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of image reconstruction by using the Moore-Penrose inverse. The resolution of the reconstructed
image remains at a very high level but the main advantage of the method was found on the
computational load that has been decreased considerably compared to the classic techniques.
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1. Introduction

The notion of the generalized inverse of a (square or rectangular) matrix was first introduced
by Moore in 1920, and again by Penrose in 1955, who was apparently unaware of Moore’s
work. These two definitions are equivalent (as it was pointed by Rao in 1956) and since then,
the generalized inverse of a matrix is also called the Moore-Penrose inverse.

Let T be an r × m real matrix. Equations of the form Tx = b, T ∈ R
r×m, b ∈ R

r occur
in many pure and applied problems. It is known that when T is singular, then its unique
generalized inverse T† (known as the Moore-Penrose inverse) is defined. In the case when T
is a real r×mmatrix, Penrose showed that there is a unique matrix satisfying the four Penrose
equations, called the generalized inverse of T , noted by T†.

There are several methods for computing the Moore-Penrose inverse matrix (cf. [1]).
One of the most commonly used methods is the Singular Value Decomposition (SVD)
method. This method is very accurate but also time-intensive since it requires a large amount
of computational resources, especially in the case of large matrices.
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In the present work, we apply a very fast and reliable method (see the ginv function
in [2]) in order to estimate the Moore-Penrose inverse matrix. The computational effort
required for the ginv function in order to obtain the generalized inverse is substantially lower,
particularly for large matrices, compared to those provided by the SVD method. In addition,
we obtain reliable and very accurate approximations.

The field of image restoration has seen a tremendous growth in interest over the last
two decades [3–8]. The recovery of an original image from degraded observations is of crucial
importance and finds application in several scientific areas including medical imaging and
diagnosis, military surveillance, satellite and astronomical imaging, and remote sensing. A
number of various algorithms have been proposed and intensively studied for achieving
a fast-recovered and high-resolution reconstructed images (see, e.g., [9–11]). In this paper
the proposed method provide us a fast computational algorithm for the calculation of the
Moore-Penrose inverse of full rank r ×m matrices in order to have a fast and accurate digital
image restoration. This method is compared with the well-known and also commonly used
algorithm of Lagrange multipliers.

The Improvement in signal-to-noise ratio (ISNR) is a criterion that has been used
extensively for the purpose of objectively testing the performance of image processing
algorithms, also the required computational time provides another criterion of comparison.
In this work, it is clear that the proposed method is marginally better for the former, while
for the latter criterion, it is substantially less.

2. Preliminaries and Notation

We will denote by R
r×m the linear space of all r × m real matrices. For T ∈ R

r×m, R(T) will
denote the range of T and N(T) the kernel of T. The generalized inverse T† is the unique
matrix that satisfies the following four Penrose equations:

TT† =
(
TT†

)∗
, T†T =

(
T†T

)∗
, TT†T = T, T†TT† = T†, (2.1)

where T ∗ denotes the transpose matrix of T.
Let us consider the equation Tx = b, T ∈ R

r×m, b ∈ R
r , where T is singular. If T is an

arbitrary matrix, then there may be none, one, or an infinite number of solutions, depending
on whether b ∈ R(T) or not, and on the rank of T . However if b /∈R(T), then the equation
has no solution. Therefore, another point of view of this problem is the following: instead of
trying to solve the equation ‖Tx − b‖ = 0, we are looking for a minimal norm vector u that
minimizes the norm ‖Tu − b‖. Note that this vector u is unique. So, in this case we consider
the equation Tx = PR(T)b, where PR(T) is the orthogonal projection on R(T). Since we are
interested in the distance between Tx and b, it is natural to make use of ‖T‖2 norm.

The following two propositions can be found in [12].

Proposition 2.1. Let T ∈ R
r×m and b ∈ R

r , b /∈R(T). Then, for u ∈ R
m, the following are equivalent:

(i) Tu = PR(T)b,

(ii) ‖Tu − b‖ ≤ ‖Tx − b‖, ∀x ∈ R
m,

(iii) T ∗Tu = T ∗b.
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Let B = {u ∈ R
m | T ∗Tu = T ∗b}. This set of solutions is closed and convex, therefore, it

has a unique vector with minimal norm. Note that in literature (cf. [12]), B is known as the
set of the least square solutions.

Proposition 2.2. Let T ∈ R
r×m and b ∈ R

r , b /∈R(T), and Tx = b. Then, if T† is the generalized
inverse of T , one has that T†b = u, where u is the minimal norm solution defined above.

We will make use of this property (i.e., if T† is the generalized inverse of T then T†b = u,
where u is the minimal norm solution) for the construction of an alternative method in image
processing inverse problems.

The algorithm used in this paper for the fast computing of the Moore-Penrose inverse
is based on the following theorem.

Theorem 2.3 (see [13, Theorem 3.2]). Let H be a Hilbert space. If T =
∑n

i=1 ei ⊗ fi is a rank-n
operator then its generalized inverse is also a rank-n operator and for each x ∈ H, it is defined by the
relation

T†x =
n∑
i=1

λi(x)ei, (2.2)

where the functions λi are the solution of an appropriately defined n × n linear system.

The proposed algorithm that implements the ideas of the above theorem, can be found
in [2], and is calculating the corresponding λi’s.

In the scientific area of image processing the analytical form of a linear degraded image
is given by the following integral equation:

xout
(
i, j

)
=
∫∫

D

xin(u, v)h
(
i, j;u, v

)
dudv, (2.3)

where xin(u, v) is the original image, xout(i, j) represents the measured data from where the
original image will be reconstructed, and h(i, j;u, v) is a known Point Spread Function (PSF).
The PSF depends on the measurement imaging system and is defined as the output of the
system for an input point source.

A digital image described in a two-dimensional discrete space is derived from an
analogue image xin(u, v) in a two-dimensional continuous space through a sampling process
that is frequently referred to as digitization. The two-dimensional continuous image is
divided into r rows and m columns. The intersection of a row and a column is termed a
pixel. The discrete model for the above linear degradation of an image can be formed by the
following summation:

xout
(
i, j

)
=

r∑
k=1

m∑
l=1

xin(u, v)h
(
i, j;u, v

)
, (2.4)

where i = 1, 2, . . . , r and j = 1, 2, . . . , m.
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In this paper we adopt the use of a shift invariant model for the blurring process as
in [14]. Therefore, the analytically expression for the degraded system is given by a two-
dimensional (horizontal and vertical) convolution, that is,

xout
(
i, j

)
=

r∑
k=1

m∑
l=1

xin(u, v)h
(
i − u, j − v) = xin

(
i, j

) ∗ ∗h(i, j), (2.5)

where ∗∗ indicates two-dimensional convolution.
In the formulation of (2.4), the noise can also be simulated by rewriting the equation

as

xout
(
i, j

)
=

r∑
k=1

m∑
l=1

xin(u, v)h
(
i, j;u, v

)
+ n

(
i, j

)
= xin

(
i, j

) ∗ ∗h(i, j) + n(i, j), (2.6)

where n(i, j) is an additive noise introduced by the system.
However, in this paper the noise is image related which means that the noise has been

added to the image.

3. Restoration of a Blurry Image

This work introduces a new technique for the removal of blur in an image caused by the
uniform linear motion. The method assumes that the linear motion corresponds to a discrete
number of pixels and is aligned with the horizontal or vertical sampling.

Given xout (the digitized degraded X-ray image), then xin is the deterministic original
image that has to be recovered. The relation between these two components in matrix
structure is the following:

Hxin = xout, (3.1)

whereH represents a two-dimensional (r×m) priori knowledge matrix or it can be estimated
from the degraded X-ray image using its Fourier spectrum [15]. The vector xout is of r entries,
while the vector xin is of m(= r +n−1) entries, where m > r and n is the length of the blurring
process in pixels. The problem consists of solving the underdetermined system of (3.1).

However, since there is an infinite number of exact solutions for xin that satisfy the
equation Hxin = xout, an additional criterion that finds a sharp restored vector is required.
Our work provides a new criterion for restoration of a blurred image including a fast
computational method in order to calculate the Moore-Penrose inverse of full rank r × m
matrices. The method retains a restored signal whose norm is smaller than any other solution.
The computational load for the method is compared with the already known methods.

The criterion for restoration of a blurred image that we are using is the minimum
distance of the measured data, that is,

min(‖x̃in − xout‖), (3.2)
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where x̃in are the first r elements of the unknown image xin that has to be recovered subject
to the constraint ‖Hxin − xout‖ = 0. In fact, zero is not always attained, but following
Proposition 2.1(ii), the norm is minimized.

The corresponding optimization problem can be written, alternatively, by minimizing
the Lagrange multipliers expression:

W(xin) = ‖Pxin − xout‖2 + λ‖Hxin − xout‖2, (3.3)

where λ (the Lagrange multiplier) must be large enough. The solution to this problem is the
following:

x̃in =
[
λHTH + PTP

]−1
[λH + P]Txout, (3.4)

where P is a projection r ×m matrix, projecting on the vector xout:

P =

⎡
⎢⎢⎢⎢⎢⎢⎣
Ir

∣∣∣∣∣∣∣∣∣∣∣∣

0 · · · 0

0 · · · 0

...
...

...

0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦
, (3.5)

and Ir is the r × r identity matrix.
In general, the PSF varies independently with respect to both (horizontal and vertical)

directions, because the degradation of a PSF may depend on its location in the image. An
example of this kind of behavior is an optical system that suffers strong geometric aberrations.
However, in most of the studies, the PSF is accurately written as a function of the horizontal
and vertical displacements independently of the location within the field of view.

4. The Generalized Inverse Approach

A blurred image, in our case an X-ray that has been degraded by a uniform linear motion
in the horizontal direction, usually results of camera panning or fast object motion can be
expressed as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k1 · · · kn 0 0 0 0

0 k1 · · · kn 0 0 0

0 0 k1 · · · kn 0 0

...
...

...
...

...
...

...

0 0 0 · · · k1 · · · kn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xin 1

xin 2

xin 3

...

xin m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xout 1

xout 2

xout 3

...

xout r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.1)

where the index n indicates the linear motion blur in pixels. The element k1, . . . , kn of the
matrix are defined as kl = 1/n (1 ≤ l ≤ n).
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However, (4.1) can also be written in the pointwise form for i = 1, . . . , r,

xout(i) =
1
n

n−1∑
h=0

xin(i + h), (4.2)

which describes an underdetermined system of r simultaneous equations and m = r + n − 1
unknowns. The objective is to calculate the original column per column data of the image.

For this reason, given each column [xout 1, xout 2, xout 3, . . . , xout r]
T of a degraded

blurred image xout, (4.1) results the corresponding column [xin 1, xin 2, xin 3, . . . , xin m]
T of the

original image.
As we have seen, the matrixH is an r×mmatrix, and the rank ofH is less or equal tom.

Therefore, the linear system of equations is underdetermined. The proper generalized inverse
for this case is a left inverse, which is also called a {1, 2, 4} inverse, in the sense that it needs to
satisfy only the three of the four Penrose equations. A left inverse gives the minimum norm
solution of this underdetermined linear system, for every xout ∈ R(H). The Moore-Penrose
Inverse is clearly suitable for our case, since we can have a minimum norm solution for every
xout ∈ R(H), and a minimal norm least squares solution for every xout /∈R(H).

The proposed algorithm has been tested on a simulated blurred image produced by
applying the matrix H on the original image. This can be represented as

xout
(
i, j

)
=

1
n

n−1∑
h=0

xin
(
i, j + h

)
, (4.3)

where i = 1, . . . , r, j = 1, . . . , m for m = r + n − 1, and n is the linear motion blur in pixels.
Following the above, and the analysis given in Section 3, there is an infinite number

of exact solutions for xin that satisfy Hxin = xout, but from Proposition 2.2, only one of them
minimizes the norm ‖Hxin − xout‖.

We will denote this unique vector by x̃in. So, x̃in can be easily found from the equation:

x̃in = H†xout. (4.4)

The following section presents comparative results that highlight the performance of
the generalized inverse.

5. Experimental Results

In this section we apply the proposed method on an X-ray image and present numerical
results that compare the proposed method with the Lagrangian.

The numerical tasks have been performed using Matlab programming language.
Specifically, the Matlab 7.4 (R2007b) environment was used on an Intel(R) Pentium(R) Dual
CPU T2310 @ 1.46 GHz 1.47 GHz 32-bit system with 2 GB of RAM memory running on the
Windows Vista Home Premium Operating System.
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Original image

(a)

Degraded image

(b)

Lagrange reconstructed image

(c)

Generalized inverse reconstructed
image

(d)

Figure 1: Restoration of a simulated degraded image for length of the blurring process n = 30.

5.1. Applications on a Degraded Image

The X-ray photography provides a crucial method of diagnostic by using the image analysis.
Figure 1, Original Image, shows such a deterministic original X-ray image. The image has
been divided into r = 900 rows and m = 1200 columns. In Figure 1, Degraded Image, we
present the degraded X-ray image for n = 30. Finally, from Figure 1, Lagrange Reconstructed
Image, and Generalized Inverse Reconstructed Image, it is clearly seen that the details of
the original image have been recovered. These figures demonstrate two different methods of
reconstruction, the Lagrange multipliers and the generalized inverse, respectively.

Clearly, the difference between the two methods is insignificant, and can hardly be
seen by the human eye. For this reason, the improvement in signal-to-noise ratio (ISNR)
has been chosen in order to compare the reconstructed images obtained by the proposed
algorithm and the Lagrange multiplier algorithm.

The improvement in signal-to-noise ratio (ISNR) is a criterion that has been used
extensively for the purpose of objectively testing the performance of image processing
algorithms:

ISNR = 10 log10

⎧
⎨
⎩

∑
i,j

[
xin(i, j) − xout(i, j)

]2

∑
i,j

[
xin(i, j) − x̃in(i, j)

]2

⎫
⎬
⎭, (5.1)

where xin and xout represent the original deterministic image and degraded image
respectively, and x̃in is the corresponding restored image. Figure 2 shows the corresponding
ISNR and computational time values.
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Table 1: ISNR and computational time results for 10 random matrices.

a Ginv Lagrange Ginv Lagrange
ISNR ISNR computation time computation time

5 0.3534 0.3587 6.4210 9.2040
10 0.3485 0.3635 7.0780 10.0970
15 0.3484 0.3618 8.7940 10.6780
20 0.3475 0.3568 9.1990 11.6580
25 0.3457 0.3698 9.7760 12.0000
30 0.3537 0.3643 10.1810 12.5540
35 0.3546 0.3651 10.7710 12.5320
40 0.3524 0.3623 11.1230 13.1120
45 0.3642 0.3660 11.8990 14.3230
50 0.3559 0.3778 12.1400 14.9670
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Figure 2: ISNR and computational time versus number of pixels in the blurring process (n = 1, . . . , 60).

As far as the ISNR concerns, the difference is small, of the scale of 1 dB. The required
computational time provides another criterion of comparison for a range of n. It is clear that
the computational load is less by using the Moore-Penrose inverse matrix.

In Table 1, we present the numerical results for the calculation of the ISNR as well
as the computational time for various random matrices with dimensions 1000 × (1000 + a),
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Degraded image

(a)

Generalized inverse reconstructed
image

(b)

Figure 3: Restoration of a simulated degraded (n = 40) and noisy (salt and pepper) image.

Table 2: Deviation and slope.

Deviation Deviation Slope Slope
degraded degraded and noisy degraded degraded and noisy

Lagrange 0.8208 0.109 0.0476 0.0015
generalized inverse 0.4321 0.1234 0.0251 −0.0029

where a = 5, 10, . . . , 50. It is clear that although the generalized inverse reconstructed method
provides better results for the ISNR case the main advantage of the proposed method is its
time efficiency.

5.2. Applications on a Degraded and Noisy Image

Noise may be introduced into an image in a number of different ways. In (2.6) the noise has
been introduced in an additive way. Here, we simulate a noise model where a number of
pixels are corrupted and randomly take on a value of white and black (salt and pepper noise)
with noise density equal to 0.02. The image that we receive from a faulty transmission line can
contain this form of corruption. In Figure 3, degraded image, we present the original image
while a motion blurred and a salt and pepper noise has been added to it.

Image processing and analysis are based on filtering the content of the images in a
certain way. The filtering process is basically an algorithm that modifies a pixel value, given
the original value of the pixel and the values that surrounding it. Figure 3, Generalized
Inverse Reconstructed Inverse, demonstrates the result of applying a low-pass rotationally
symmetric Gaussian filter of standard deviation equal to 45. Accordingly, Figure 4 provides
a graphical representation for the ISNR and the computational time, of the reconstructed and
filtered image for different values of n.

In order to justify the time efficiency of the proposed method in Table 2 we present, for
the computation time, the deviation as well as the slope in the cases of degraded image and
degraded and noisy image.
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Figure 4: ISNR and computational time of a degraded and noisy image versus number of pixels in the
blurring process.

The second set of tests aimed at accenting the reconstruction error between the original
image xin and the reconstructed image x̃in for various values of linear motion blur, n. The
calculated quantity is the normalized reconstruction error given by

E =
1√∑r

i=1
∑m

j=1
[
xin

(
i, j

)]2

√√√√
r∑
i=1

m∑
j=1

[
xin

(
i, j

) − x̃in
(
i, j

)]2
, (5.2)

using the generalized inverse reconstructed method.
Figure 5 shows the reconstruction error by increasing the number of pixels in the

blurring process n = 1, . . . , 60. The solid line represents the degraded image case and the
dotted line the noisy image.

6. Conclusions

In this study, we introduce a novel computational method based on the calculation of
the Moore-Penrose inverse of full rank r × m matrix, with particular focus on problems
arising in image processing. We are motivated by the problem of restoring blurry and noisy
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Figure 5: Reconstruction error of a degraded and noisy image versus number of pixels in the blurring
process.

images via well-developed mathematical methods and techniques based on the inverse
procedures in order to obtain an approximation of the original image. By using the proposed
algorithm, the resolution of the reconstructed image remains at a very high level, although
the main advantage of the method was found on the computational load that has been
decreased considerably compared to the other methods and techniques. In this paper, we
present the results by comparing our method and that of the Lagrange multipliers algorithm,
a well-established and intensively studied algorithm used for fast-recovered and high-
resolution reconstructed images. The efficiency of the generalized inverse is evidenced by
the presented simulation results. Besides digital image restoration, our work on generalized
inverse matrices may also find applications in other scientific fields where a fast computation
of the inverse data is needed.
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