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This paper is concerned with an efficient dual boundary element method for 2d crack problems
under antiplane shear loading. The dual equations are the displacement and the traction boundary
integral equations. When the displacement equation is applied on the outer boundary and the
traction equation on one of the crack surfaces, general crack problems with anti-plane shear
loading can be solved with a single region formulation. The outer boundary is discretised with
continuous quadratic elements; however, only one of the crack surfaces needs to be discretised
with discontinuous quadratic elements. Highly accurate results are obtained, when the stress
intensity factor is evaluated with the discontinuous quarter point element method. Numerical
examples are provided to demonstrate the accuracy and efficiency of the present formulation.
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1. Introduction

The problem of a cracked body subjected to an antiplane shear loading had been studied
extensively. Sih [1] provided analytical solutions for mode III cracks in infinite regions
by using Westergaard stress functions and Muskhelishvili’s method. Chiang [2] presented
analytical solutions for slightly curved cracks in antiplane strain in infinite regions using
perturbation procedures similar to those carried out for in-plane loading cases by Cotterell
and Rice [3]. Zhang [4, 5] and Ma and Zhang [6] gave analytical solutions for a mode III stress
intensity factor considering a finite region with an eccentric straight crack. Ma [7] provided
analytical solutions for mode III straight cracks in finite regions using Fourier transforms and
Fourier series. Smith [8] studied the elastic stress distribution in the immediate vicinity of a
blunt notch. However, their solutions were concerned with specified geometries or boundary
conditions. To deal with the complexities of general geometries and boundary conditions, an
accurate and efficient numerical method is essential [9–12].
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Several numerical solutions had been devised for antiplane crack problems. Wallentin
et al. [13] investigated the railway wheel crack problem numerically, based on Betti’s
reciprocity theorem. Guagliano and Vergani [14] described the experimental and numerical
analysis of internal cracks in wheels under Hertzian loads. Paulino et al. [15] provided
numerical solutions for a curved crack subjected to an antiplane shear loading in finite
regions by using the boundary integral equation method. Ting et al. [16] provided numerical
solutions for mode III crack problems by using the boundary element alternating method.
Liu and Altiero [17] provided numerical solutions for mode III crack problems using the
boundary integral equation with linear approximation on displacements and stresses. Barlow
and Chandra [18] discussed the computational fatigue crack growth rate by using the crack
opening displacement approach to calculate the stress intensity factors. Mews and Kuhn
[19] provided numerical solutions for the traction free central crack problem by using
Green’s function, instead of the usual fundamental solution. Mir-Mohamad-Sadegh and
Altiero [20] used the indirect boundary integral equation method to solve traction problems,
using displacement-based formulations. Sun et al. [21] derived a new boundary integral
equation to analyse cracked anisotropic bodies under antiplane shear. Also, for the further
study, the crack front plastic deformation in a ductile material was introduced to apply
the effective Dugdale strip yield model [22–24]. In general, the boundary element method
(BEM) is a well-established numerical technique for the analysis of linear fracture mechanics
problems. However, the solution of general crack problems cannot be achieved with the direct
application of the BEM, because the coincidence of the crack surfaces gives rise to a singular
system of algebraic equations.

To overcome this shortcoming, we provide an efficient numerical procedure, based on
the dual boundary element method (DBEM), for antiplane shear loading problems. The dual
boundary element method seems to have certain apparent advantages for in-plane loading
problems with a single region formulation. This method incorporates two independent
boundary integral equations, the displacement and traction equations. Portela et al. [25]
considered the effective numerical implementation of the two-dimensional DBEM for solving
general in-plane fracture mechanics problems. W. H. Chen and T. C. Chen [26] proposed
a different DBEM formulation for in-plane crack problems. Chen and Chen suggested the
use of the displacement integral equation applied only on the outer boundary and the
traction integral equation on one of the crack surfaces. In Chen and Chen’s formulation,
relative displacement of crack surfaces was used instead of the displacement. This reduces
the degrees of freedom and hence the computational effort. This study uses an integral
equation formulation that combines with the crack modelling strategy of quadratic boundary
elements for antiplane crack problems. The stress intensity factor is calculated based on the
near tip displacement method. More accurate results are obtained by placing discontinuous
quarter point elements at crack tips [27], which correctly model the behaviour of the crack tip
displacement. This is a similar technique to that used for continuous quarter point elements
[28]. Numerical examples are provided to demonstrate the accuracy and efficiency of the
present formulation.

2. The Dual Boundary Integral Equation for Antiplane Problems

Consider a finite domain subjected to an arbitrary antiplane shear loading, where the only
nonzero displacement component uz in the z direction may be specified as follows [7]:

∇2uz = 0. (2.1)
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The Laplace equation (2.1) can be transformed into a boundary integral equation, as is typical
with the BEM. The boundary integral formulation of the displacement component, uz, at an
internal point I, is given by [29]

uz(I) +
∫
Γ
H(I, x)uz(x)dΓ(x) =

∫
Γ
G(I, x)tz(x)dΓ(x), (2.2)

where tz represents the traction component at a boundary point x. H(I, x) and G(I, x)
represent the fundamental traction and displacement solutions, respectively, which are given
as

H(I, x) = − 1
2πr

∂r

∂n
, G(I, x) =

1
2πμ

ln
(

1
r

)
, (2.3)

where μ is the shear modulus, r is the distance between I and x, and n denotes the outward
normal unit vector at the point x on the boundary Γ. If we consider a finite body with L cracks,
(2.2) can be written as

uz(I) +
∫
ΓS
H(I, x)uz(x)dΓ(x) +

L∑
l=1

∫
Γ+
l

H(I, x+)uz(x+)dΓ(x) +
L∑
l=1

∫
Γ−
l

H
(
I, x−
)
uz
(
x−
)
dΓ(x)

=
∫
ΓS
G(I, x)tz(x)dΓ(x) +

L∑
l=1

∫
Γ+
l

G(I, x+)tz(x+)dΓ(x) +
L∑
l=1

∫
Γ−
l

G
(
I, x−
)
tz
(
x−
)
dΓ(x),

(2.4)

where x+ and x− are the field points located on upper and lower crack surfaces, respectively.
Note that ΓS denotes the outer boundary of the body, Γ+

l
the lth upper crack boundary, Γ−

l

the lth lower crack boundary, and Γ = ΓS +
∑L

l=1(Γ
+
l
+ Γ−

l
). Using the fact that H(I, x+)|Γ+ =

H(I, x−)|−Γ− and G(I, x+)|Γ+ = G(I, x−)|−Γ− , (2.4) can be simplified to

uz(I) +
∫
ΓS
H(I, x)uz(x)dΓ(x) +

L∑
l=1

∫
Γ+
l

H(I, x+)Δuz(x)dΓ(x)

=
∫
ΓS
G(I, x)tz(x)dΓ(x) +

L∑
l=1

∫
Γ+
l

G(I, x+)Δtz(x)dΓ(x),

(2.5)

where Δuz = uz(x+) − uz(x−) and Δtz = tz(x+) − tz(x−), however Δtz is always zero on the
crack faces. As the internal point approaches the outer boundary, that is, as I → B, the
displacement equation becomes

c(B)uz(B) + −
∫
ΓS
H(B, x)uz(x)dΓ(x) +

L∑
l=1

∫
Γ+
l

H(B, x+)Δuz(x)dΓ(x) =
∫
ΓS
G(B, x)tz(x)dΓ(x),

(2.6)
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where −
∫

represents the Cauchy principle value integral and c(B) = 1/2, given a smooth
boundary at the point B.

The stress components σiz are obtained from differentiation of equation (2.5), followed
by the application of Hooke’s law. At an internal point I, these components are given by

σiz(I) +
∫
ΓS
Si(I, x)uz(x)dΓ(x) +

L∑
l=1

∫
Γ+
l

Si(I, x)Δuz(x)dΓ(x) =
∫
ΓS
Di(I, x)tz(x)dΓ(x), (2.7)

where Si(I, x) and Di(I, x) contain derivatives of H(I, x) and G(I, x) in the i direction,
respectively, which are given as

Si(I, x) =
μ

2πr2

[
∂r

∂xi

∂r

∂n
−
(
δij − ∂r

∂xj

∂r

∂xi

)
nj

]
, Di(I, x) = − 1

2πr
∂r

∂xi
, (2.8)

where ni denotes the ith component of the outward normal to the boundary at point x, and
δij is the Kronecker delta. Again, by moving the source point I to the upper crack boundary
B, and using tz = σizni, we obtain the traction integral equation

1
2
tz(B) +

∫
ΓS
ni(B)Si(B, x)uz(x)dΓ(x) +

L∑
l=1

=
∫
Γ+
l

ni(B)Si(B, x)Δuz(x)dΓ(x)

=
∫
ΓS
ni(B)Di(B, x)tz(x)dΓ(x),

(2.9)

where =
∫

represents the Hadamard principal value integral. Both Cauchy and Hadamard
principal-value integrals in (2.6) and (2.9) are finite parts of improper integrals. To solve
the finite part integrals, we can follow the method mentioned in Portela et al. [25].

The displacement integral equation (2.6) and the traction integral equation (2.9)
are the two main equations to solve for the displacement of the outer boundary and the
relative displacement of the crack faces. Equation (2.6) is applied for collocation on the
outer boundary where continuous quadratic elements are used, and (2.9) is applied on the
upper crack faces which are modelled by discontinuous quadratic elements. By taking all the
discretised nodes on the outer boundary ΓS and upper crack surfaces

∑L
l=1 Γ

+
l at the source

point B, the system of (2.6) and (2.9) for the multiple cracks problem can be written in a
matrix form as

[
H1 H2 0

S1 S2 I

]⎡⎢⎢⎣
uz,S

Δuz,c

tz,c+

⎤
⎥⎥⎦ =

[
G1

D1

]
[tz,S], (2.10)

where H1, H2, G1 and S1, S2, D1 are the corresponding assembled matrices from (2.6) and
(2.9), respectively. The uz,S and tz,S are the displacement and traction vectors on the outer
boundary ΓS, respectively. Δuz,c and tz,c+ are the relative displacement vector and the traction
vector on the upper crack faces.
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3. Calculation of the Mode III Stress Intensity Factor

Near tip displacement extrapolation is used to evaluate the numerical values of the stress
intensity factor. The relative displacements of the crack surfaces are calculated using the
DBEM and are used in the near crack tip stress field equations to obtain the stress intensity
factor. Due to the singular behaviour of the stress around the crack tip, it is reasonable
to expect a better approximation by replacing the normal discontinuous quadratic element
with a transition element possessing the same order of singularity at the crack tip. The
discontinuous quarter point element method is used in the present formulation [27, 30]. The
mode III stress intensity factor is evaluated as

KIII =
μ

4

√
2π
r
Δuz(r), (3.1)

where r is the distance from the crack tip to the nearest node on the upper crack face, and
Δuz(r) denotes the relative displacement in the antiplane direction.

4. Numerical Examples

In order to demonstrate the accuracy and efficiency of the technique previously described,
and to illustrate possible applications, we now consider several examples. In all the numerical
tests, the outer boundary is modelled by 24 continuous quadratic elements, and each crack
discretization is carried out with three different meshes of 6, 8, and 10 discontinuous
quadratic elements, respectively. The best accuracy is achieved with 6 elements, in which
the crack discretization is graded, towards the tip, with ratios 0.25, 0.15, and 0.1. The plate is
subjected to a uniform antiplane shear loading τ , and the stress intensity factor is normalised
with respect to

K0 = τ
√
πa, (4.1)

where a defines the half length of the crack. All computations are carried out under the
condition of plane strain.

4.1. A Rectangular Plate Containing a Central Slant Crack

Firstly, consider a rectangular plate containing a central slant crack as shown in Figure 1. The
crack has length 2a and makes an angle θ with the horizontal direction. For a horizontal crack
(θ = 0◦), the normalised mode III stress intensity factor is calculated for various ratios of a/h
and a/w and compared to those given in [17, 31] (see Table 1). The largest difference between
these does not exceed 1.65 per cent. Further, the normalised mode III stress intensity factor
is calculated for h/w = 2, while the crack slanted an angle θ with the various ratios of a/w.
Three cases are considered, where θ = 30◦, 45◦, and 60◦, respectively. The results obtained are
presented in Figure 2. As it can be seen, when the ratio of a/w increases, the stress intensity
factor increases due to edge effect.

For the case where a/w = 1/50, which could be considered as the case of infinite
geometry since a � w, we compare the results with the analytical results for the latter
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Figure 1: Rectangular plate with a central slant crack.

Table 1: Normalised mode III stress intensity factor for a straight central crack.

a : h 1 : 0.25 1 : 0.5 1 : 1 1 : 2 1 : 4
a : w Present 1.909 1.724 1.689 1.688 1.661
1 : 1.2 Reference [17] 1.897 1.723 1.689 1.686 1.686

Reference [31] 1.900 1.725 1.691 1.689 1.689
a : w Present 1.796 1.467 1.371 1.361 1.361
1 : 1.4 Reference [17] 1.780 1.460 1.369 1.359 1.358

Reference [31] 1.782 1.463 1.370 1.361 1.360
a : w Present 1.784 1.405 1.257 1.236 1.236
1 : 1.6 Reference [17] 1.771 1.399 1.254 1.233 1.233

Reference [31] 1.773 1.401 1.256 1.235 1.235
a : w Present 1.792 1.384 1.179 1.131 1.129
1 : 2.0 Reference [17] 1.770 1.377 1.176 1.127 1.126

Reference [31] 1.772 1.379 1.178 1.130 1.128

as given in [32]. The results are plotted in Figure 3. Excellent agreement is observed; the
maximum error is around 0.02 per cent.

4.2. A Rectangular Plate Containing Two Identical Collinear Cracks

As shown in Figure 4, the second example is a rectangular plate containing two identical
collinear cracks. 2a is the length of the inclined crack and 2d is the distance between the centre
of the cracks. The geometric parameters are h/w = 2 and a/w = 1/50. Figure 4 displays the
variations of normalised mode III stress intensity factors at tip A and tip B versus different
ratios of a/d. Due to the interaction between the two cracks, the computed normalised mode
III stress intensity factor at tip A is always larger than that at tip B. Hence, as the crack
centre distance d decreases, the difference of stress intensity factor increases. There is excellent
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Figure 2: The rectangular plate with a central slant crack at (a) θ = 30◦, (b) θ = 45◦, and (c) θ = 60◦.
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Figure 3: The infinite plate with a central slant crack: (a) the analytical solutions and (b) the present
method.
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Figure 4: The rectangular plate with two identical collinear cracks. Normalised mode III stress intensity
factors versus a/d for tip A: (a) the analytical results and (b) the present method, and for tip B: (c) the
analytical solutions and (d) the present method.
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Figure 5: The rectangular plate with two parallel cracks. Normalised mode III stress intensity factors versus
s for (a) [32] and (b) the present method.
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correlation between the computed results using the present method and those from analytical
solutions; the difference between these results does not exceed 0.03 per cent at tip A or 0.09
per cent at tip B.

4.3. An Infinite Plate Containing Two Parallel Cracks

The third example is an infinite plate (h/w = 2, a/w = 1/50) containing two parallel cracks,
as shown in Figure 5. 2a is the length of the two identical cracks and 2d is the distance
between the cracks. The computed results are compared with the published results in [32].
The results of normalised mode III stress intensity factor for different s are plotted in Figure 5,
where s = a/(a + d). The effect of the interaction of cracks on the mode III stress intensity
factor is observed. The largest difference between the present and the published results does
not exceed 0.65 per cent.

5. Conclusions

An efficient and accurate dual boundary element technique has been successfully developed
for the analysis of two dimensional cracks subjected to an antiplane shear loading. The
dual boundary equations are the usual displacement boundary integral equation and the
traction boundary integral equation. When the displacement equation is applied on the
outer boundary and the traction equation is applied on one of the crack surfaces, a general
crack problem can be solved in a single region formulation. The discontinuous quarter point
elements are used for evaluating the mode III stress intensity factor, which correctly describes
the r1/2 behaviour of the near tip displacements. This, therefore, allows accurate results for
mode III stress intensity factors to be calculated.
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