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Over the last couple of decades, many methods for synchronizing chaotic systems have
been proposed with communications applications in view. Yet their performance has proved
disappointing in face of the nonideal character of usual channels linking transmitter and receiver,
that is, due to both noise and signal propagation distortion. Here we consider a discrete-time
master-slave system that synchronizes despite channel bandwidth limitations and an allied
communication system. Synchronization is achieved introducing a digital filter that limits the
spectral content of the feedback loop responsible for producing the transmitted signal.
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1. Introduction

Since Pecora and Carroll’s seminal work [1], much has been written about the potential
usefulness of chaotic synchronization in communication systems (e.g., [2–8]). Much of the
impetus for chaotic communications has been the rationale whereby both analog and digital
chaotic modulations would have the same properties as conventional spread spectrum
techniques [9].

The inherent wideband character of chaotic signals, however, becomes a problem
when the communication channel imposes bandwidth limitations. Because of the receiver’s
nonlinear nature, if any spectral component is amiss, all spectral components at the receiver
become affected. Even minute gain or phase changes are enough to fully hinder synchronism
[6, 10].

Many papers have approached the problem by trying to eliminate channel distortion
via channel inversion [11–13]. Reasonable results have only been attained when the
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channel filters are represented by low-order filters. Furthermore, these methods usually
unrealistically assume perfect channel frequency response knowledge at the receiver [6].

Rulkov and Tsimring [6] and Eisencraft and Gerken [14] independently proposed a
method for synchronizing transmitter and receiver using chaotic signals under bandwidth
limitations. The basic idea is to employ an identical filter at both the transmitter and the
receiver so as to circumvent channel impairments. An analog circuit implementation was
proposed by [6].

Here we extend this method to discrete-time dynamical systems [8, 15–17]. Much of
the interest in this approach lies in the ease of employing Digital Signal Processors (DSPs)
or microcontrollers for their implementation. These solutions have become ubiquitous in
present day technology.

This paper is organized as follows. In Section 2, the Wu and Chua [4] synchronization
method is extended to discrete-time systems. This is followed by the description of an allied
communication system whose performance under bandwidth limitation is simulated. Means
for overcoming the former limitations are proposed in Section 3. Finally our main conclusions
are summed up in Section 4.

2. Wu and Chua’s Synchronization of Discrete-Time Chaotic Systems

Wu and Chua’s paper [4] addresses chaotic system synchronization differently from Pecora
and Carroll’s [1] seminal paper. Instead of using conditional Lyapunov exponents to check
the asymptotic stability of the slave system and hence the possibility of synchronism, Wu
and Chua propose that the master and slave equations be written in such a way that the
dynamics of the synchronization error is simple enough to permit the direct verification of its
convergence to zero.

In this section we adapt their method for discrete-time master-slave systems.
Consider two discrete-time systems defined by

x(n + 1) = Ax(n) + b + f(x(n)), (2.1)

y(n + 1) = Ay(n) + b + f(x(n)), (2.2)

where n ∈ N, {x(n),y(n)} ⊂ R
K, x(n) = [x1(n), x2(n), . . . , xK(n)]

T , y(n) = [y1(n),
y2(n), . . . , yK(n)]

T . The real AK×K matrix and vector bK×1 are constants. The function f(·),
R
K → R

K is nonlinear.
The system described by (2.1) is autonomous and is called master. The one described

by (2.2) depends on x(n) and is called slave.
The synchronization error dynamics between the two systems e(n) = y(n) − x(n), in

this case, is given by

e(n + 1) = Ae(n). (2.3)

They are said completely synchronized if e(n) → 0 as n grows. Consequently, master and slave
synchronize completely if the eigenvalues λi of A satisfy [18]

|λi| < 1, 1 ≤ i ≤ K. (2.4)



Mathematical Problems in Engineering 3

m(n)

c(x1, m) f(·)

Hc(ω)
s(n)

Channel
r(n)

x1(n)

x(n)
z−1 A

b

d(y1, r)
m′(n)

f(·)

y1(n)

y(n)
z−1 A

b

Transmitter Receiver

Figure 1: Block Diagram of Wu and Chua’s [4] proposal adapted to discrete-time systems.

Hence, if a system can be written as in (2.1) with A satisfying condition (2.4), it is easy
to set up a slave system that synchronizes with it.

Using this synchronization method, Wu and Chua [4] proposed an information
transmission system using chaotic signals that lead to no errors when channel conditions
are ideal. The discrete-time version of this system is shown in Figure 1.

Here we consider that f(·) depends solely on the component x1(n) of x(n), and that it
can be written as

f(x(n)) =
[
f(x1(n)); 0; 0; . . . ; 0

]T
. (2.5)

The communication channel is represented by a linear system with frequency response
HC(ω).

In this scheme, the information signal m(n) is coded using the x1(n) component of the
state vector x via a coding function

s(n) = c(x1(n), m(n)), (2.6)

so that the information signal can be decoded using the inverse function

m(n) = d(x1(n), s(n)) = d(x1(n), c(x1(n), m(n))). (2.7)

The equations governing the global system have the same form as (2.1) and (2.2). The
only changes are the arguments of f(·):

x(n + 1) = Ax(n) + b + f(s(n)),

y(n + 1) = Ay(n) + b + f(r(n)),
(2.8)
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Figure 2: Simulations of the communication system shown in Figure 1 for an ideal channel: (a) message
m(n); (b) transmitted signal s(n); (c) received signal r(n) = s(n); (d) recovered message m′(n).

where r(n) is the signal that the channel delivers to the receiver, that is,

r(n) = s(n) ∗ hc(n), (2.9)

hc(n) is the impulse response of the channel and “∗” represents linear convolution.
In principle, when choosing c(·, ·) and d(·, ·) one must seek to satisfy

s(n) ≈ x1(n) (2.10)

for all admissible m(n) because

(i) s(n) is fed back in lieu of x1(n) at the transmitter. Condition (2.10) imposes that
the dynamics is not significantly changed and consequently the system continues
to generate chaotic signals;

(ii) also if secure communication is desired, condition (2.10) ensures that m(n) is not
immediately apparent from s(n).

For an ideal channel, that is, Hc(ω) = 1 and s(n) = r(n), (2.8) become

x(n + 1) = Ax(n) + b + f(s(n)),

y(n + 1) = Ay(n) + b + f(s(n)).
(2.11)
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Figure 3: Normalized representation of the signals from Figure 2 in the frequency domain: (a) message;
(b) transmitted signal; (c) received signal; (d) recovered message.

Once more, the synchronization error dynamics is given by (2.3) and if condition (2.4)
holds, then y(n) → x(n) and, in particular, y1(n) → x1(n). Hence, using (2.7),

m′(n) = d
(
y1(n), s(n)

)
−→ d(x1(n), s(n)) = m(n). (2.12)

Therefore when transmitter and receiver parameters are perfectly matched over an
ideal channel, the message is recovered at the receiver without degradation except for a
synchronization transient.

To exemplify, consider the three-dimensional generalization of the Hénon map [19,
20]:

x1(n + 1) = −ax2
1(n) + x3(n) + 1,

x2(n + 1) = −bx1(n),

x3(n + 1) = bx1(n) + x2(n).

(2.13)

It can be immediately written in the form of (2.1)

x(n + 1) =

⎡

⎢
⎣

0 0 1
−b 0 0
b 1 0

⎤

⎥
⎦

︸ ︷︷ ︸
A

x(n) +

⎡

⎢
⎣

1
0
0

⎤

⎥
⎦

︸︷︷︸
b

+

⎡

⎢
⎣

−ax2
1(n)

0
0

⎤

⎥
⎦

︸ ︷︷ ︸
f(x(n))

. (2.14)
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Figure 4: Demodulation error |m(t) −m′(t)| for the simulated systems.

Taking a = 1.07 and b = 0.3 [19], simulations show that, for almost all initial conditions
in the unity sphere, (2.13) generates chaotic orbits whose largest Lyapunov exponent is h1 ≈
0.23.

In this case, the eigenvalues of A are

λ1 = 0.4084 + 0.4477i,

λ2 = 0.4084 − 0.4477i,

λ3 = −0.8169,

(2.15)

ensuring the satisfaction of the stability condition in (2.4). This allows assembling the
communications system depicted in Figure 1.

In the simulations we chose

s(n) = c(x1(n), m(n)) = x1(n) + 0.01m(n), (2.16)

so that

m′(n) = d
(
y1(n), r(n)

)
= 100

(
r(n) − y1(n)

)
. (2.17)

Furthermore, the transmitted message was taken as

m(n) = sin(0.2πn). (2.18)
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Figure 5: Simulations of the communication system shown in Figure 1 for an LP FIR channel with cutoff
frequency at ωc = 0.8π : (a) message m(n); (b) transmitted signal s(n); (c) received signal r(n); (d)
recovered message m′(n). Note that the scale used in (d) is different from the previous ones.
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Figure 6: Normalized representation of the spectral components absolute value of signals in Figure 5:
(a) message; (b) transmitted signal and amplitude frequency response of the channel (dashed line); (c)
received signal; (d) recovered message.
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Figure 7: Proposed discrete-time communication system for bandlimited channels.
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Figure 8: Simulations of the proposed communication system for an LP FIR channel with cutoff frequency
at ωc = 0.8π and LP FIR feedback filter HS(ω) with cutoff frequency at ωS = 0.7π : (a) message m(n); (b)
transmitted signal s(n); (c) received signal r(n); (d) recovered message m′(n).

Figures 2 and 3 illustrate a realization of the involved signals both in the time and in
the frequency domains for an ideal channel. The spectra are normalized relatively to their
maximum value.

Perfect recovery of the message once the synchronization is reached can be clearly seen
in Figure 2(d) and the spectral spreading due to the chaotic signal modulation is shown in
Figure 3(b). Note that the presence of m(n) in the transmitted signal is not apparent neither
in the time nor in the frequency domain.
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The demodulation error |m(n) − m′(n)| for the ideal channel case is shown by the
dashed line in Figure 4. It quickly falls and remains at the numerical precision level of the
computer simulation.

This situation changes completely when the channel is not ideal, that is,Hc(ω)/= 1, ∀ω.
In this case, r(n)/= s(n) in (2.8) and the synchronism is affected so that m′(n) � m(n). As
an illustrative example, consider that Hc(ω) is a linear-phase Low Pass (LP) Finite Impulse
Response (FIR) filter of order NC = 50 with cutoff frequency at ωc = 0.8π [21]. Figures 5 and
6 show a realization of the signals involved in this case. The amplitude frequency response
|Hc(ω)| is shown by the dashed line in Figure 6(b). Just about 20% of the spectrum of the
transmitted signal is affected, yet the message is completely lost as seen in Figures 5(d) and
6(d). Note that the bandwidth associated with the original message m(n), concentrated at
0.2π , is practically unaffected.

The error in obtaining m′(n) in this case is shown by the solid thinner line in Figure 4.
This example shows that the system in Figure 1 fails when channel conditions are

not ideal. This makes its use impractical, in the same way as it happens with its continuous
counterpart, as pointed out by [6, 14].

A mean to circumvent these difficulties is to adjust the spectrum of the transmitted
chaotic signal so that it becomes less vulnerable in the presence of a given channel. This idea,
proposed for continuous time systems in [6, 14], is extended for the discrete-time case in the
next section.

3. Synchronizing Discrete-Time Systems in Band-Limited Channels

A way to combat the harmful effects of a bandlimited channel on the communication system
of Figure 1 is to insert a filter HS(ω) in the feedback loops of both the transmitter and the
receiver so that the total transmitted signal power is contained within the channel bandwidth.

A block diagram of the proposed system is shown in Figure 7.
Considering that the filter HS(ω) is an FIR filter of order NS, its output xK+1(n) can be

expressed as

xK+1(n) = c1x1(n) + c2x1(n − 1) + · · · + cNS+1x1(n −NS), (3.1)

where c1, c2, . . . , cNS+1 are the filter coefficients.
Consequently, the dimensions of the difference equation systems that describes the

master and the slave subsystems now are of order K +NS instead of K.
As an example, consider that the channel HC(ω) is an LP FIR filter of order NC = 50

and with cutoff frequency at ωc = 0.8π , as in the previous section. To combat the channel
effects, we used linear-phase LP FIR filters HS(ω) with cutoff frequency at ωs = 0.7π of order
NS = 30. Figures 8 and 9 show a realization of the signals involved.

The information signal is unaffected by these filters and the message is fully recovered
as can be seen from Figures 8(d) and 9(d). The transient time is larger than that of the
previous examples due to the additional filtering effects.

The demodulation error in this case is shown by the thicker solid line in Figure 4. After
the synchronization transient, the mean error is about 1%.

An important question that must be addressed is whether the generated signals remain
chaotic with the introduction of the feedback filter.
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Figure 9: Normalized representation of signals in Figure 8 in the frequency domain: (a) message; (b)
transmitted signal and frequency response of the channel (dashed line); (c) received signal; (d) recovered
message.
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In the example, the transmitted signal s(n) shown in Figure 8(b) presents aperiodic
behavior and sensitivity to initial conditions. This last property is illustrated in Figure 10
where signals generated using two slightly different initial conditions diverge from one
another, which is evidence of chaotic signal behavior.

In a more general framework, analysis shows that when we write the system equations
as in (2.8) including the feedback filter, theK+NS eigenvalues ofA do not depend on the filter
coefficients so that synchronism remains unaffected. However, the conditions for the signals
to remain chaotic require further investigation. For low-order filters, inadequate coefficient
choices may transform an unstable fixed point of the original system into a stable one and
thereby destroy the chaotic attractor. These results are the subject of current investigation
and lie beyond our intended scope.

4. Conclusions

In this paper, we proposed a discrete-time communication system using chaotic signals
for bandlimited channels. Our system is based on the one proposed by [6, 14] who
have developed their ideas within a continuous-time framework. Using discrete-time
systems based on difference equations makes their implementation quite natural via today’s
ubiquitously available DSPs and microcontrollers.

We have shown numerical examples based on a three-dimensional generalization of
the Hénon map and on linear-phase FIR filters.

It is important to note that introducing filters into feedback loops can change the
dynamics of both the master and the slave systems in relevant ways. The conditions on
filter coefficients for which the systems remain chaotic signal generators have the status of
a nontrivial open problem. Work is in progress to simulate the use of this system to transmit
digital messages and to assess its symbol error rate performance for different channels and
feedback filter bandwidths.
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