤

⎥

⎦
< 0. (3.13)

Therefore, the equivalence between (a) and (b) is the same as that between (3.2) and (3.13). So,
if (3.13) is verified, then (3.2) is true for F(α) = F(α)′ = −P(α), G(α) = H(α) = 0. On the other
hand, if (3.2) is verified, then Γ(α) = T(α)′M(α)T(α) with

T(α) =

⎡

⎢

⎣

A(α) Ad(α)

In 0

0 In

⎤

⎥

⎦
(3.14)

completing the proof.

Note that (3.7) keeps a relation with Finsler’s lemma where the slack variables F(α) and
G(α) depend on the uncertain parameter α. The conditions presented in Theorem 3.1 are of
infinite dimension if α belongs to a continuous domain. These conditions can be numerically
treated by using different approaches such as those presented in [23, 24], where it is possible
to consider the products of matrices depending on α by means of LMI relaxations. In case of
α belonging to a discrete, countable, and finite domain, the conditions of Theorem 3.1 state a
finite set of LMIs defined at each value of α. In this paper, the structure of matrices P(α) and
Q(α) is supposed to be linear in α [25]:

P(α) =
N
∑

i=1

αiPi, Q(α) =
N
∑

i=1

αiQi (3.15)

and α ∈ Ω. The extra matrices are chosen to be fixed F(α) = F, G(α) = G, and H(α) = H. Al-
though other structures may lead to a less conservative condition for Problem 1, no improve-
ment is expected for Problem 2 as it deals with constant state feedback gains K and Kd. Also
observe that, since the conditions of Theorem 3.1 depend on the size of delay variation, d − d ,
and not on the delay value itself, these conditions are delay-independent conditions.
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Theorem 3.2. System (2.7) subject to (2.2), (2.4), and (2.9) is robustly stable if there exist symmetric
matrices 0 < Pi ∈ R

n×n and 0 < Qi ∈ R
n×n, i = 1, . . . ,N, such that

Mi ≡

⎡

⎢

⎢

⎣

Pi + F ′ + F G′ − FAi H ′ − FAdi

� βQi − Pi −A′iG′ −GAi −A′iH ′ −GAdi

� � −(Qi +HAdi +A′diH
′)

⎤

⎥

⎥

⎦

< 0, i = 1, . . . ,N, (3.16)

are verified with β given by (2.5). Beside this, (3.3) with (3.4) and (3.15) is a Lyapunov-Krasovskii
functional for (2.7).

Proof. Observe thatM(α) can be obtained by multiplying (3.16) by αi and summing it up, that
is,M(α) =

∑N
i=1αiMi, α ∈ Ω.

It is worth to mention that the parameter-dependent structure, imposed to P(α) and
Q(α), (3.15), cannot be directly used in the conditions presented in (3.1) and (3.13). This lim-
itation is due to the products between the system matrices and the Lyapunov-Krasovskii can-
didate matrices.

The approach based on quadratic stability can be recovered from (3.1), (3.2), (3.13) (or
(3.16)). In this case, it is sufficient to impose P(α) = P, Q(α) = Q(Pi = P,Qi = Q, i = 1, . . . ,N)
and replace A(α) and Ad(α) by Ai and Adi, respectively. Then it is necessary to test those con-
ditions for i = 1, . . . ,N. Note that all the quadratic stability conditions obtained as described
above are equivalent and the difference between them is just the computational burden neces-
sary to solve each one.

Observe that conditions presented in Theorems 3.1 and 3.2 can be used to test the ro-
bust stability of both systems (A(α), Ad(α)) and (A(α)′, Ad(α)

′), since their eigenvalues are the
same.

3.2. Robust feedback design

The stability analysis conditions presented in Theorem 3.2 can be used to obtain a convex con-
dition for robust synthesis of the gains K and Kd such that the control law (2.6) applied in
(2.1) results in a robust stable closed-loop system, and, therefore, resulting in a solution to
Problem 2.

Theorem 3.3. If there exist symmetric matrices 0 < Pi ∈ R
n×n, 0 < Qi ∈ R

n×n, i = 1, . . . ,N, matrices
F ∈ R

n×n, W ∈ R
n×�, andWd ∈ R

n×� , such that the following LMIs
⎡

⎢

⎢

⎣

Pi + F + F ′ −(F ˜A′i +W ˜B′i) −(F ˜A′
di
+Wd

˜B′i)

� βQi − Pi 0

� � −Qi

⎤

⎥

⎥

⎦

< 0, i = 1, . . . ,N (3.17)

are verified with β given by (2.5), then system given by (2.1)–(2.4) is robustly stabilizable with (2.6),
where the static feedback gains are given by

K =W ′(F ′)−1
, Kd =W ′

d(F
′)−1 (3.18)

yielding a convex solution to Problem 2. Beside this, (3.3)–(3.4) is a Lyapunov-Krasovskii functional
that guarantees the robust stability of the resulting closed-loop system with P(α) and Q(α) given in
(3.15).
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Proof. Condition (3.17) is obtained from (3.16) by choosing G = H = 0, replacing Ai and Adi by
( ˜Ai + ˜BiK)′ and ( ˜Adi + ˜BiKd)

′, respectively, and making the change of variables FK′ = W and
FK′

d
=Wd.

Note that conditions presented in Theorem 3.3 encompass quadratic stability, since it is
always possible to choose Pi = P andQi = Q, i = 1, . . . ,N. Also observe that if d(k) is not avail-
able at each sample, and therefore x(k−d(k)) cannot be used in the feedback, then it is enough
to choose Wd = 0 leading to a control law given by u(k) = Kx(k). Another relevant note is that
Theorem 3.3 presents some LMI conditions for the synthesis of state feedback gains, differently
from other approaches found in the literature where nonconvex techniques are employed.

Decentralized control

The results of Theorem 3.3 can be used to deal with decentralized control. This can be
done by imposing a diagonal structure on F = FD = block-diag{F1, . . . , Fκ}, W = WD =
block-diag{W1, . . . ,Wκ}, and Wd = WdD = block-diag{Wd1, . . . ,Wdκ}, κ being the number of
subsystems. In this case, robust block-diagonal state feedback gains given by KD = W ′

D(F
′
D)
−1

and KdD = W ′
dD

(F ′D)
−1 can be obtained. Beside this, no structure is imposed to the matrices

of the Lyapunov-Krasovskii functional, P(α) and Q(α), which may lead to less conservative
results.

Computational complexity

The computational complexity of the conditions presented in this paper can be determined by
the number of scalar variables, K, and the number of rows, R, involved in the optimization
problems. Theorem 3.2 presentsKT2 = n[3n +N(n + 1)] scalar variables and RT2 = 5Nn LMI
rows and in Theorem 3.3 it is found that KT3 = n[2� + n +N(n + 1)] and RT3 = 3Nn. In the
case of using LMI control toolbox [26], the computational complexity is O(K3R) and using the
solver SeDuMi [27] the computational complexity is O(K2R2.5 + R3.5).

4. Numerical examples

Example 4.1. This example shows that the condition presented by Theorem 3.2 can be less con-
servative than other conditions available in the literature. Consider the DTSSD given by (2.7),
where

A1 =

[

0.6 0
0.35 0.7

]

, Ad1 =

[

0.1 0
0.2 0.1

]

. (4.1)

This system has been investigated in [18] and its stability has been assured for 2 ≤ d(k) ≤ 13
by using a Lyapunov-Krasovskii with 5 terms instead of the 3 terms presented here (see (3.3)-
(3.4)). Using Theorem 3.2 the same delay interval is obtained, but with a lower-computational
complexity. Using [21, Theorem 3.1] that employs a Lyapunov-Krasovskii functional similar
to that used here, it is possible to verify the stability of this system but with a narrower delay
interval: 2 ≤ d(k) ≤ 10.

Consider now that this system is affected by an uncertain parameter such that it can be
described by a polytope (2.3) with A1 and Ad1 given above and A2 = 1.1A1 and Ad2 = 1.1Ad1.
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In this case, the conditions of [18, 21] are no longer applicable, since the system is uncertain.
Using Theorem 3.2, it is possible to assure the robust stability of this system for |d(k+1)−d(k)| ≤
3. Thus, a more flexible analysis condition is provided by Theorem 3.2.

Example 4.2. Consider the discrete-time system with delayed states which is described by (2.1),
where the system matrices are given by

˜A =

[

0.00 1.00
−2.00 −3.00

]

, ˜Ad =

[

0.01 0.10
0.00 0.10

]

, ˜B =

[

0.00
1.00

]

. (4.2)

This system has been investigated for d = 1 ≤ d(k) ≤ 10 = d in [21] where a state feedback
gain K = [2.0005, 2.9051] has been obtained by means of application of its Theorem 4.1 that
has K [21] = 19 scalar variables and R [21] = 16 rows. On the other hand, the conditions of
Theorem 3.3 haveKT3 = 12 scalar variables andRT3 = 6 rows. Thus, by using LMI control tool-
box [26], the condition proposed in [21] is more complex than that in Theorem 3.3. Conditions
of Theorem 3.3 yield

Q =

[

0.1558 0.0003
0.0003 0.0209

]

, P =

[

2.3902 −0.0026
−0.0026 0.4315

]

, F =

[

−1.5441 0.0047
0.0005 −0.4866

]

(4.3)

and K = [2.0000, 2.9929], which is close to the gain obtained by [21] with a lower computa-
tional cost. Therefore, this example illustrates that the conditions proposed here are numeri-
cally more efficient than those proposed in [21].

Example 4.3. Consider the system investigated in Example 4.2 where some uncertainties have
been added as follows:

˜A(ρ) = (1 + ρ) ˜A, ˜Ad(θ) = (1 + θ) ˜Ad, ˜B(η) = (1 + η) ˜B (4.4)

with |ρ| ≤ 0.07, |θ| ≤ 0.1, and |η| ≤ 0.1. These parameters lead to a polytope with 8 vertices
determined by the combination of the extreme values of ρ, θ, and η. Keeping the same de-
lay variation interval considered in Example 4.2, that is, d = 1 and d = 10, the conditions of
Theorem 3.3 are used to stabilize this uncertain system resulting in

[

P 1 P2 P3 P4

P 5 P6 P7 P8

]

=

⎡

⎢

⎢

⎢

⎣

3.6298 −0.4931 2.8302 −0.4374 3.6173 −0.5193 2.9327 −0.5202
−0.4931 0.7591 −0.4374 0.6360 −0.5193 0.7868 −0.5202 0.7544
2.6414 −0.7587 3.5305 −0.5615 2.7431 −0.7374 3.5308 −0.5874
−0.7587 0.8439 −0.5615 0.8096 −0.7374 0.8481 −0.5874 0.8380

⎤

⎥

⎥

⎥

⎦

,

[

Q1 Q2 Q3 Q4

Q5 Q6 Q7 Q8

]

=

⎡

⎢

⎢

⎢

⎣

0.1976 −0.0171 0.1292 −0.0306 0.2015 −0.0212 0.1515 −0.0385
−0.0171 0.0538 −0.0306 0.0326 −0.0212 0.0550 −0.0385 0.0396
0.0382 0.0138 0.2055 −0.0194 0.0847 −0.0013 0.2102 −0.0241
0.0138 0.0207 −0.0194 0.0527 −0.0013 0.0237 −0.0241 0.0543

⎤

⎥

⎥

⎥

⎦

,

F=

[

−2.4178 0.5476
0.5056 −0.7569

]

,

K=
[

1.9670 2.7170
]

.

(4.5)
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Figure 1: The behavior of the states x1(k) (a) and x2(k), with (b) 1 ≤ d(k) ≤ 10 (see Figure 2(b)), K =
[109670, 2.7170].
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Figure 2: Control signal (a) and time-varying delay (b).

The behavior of the states of the closed-loop response of this uncertain discrete-time sys-
tem with time-varying delay is shown in Figure 1. It has been simulated that the time re-
sponse of this system at each vertex of the polytope was used in the controller design. The
respective control signals are shown in Figure 2. The initial conditions have been chosen as
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x(k) = [1,−1], k = −d, . . . , 0, and the value of the delay, d(k), has been varied randomly as
shown in Figure 2(b). In Figure 1, the stability of the uncertain closed-loop system is illus-
trated, assured by the state feedback calculated by means of Theorem 3.3, for 1 ≤ d(k) ≤ 10.
The control effort is shown in Figure 2(a). It is worth to mention that the results presented in
[21] cannot be directly used with polytopic uncertain systems and cannot be applied in this
case. This example shows the efficacy of the conditions proposed here applied to uncertain
discrete-time delayed systems.

Example 4.4. In this example, it is shown how conditions of Theorem 3.3 can be used to design
robust decentralized state feedback gains. Consider the system (2.1) with 4 states and 2 vertex
matrices given by

[

˜A1| ˜A2
]

=

⎡

⎢

⎢

⎢

⎢

⎣

0.90 0.00 −0.08 0.03 0.90 0.00 −0.08 0.03

0.00 0.70 0.05 −0.03 0.00 0.90 0.05 −0.03

−0.08 0.05 −0.29 1.00 −0.04 0.03 −0.10 0.00

0.03 −0.03 0.00 0.95 0.01 −0.01 1.00 −0.20

⎤

⎥

⎥

⎥

⎥

⎦

,

[

˜Ad1| ˜Ad2
]

=

⎡

⎢

⎢

⎢

⎢

⎣

−0.10 0.00 −0.10 0.03 −0.10 0.10 −0.10 0.06
−0.10 −0.10 0.06 −0.03 −0.10 −0.10 0.03 −0.03
−0.10 0.06 0.01 0.01 −0.10 0.06 0.01 0.00
0.03 −0.03 0.00 0.02 0.03 −0.03 0.01 0.02

⎤

⎥

⎥

⎥

⎥

⎦

,

[

˜B1| ˜B2
]

=

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0
0 0 1 0 0 0 1 1
0 0 0 0 0 0 0.1 0

⎤

⎥

⎥

⎥

⎥

⎦

.

(4.6)

By imposing a block diagonal structure on F and W given by {2, 2} and choosing Wd = 0, it is
possible to apply the conditions of Theorem 3.3 getting

K =

[

K1 0
0 K2

]

with K1 =

[

0.4873 −0.8785
1.6425 −1.7437

]

, K2 =

[

0.2587 −0.6089
0.2299 0.4833

]

(4.7)

for d = 1 and d = 4. Thus, this example shows how the proposed synthesis conditions can be
used to design robust decentralized state feedback control gains without imposing any struc-
ture on Lyapunov-Krasovskii functional matrices, yielding full matrices Pi and Qi, i = 1, 2 .

Example 4.5. This last example is presented to illustrate how the proposed conditions can be
used within time-varying systems, that is, time-varying delay systems with matrices ˜A, ˜Ad,
and ˜B depending on α(t). Consider the uncertain discrete-time system with time-varying delay
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Figure 3: The behavior of the states x1(k) (×) and x2(k) (·) for the unforced system with 1 ≤ d(k) ≤ 2 and
α1 = 0.4.
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Figure 4: The behavior of the states x1(k) (×) and x2(k) (·) on (a) and the control signal on (b).

described by a polytope of matrices with vertices given by

[ ˜A1| ˜A2] =

[

1.33 1.26 0.37 0.74
1.49 1.46 0.91 1.14

]

,

[ ˜Ad1| ˜Ad2] =

[

0.20 0.06 0.16 −0.06
0.01 0.14 −0.01 0.06

]

,

[ ˜B1| ˜B2] =

[

0.39 0.11
0.48 0.32

]

.

(4.8)

The open-loop system is not robustly stable as can be noticed by the eigenvalues of A1, given
by 0.0233 and 2.7667, and the eigenvalues of A2, given by −0.1514 and 1.6614. The unforced
system is simulated for an initial state given by xk = [1, −1]′, k ∈ [−2, 0] and a constant
α1 = 0.4, that is, ˜A(α) = 0.4 ˜A1 + 0.6 ˜A2, ˜Ad(α) = 0.4 ˜Ad1 + 0.6 ˜Ad2, and ˜B(α) = 0.4 ˜B1 + 0.6 ˜B2. The
unstable behavior of the states is shown in Figure 3.

Using Theorem 3.3 with Wd = 0 and Pi = P , Qi = Q, i = 1, 2, it is possible to obtain
K = −[3.1599, 3.4971] that assures the quadratic stability of the system for d = 0 and d = 19.
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Figure 5: α1(k) (a) and time-varying delay, d(k) (b).

Therefore, ˜A(k) = α1(k) ˜A1 + α2(k) ˜A2, ˜Ad(k) = α1(k) ˜Ad1 + α2(k) ˜Ad2, and ˜B(k) = α1(k) ˜B1 +
α2(k) ˜B2, α(k) ∈ Ω. The closed-loop system behavior is illustrated in Figures 4 and 5. The state
behavior of the closed-loop system is shown in Figure 4(a) and the control signal is presented
in the bottom part. This system has been simulated for α1(k) = 0.5(sin(k) + 1) and α2(k) =
1 − α1(k) as seen in Figure 5(a), with initial conditions x(k) = [1, −1]′, k = −19, . . . , 0. The
time-varying delay d(k) has been randomly generated as indicated in Figure 5(b).

Therefore, this example shows that conditions of Theorem 3.3 can be used in the context
of time-varying systems encompassing, in this case, quadratic stability conditions.

5. Conclusions

Some sufficient convex conditions were proposed to solve two problems: the robust stability
analysis and the synthesis of robust state feedback gains for the class of polytopic discrete-time
systems with time-varying delay. The presented LMI conditions include some extra variables
and no additional dynamic in the investigated system, thus yielding less conservative results.
Some examples, with numerical simulation, are given to demonstrate some relevant charac-
teristics of the proposed design methodology such as robust stabilization using memory or
memoryless state feedback gains in the control law, decentralized control, and design for time-
varying discrete-time systems with time-varying delay. Some of these examples have been
compared with other results available in the literature.
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