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This paper is intended to present a lossless image compression method based on multiple-tables
arithmetic coding (MTAC) method to encode a gray-level image f . First, the MTAC method
employs a median edge detector (MED) to reduce the entropy rate of f . The gray levels of two
adjacent pixels in an image are usually similar. A base-switching transformation approach is then
used to reduce the spatial redundancy of the image. The gray levels of some pixels in an image are
more common than those of others. Finally, the arithmetic encoding method is applied to reduce
the coding redundancy of the image. To promote high performance of the arithmetic encoding
method, the MTAC method first classifies the data and then encodes each cluster of data using a
distinct code table. The experimental results show that, in most cases, the MTAC method provides
a higher efficiency in use of storage space than the lossless JPEG2000 does.
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1. Introduction

With the rapid development of image processing and Internet technologies, a great number
of digital images are being created every moment. Therefore, it is necessary to develop an
effective image-compression method to reduce the storage space required to hold image data
and to speed the image transmission over the Internet [1–16].

Image compression reduces the amount of data required to describe a digital image by
removing the redundant data in the image. Lossless image compression deals with reducing
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coding redundancy and spatial redundancy. Coding redundancy consists in using variable-
length codewords selected to match the statistics of the original source. The gray levels of
some pixels in an image are more common than those of others—that is, different gray levels
occur with different probabilities—so coding redundancy reduction uses shorter codewords
for the more common gray levels and longer codewords for the less common gray levels.
We call this process variable-length coding. This type of coding is always reversible and is
usually implemented using look-up tables. Examples of image coding schemes that explore
coding redundancy are the Huffman coding [4, 5, 7] and arithmetic coding techniques [8, 9].

There exists a significant correlation among the neighbor pixels in an image, which
may result spatial redundancy in data. Spatial redundancy reduction exploits the fact that the
gray levels of the pixels in an image region are usually the same or almost the same. Methods,
such as the LZ77, LZ88, and LZW methods, exploit the spatial redundancy in several ways,
one of which is to predict the gray level of a pixel through the gray levels of its neighboring
pixels [14].

To encode an image effectively, a statistical-model-based compression method needs
precisely to predict the occurrence probabilities of the data patterns in the image. This paper
proposes a lossless image compression method based on multiple-tables arithmetic coding
(MTAC) method to encode a gray-level image.

A statistical-model-based compression method generally creates a code table to hold
the probabilities of occurrence of all data patterns. The type of data pattern significantly
affects the encoding efficiency when minimizing storage space. When the data come from
different sources, it is difficult to find an appropriate code table to describe all the data.
Therefore, this MTAC method categorizes the data and adopts distinct code tables that record
the frequencies which the data patterns occur in different clusters.

2. The MTAC Method

The proposed MTAC method contains three approaches: median edge detector (MED)
processing, base-switching transformation, and statistical-model-based compressing. This
section introduces these three approaches.

2.1. MED Processing Approach

Shannon’s entropy equation can estimate the average minimum number of bits needed to
encode a data pattern based on the frequency which the data pattern occurs in a data set
[11, 12]. Let l be the total number of different data patterns in a data set and pi the probability
of the ith data pattern’s occurring in the data set. The entropy rate E of the data set is defined
as

E =
l∑

i=1

pi × log2

(
1
pi

)
. (2.1)

It is impossible to encode the data set, in a lossless manner, with a bit rate higher than
or equal to E. The bit rate is defined as the ratio of the number of bits holding the compression
data to the number of pixels in the compressed image. The higher the entropy rate, the less
one can compress it using a statistical-model-based compression method.
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Figure 1: The scanning order of the MED in an image represented by 8 × 8 pixels.

Let f be the encoded image consisting of H ×W pixels, where H and W are the height
and the width of f, respectively. MED [10] estimates the gray level of a pixel by detecting
whether there is an edge passing through the pixel. MED scans each pixel in f, starting from
the left-top pixel of f, in the order shown in Figure 1. While scanning a pixel P(i, j), MED
estimates the gray level g(i, j) of P(i, j) via the gray-levels g(i, j−1), g(i−1, j−1), and g(i−1, j)
of the pixels P(i, j − 1), P(i − 1, j − 1), and P(i − 1, j), where P(i, j) is the pixel located at the
coordinates (i, j) in f. Figure 2 shows the spatial relationships of P(i, j), P(i, j−1), P(i−1, j−1),
and P(i − 1, j).

For i = 1 or j = 1, the estimated gray level ĝ(i, j) of P(i, j) is defined as

ĝ
(
i, j

)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g(0, 0), when i = 0, j = 0,

g
(
0, j

)
− g

(
0, j − 1

)
, when i = 0, j = 1 to W ,

g(i, 0) − g(i − 1, 0), when j = 0, i = 1 to H.

(2.2)

In addition, for i = 1 to H, and j = 1 to W :
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(2.3)

Here, Max(g(i, j − 1), g(i − 1, j)) and Min(g(i, j − 1), g(i − 1, j)) are the maximum and the
minimum between g(i, j − 1) and g(i− 1, j), respectively. If ĝ(i, j) = g(i, j − 1), MED considers
that a horizontal edge passes through P(i, j) or some pixels above P(i, j). When ĝ(i, j) =
g(i − 1, j), MED perceives that one vertical edge passes through P(i, j) or some pixel on the
left of P(i, j).

Let e(i, j) = g(i, j) − ĝ(i, j) be the difference between ĝ(i, j) and g(i, j); we call e(i, j)
the estimated error of g(i, j). Similarly, in the decompressing phrase, based on g(i, j − 1),
g(i − 1, j − 1), and g(i − 1, j), the MTAC method can compute ĝ(i, j) through formulas (2.2)
or (2.3); then it can get g(i, j) = ĝ(i, j) + e(i, j). To recover f without loss, the MTAC method
needs to save g(0, 0) and the estimated errors of all other pixels in f .
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Figure 2: Part of the pixels in an image.

The estimated error e(i, j) is within the interval between −255 and 255. Each e(i, j) can
be represented by an 8-bit memory space that describes the absolution value |e(i, j)| of e(i, j)
and one bit b that records the sign of e(i, j). All the |e(i, j)|s compose a gray-level image fe,
and all the sign bits bs make up a binary image fs. We call fe the error image and fs the sign
bit image of f .

Figure 3 shows two 512 × 512 gray-level images Airplane and Baboon, and their gray-
level histograms. Let l = 256, and

pi =
the number of pixels whose gray levels are equal to i

the total number of pixels in the image
. (2.4)

According to formula (2.1), the entropy rates of Airplane and Baboon, in theory, reach
6.5 and 7.2 bits/pixel, respectively. From Shannon’s limit [11, 12], with such an entropy rate,
the minimum number of bits required to describe a pixel in Airplane (resp., Baboon) is
6.5 (resp., 7.2) bits/pixel. Since the numbers of bits are over the acceptable maximum, the
MTAC method utilizes MED [10] to decrease the entropy rate of f before encoding f. Figure 4
demonstrates the error images of Airplane and Baboon shown in Figure 3, and the gray-level
histograms of the error images. The gray levels of most pixels in the error images are close to
0; the entropy rates of the error images of Airplane and Baboon are 3.6 and 5.2 bits/pixel,
respectively, which are far lower than the entropy rates of the original Airplane and
Baboon.

Figure 5 shows the sign bit images of Airplane and Baboon. It is clear that both sign
bit images are messy, so it is difficult to find a method effectively with which to encode them
effectively. To deal with this problem, the MTAC method transforms the error image and sign
bit image into a difference image and an MSB (most significant bit) image, respectively. The
MTAC method pulls out the MSB of all the |e(i, j)|s to create an H ×W binary image fMSB,
where the MSB of |e(i, j)| is given to the pixel located at the coordinates (i, j) of fMSB. We
call the binary image the MSB image fMSB of f. Meanwhile, the MTAC method concatenates
the sign bit b of e(i, j) and the remaining |e(i, j)|, whose MSB has been drawn out, by
appending b to the rightmost bit of the remaining |e(i, j)| in order to generate another gray-
level image. We name the gray-level image the difference image of f. Figure 6 illustrates these
actions.

Figure 7 shows the MSB images of Airplane and Baboon. Almost all the pixels on the
MSB images are 0. Figure 8 displays the difference images of Airplane and Baboon and their
gray-level histograms. Clearly, the gray levels of most pixels in the difference images are
equal to 0. The entropy rates of the difference images of Airplane and Baboon are 4.4 and
6.2 bits/pixel, respectively. These entropy rates are higher than the entropy rates of their error
images but are much lower than those of the original Airplane and Baboon.
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Figure 3: Two gray-level images, Airplane and Baboon, and their color histograms.

2.2. Base-Switching Transformation Approach

The gray level of a pixel in a gray-level image is generally represented by an 8-bit memory
space. However, it is uneconomical if the gray levels of the pixels in a gray-level image are
similar. Hence, the MTAC method adopts the base-switching transformation (BST) algorithm
[1, 2] to compress a difference image.

The BST algorithm partitions a difference image into small nonoverlapping image
blocks, each consisting of m × npixels. Let gmin and gmax be the minimal and maximal gray
levels of the pixels in an image block B. The difference between gmin and the gray level g of
each pixel in B can be depicted by �log2(gmax − gmin)� bits. The MTAC method uses a 3-bit
memory space S to describe �log2(gmax − gmin)�, where

S =

⎧
⎨

⎩
0, if

⌈
log2

(
gmax − gmin

)⌉
= 0 or 1,

⌈
log2

(
gmax − gmin

)⌉
− 1, otherwise.

(2.5)

For each image block, the BST algorithm needs to hold only gmin, S, and the gray-
level differences between gmin and the gray levels of all the pixels in B. We call the difference
between the gray level of a pixel P and gmin the gray-level difference of P. Figure 9 is a 4 × 4
image block B. The 16 × 8 = 128 bits of memory space are required to store B. However, in the
BST algorithm, gmax, gmin, and S of B are 137, 122, and 3, respectively. The BST algorithm uses
8 bits, 3 bits, and 4 × 16 bits to hold gmin, S, and the gray-level differences of all the pixels in
B; hence, the BST algorithm requires only a total of 75 bits to store B.
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Figure 4: The difference images and their histograms of Airplane and Baboon.

2.3. Statistical-Model-Based Compressing Approach

After the MED processing approach, image f is transformed into an MSB image and a
difference image. In the base-switching transformation approach, the difference image is
segmented into nonoverlapping small image blocks. The MTAC method then writes down
gmin, S, and the gray-level differences of all the pixels in each image block. However, a few
pixels may have big gray-level differences in an image block, so each gray-level difference
in this image block requires large number of bits to hold it. For example, the maximal gray-
level difference of the image block in Figure 9 is 15; therefore, each gray-level difference can
be expressed by at least 4 bits. To remedy this problem, the MTAC method takes arithmetic
coding algorithm continuously to compress the data obtained in the MED processing and
BST approaches.

The arithmetic coding algorithm [8, 15] is one of the statistical-model-based
compressing methods that decide the bit length of a code according to the occurrence
frequencies of data patterns. These methods give longer codes to the data patterns that occur
more frequently and shorter codes to those that occur less often. Hence, the type of data
pattern significantly affects the encoding’s efficiency in minimizing storage space. The MTAC
method will adopt the arithmetic coding algorithm to compress the MSB image, all the gmins,
and all Ss. Since the MSB image, all the gmins, and all Ss have different statistics, the MTAC
method will require distinct code tables to record the data patterns of the MSB image, all the
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Figure 5: The sign bit images of the images Airplane and Baboon.

Sign bit 

1 0 0 0 0 1 0 1 0

MSB

0 0 0 1 0 1 0 10

|e(i, j)|
e(i, j):

(a) The original e(i, j) and b

(b) The related pixels of e(i, j) in fMSB and fe

The related pixel located at (i, j) in fe

Figure 6: The pixel values of e(i, j).

gmins, and all Ss. Each data pattern of the MSB image, all the gmins, and all Ss are described
by 8-bits, 8-bits, and 3-bits in length, respectively.

Next, the MTAC method concatenates the gray-level differences of all the image blocks
into a binary string GDS, where the bit length of each gray-level difference in the image
blocks is S. For example, the gray-level differences in all the image blocks with S = 4 are
concatenated into GD4. The MTAC method then uses an arithmetic coding algorithm to
encode each GDS, where the bit length of each data pattern in encoding GDS is S. Finally,
the MTAC method needs to hold only the height H and the width W of f, all the code tables,
and all the compression data generated by the arithmetic coding algorithm.

After the statistical-model-based compressing approach has been employed, the
MTAC method concatenates W, H, StringCODE TABLE, StringMSB, Stringg min, StringS, and
StringGD into the compression data. Here, StringCODE TABLE represents all the code tables;
StringMSB, Stringg min, StringS, and StringGD are the compression data of the MSB image, all
gmins, Ss, and GDSs, respectively.

2.4. Image Decompression

In the decompression phrase, the MTAC method first draws W, H, and StringCODE TABLE
from the compression data. The bit length of each data pattern in the MSB image is 8.
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(a) Airplane (b) Baboon

Figure 7: The MSB images of Airplane and Baboon.
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Figure 8: The difference images and color histograms of Airplane and Baboon.
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Figure 9: An image block of 4 × 4 pixels.
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Figure 10: The testing images.
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(a) The difference image of Barb (b) Partial image of the difference

Figure 11: The difference image of Barb and its partial image.

Table 1: Entropies of ten original images and their error images.

Image Entropy rate of original image Entropy rate of error image
Airplane 6.529 3.567
Baboon 7.224 5.091
Lena 7.432 3.681
Toy 6.748 3.123
Gold 7.452 3.853
Sailboat 7.248 4.126
Boat 6.975 3.595
Barb 7.647 4.557
Pepper 7.570 3.535
Girl 7.260 3.935

Hence, the MTAC method can reconstruct the MSB image based on StringMSB by using the
arithmetic decoding method. Since f consists of H ×W/9 image blocks, the MTAC method
will decompress the (H×W/9)gmins from Stringg min using the arithmetical decoding method,
where the bit length of a data pattern is 8. Similarly, it can decode (H ×W/9)Ss from StringS,
where each data pattern is described by 3 bits. How many data patterns are in each GDS can
be easily computed via Ss. Hence, each GDS can be decoded as well.

3. Experiments

The purpose of this section is to investigate the performance of the MTAC method by
experiments. In these experiments, ten 256 × 256 gray-level images Airplane, Lena, Baboon,
Gold, Sailboat, Boat, Toy, Barb, Pepper, and Girl, shown in Figure 10, are used as test images.
The first experiment explores the effect of the MED processing approach on reducing the
entropy rate of the compressed image. Table 1 lists the entropy rates of the ten original test
images and the entropy rates of their error images. The experimental results show that most
of the entropy rates of the error images are close to half those of the original test images.

In experiment 2, the arithmetic coding method is used to encode the sign bit images of
the ten test images, where the bit length of each data pattern is 8 bits. Table 2 shows the sizes
of the original sign bit images and their compression data obtained by the arithmetic coding
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Table 2: The size of the sign bit images and their compression data.

Image Size of original image (bytes) Size of compression data (bytes)
Airplane 8192 8069
Baboon 8192 8256
Lena 8192 8187
Toy 8192 8135
Gold 8192 8169
Sailboat 8192 8310
Boat 8192 8152
Barb 8192 8222
Pepper 8192 8201
Girl 8192 8296

Table 3: Entropy rates of the difference images.

Image Entropy rate
Airplane 4.368
Baboon 6.048
Lena 4.527
Toy 3.900
Gold 4.742
Sailboat 4.997
Boat 4.396
Barb 5.442
Pepper 4.390
Girl 4.801

method where the bit length of each data pattern is 8 bits. The experimental results illustrate
the difficulty of obtaining a good performance in compressing the sign bit images. Since the
sign bit images are very messy, the arithmetic coding method cannot effectively encode it;
even for most error images, the sizes of their compression data are larger than the sizes of
their original images; that is, there hardly exist the coding and spatial redundancies in the
error images. Table 3 lists the entropy rates of the difference images of the ten test images
where m × n are set to 3 × 3. Although the entropy rates of the difference images are higher
than those of the error images, they are much lower than those of the original images are.

The last experiment compares the performance of the MTAC method with that of the
lossless JPEG2000 [3, 6, 13]. Table 4 displays the bit rates obtained by the MTAC method and
the lossless JPEG2000 in encoding the test images. Table 4 reveals that the MTAC method is
more efficient in storage space use than the lossless JPEG2000, except image Barb. Figure 11
shows that huge gray-level variations among most adjacent pixels in the partial magnified
difference image of Barb. The MTAC method obtains better performance in terms of storage
space use than that of the lossless JPEG2000 in encoding an image with small gray-level
variations among adjacent pixels but performs worse in compressing an image with great
gray-level variations among adjacent pixels. Hence, the MTAC method performs worse in
terms of storage space use than the lossless JPEG2000 does when encoding Barb.
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Table 4: Bit rates (bits/pixel) obtained by the MTAC and lossless JPEG 2000.

Image Method
MTAC Lossless JPEG2000

Airplane 4.14 4.35
Lena 4.20 4.25
Baboon 6.10 6.11
Gold 4.71 4.90
Sailboat 4.88 5.10
Boat 4.24 4.44
Toy 3.90 4.16
Barb 5.28 5.14
Pepper 4.34 4.43
Girl 4.63 4.73

4. Conclusions

This paper proposes the MTAC method to encode a gray-level image f. The MTAC method
contains the MED processing, BST, and statistical-model-based compressing approaches. The
MED processing approach reduces the entropy rate of f. The BST approach decreases the
spatial redundancy of the difference image of f based on the similarity among adjacent pixels.
The statistical-model-based compressing approach further compresses the data generated
in the MED processing and BST approaches, based on their coding redundancy. The data
patterns of the data produced by the MED processing approach and the BST approach
have different bit lengths and distinct occurrence frequencies. Hence, the MTAC method
first classifies the data into clusters before compressing the data in each cluster using the
arithmetic coding algorithm via separated code tables.

The experimental results reveal that the MTAC method usually gives a better bit rate
than the lossless JPEG2000 does, particularly for the images with small gray-level variations
among adjacent pixels. However, when the gray-level variations among adjacent pixels in an
image are very large, the MTAC method performs worse in terms of bit rate.
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