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1. Introduction

The investigation of nonlinear dynamical systems has awaken special interest along last
decades since they can explain and/or predict some phenomena until then incomprehensible.
A special class of systems that present nonlinear phenomena and that can be described via
recursive equations is the so-called classical nonlinear billiard problems [1, 2]. Generally,
a billiard problem consists of a system in which a point-like particle moves freely inside
a bounded region and suffers specular reflections with the boundaries. This system has
been extensively studied during several years considering both its classical and quantized
formulation.

It is well known in the literature that the phase space of billiard problems highly
depends on the shape of the boundary. The dynamics of the particle might generate phase
spaces of different kinds that can be settled in three different classes of universality including
(i) integrable, (ii) ergodic, and (iii) mixed. A typical example of case (i) is the circle billiard, as
the integrability of such a case resembles the angular momentum conservation. Two examples
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of case (ii) are the Bunimovich stadium [3] and the Sinai billiard [4]. In case (iii), the most
important property present in the phase space is that chaotic seas, generally surrounding
Kolmogorov-Arnold-Moser (KAM) islands, are confined by invariant spanning curves [2]
sometimes also called as primary KAM tori. Particularly, such curves cross the phase plane
from one side to the other one thus separating different portions of the phase space. The
mixed structure in the phase portrait is such that regions of regular motion and regions
with chaotic behavior could coexist together. This property is generic for nondegenerate
Hamiltonian systems [5]. Some examples of systems with this particular structure are the
one-dimensional Fermi-Ulam model [6–12], the bouncer model [13–19], time-dependent
potentials well [20, 21], and many other different problems considering different degrees
of freedom.

In this paper, we will consider a 1D model that is described using the formalism of
discrete mappings, the so-called hybrid Fermi-Ulam-bouncer model [22, 23]. We are seeking
to understand and describe a scaling property present in the chaotic sea of such a model.
The model was originally proposed to merge together two different nonlinear problems
commonly studied apart from each other, that is, the Fermi-Ulam model and the bouncer
model. The Fermi-Ulam model (FUM) consists of a classical particle, in the total absence
of any external field, which is confined to bounce between two rigid walls, where one of
them is fixed and the other one is periodically time varying. The returning mechanism of the
particle for a next collision with the moving wall is due to a reflection with the fixed wall.
On the other hand, the bouncer model consists of a classical particle falling in a constant
gravitational field and that hits a periodically oscillating wall. The returning mechanism of
the bouncer model is related to the gravitational field only. Despite the very similar models,
the different returning mechanisms of the two models cause profound consequences on the
dynamics of the particle [24]. Particularly, depending on the combination of the control
parameters and initial conditions, the average velocity of the particle reaches a constant value
for sufficient long time in the FUM, while it diverges on the bouncer model. Such a divergency
is basically related to the phenomenon of Fermi acceleration. Therefore, Fermi acceleration
(FA) is a phenomenon in which a classical particle acquires unbounded energy from collisions
with a massive moving wall [25, 26]. Applications of FA have acquired a broad interest in
different fields of physics including plasma physics [27], astrophysics [28, 29], atomic physics
[30], optics [31, 32], and even in the well-known time-dependent billiard problems [33, 34].
The interesting posed question that should be answered is whether the FA results from the
nonlinear dynamics itself considering the complete absence of any imposed random motion.
An one-dimensional model exhibiting such a phenomenon, which is modelled by a nonlinear
mapping, is the bouncer model. For two-dimensional time-dependent billiards (billiards with
moving boundaries), the answer for this question is not unique and it depends on the kind of
phase space for the corresponding static version of the problem. Therefore, as conjectured by
Loskutov et al. [35] (such a conjecture is known in the literature as the LRA conjecture), the
regular dynamics for a fixed boundary implies a bound to the energy gained by the bouncing
particle, but the chaotic dynamics of a billiard with a fixed boundary is a sufficient condition
for FA in the system when a boundary perturbation is introduced. Such a conjecture was
confirmed in different billiards [36–38]. It was, therefore, observed recently FA in a time
varying elliptical billiard [39]. The oval billiard, however, seems not to exhibit FA for the
breathing case [40].

Thus, the hybrid Fermi-Ulam-bouncer model consists of a classical particle which is
confined in and bouncing elastically between two rigid walls in the presence of a constant
gravitational field. Thus, properties that are individually observed in the FUM and bouncer
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model come together and coalesce in the hybrid Fermi-Ulam-bouncer model [22]. As we
will show, the phase space of this model is of mixed kind. Our main goal is to characterize
some properties on the chaotic regime for the region below the first invariant spanning curve,
particularly the behavior of the average velocity and the deviation of the average velocity.

This paper is organized as follows. In Section 2, we give all the details needed for the
construction of the nonlinear mapping. We illustrate some results for the phase space of the
model considering both the simplified and the complete versions of the Fermi-Ulam-bouncer
model. The scaling hypotheses are present and numerical results are discussed in Section 3.
Finally, in Section 4, we draw our conclusions.

2. The Model and the Mapping

We discuss in this section all the details needed for the mapping construction. We also present
the phase space and obtain the positive Lyapunov exponent for the low-energy chaotic sea.
The one-dimensional hybrid Fermi-Ulam-bouncer model thus consists of a classical particle
confined to bounce elastically between two rigid walls. One of the walls is assumed to be
fixed at the position y = l, while the other one moves periodically in time according to the
equation yw(t) = ε cos(wt). Here, ε and w denote, respectively, the amplitude of oscillation
and the frequency of the moving wall. Additionally, the particle is suffering the action of a
constant gravitational field g ′. As it is so usual in the literature, the dynamics of the particle
is described in terms of a two-dimensional nonlinear area preserving map T that gives the
velocity of the particle vn and the corresponding time tn at the instant of the nth impact with
the moving wall, that is, T(vn, tn) = (vn+1, tn+1). Before we write the equations of the mapping,
it is convenient to define dimensionless and much more appropriated variables to describe
the dynamics of the particle. We define ε = ε/l, g = g ′/(w2l), and Vn = vn/(wl). Finally,
we measure the time in terms of φn = wtn. Incorporating this new set of variables in the
dynamics, the map is written as

T :

⎧
⎨

⎩

Vn+1 = V ∗n + gφc − 2ε sin
(
φn+1

)
,

φn+1 =
(
φn + ΔTn

)
mod(2π),

(2.1)

where the expressions for both V ∗n and ΔTn depend on the kind of collision occurs. There
are three different possible situations, namely (i) multiple collisions, (ii) collisions without
reflection in the upper wall, and (iii) collisions with reflection in the upper wall. Considering
the first case, where the particle suffers an impact before leaving the collision zone, which is
given by the interval y ∈ [−ε, ε], the expressions are V ∗n = −Vn and ΔTn = φc, where φc is
obtained as the smallest solution of G(φc) = 0 with φc ∈ (0, 2π]. Such solution is equivalent
to the position of the particle being the same as the position of the moving wall. Thus, the
transcendental equation G(φc) is given by

G(φc) = ε cos
(
φn + φc

)
− ε cos

(
φn

)
− Vnφc +

gφ2
c

2
. (2.2)

If G(φc) does not have a solution in the interval φc ∈ (0, 2π], the particle leaves the
collision zone without suffering a successive hit. Considering the case (ii), the needed
condition for the particle not colliding with the upper wall after leaving the collision zone is
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Vn ≤
√

2g[1 − ε cos(φn)]. In this case, V ∗n =
√

V 2
n + 2gε[cos(φn) − 1] and ΔTn = φu + φd + φc,

where the auxiliary terms assume the following expressions:

φu =
Vn
g
,

φd =

√

V 2
n + 2gε[cos(φn) − 1]

g
.

(2.3)

The term φc is obtained by solution of F(φc) = 0. Again, considering the condition that
matches the same position of the moving wall and of the particle. Thus, F(φc) is given by

F
(
φc

)
= ε cos

(
φn + φu + φd + φc

)
− ε − V ∗nφc +

gφ2
c

2
. (2.4)

Finally, for the case (iii), where Vn >
√

2g[1 − ε cos(φn)], the corresponding
expressions for V ∗n and ΔTn are the same as those of the case (ii). However, the auxiliary
terms, φu and φd, assume the following expressions:

φu =
Vn −

√

V 2
n − 2g[1 − ε cos(φn)]

g
,

φd =

√

V 2
n + 2gε[ε cos(φn) − 1] −

√

V 2
n − 2g[1 − ε cos(φn)]

g
.

(2.5)

The value of φc is obtained from (2.4) using, however, the new expressions for φu and φd.
Figure 1(a) shows the phase space for the complete hybrid Fermi-Ulam-bouncer

model generated from (2.1). The control parameters used in Figure 1 are ε= 10−3 and g =
5.628 × 10−5. It is easy to see the presence of KAM islands surrounded by a chaotic sea, that
is, limited by an invariant spanning curve. The presence of the invariant spanning curves in
the phase space implies that the particle cannot acquire unlimited energy. To illustrate the
behavior of the average energy, we define

Ej =
1

n + 1

n∑

i=0

V 2
i,j , (2.6)

and finally obtain the average energy as

E(n, ε) =
1
M

M∑

j=1

Ej, (2.7)

where M corresponds to an ensemble of different initial conditions.
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Figure 1: (a) Phase space for the complete hybrid Fermi-Ulam-bouncer model. (b) Behavior of the average
energy, E, as function of n. The control parameters used in (a) and (b) were ε = 10−3 and g = 5.628 × 10−5.

Figure 1(b) shows the behavior of the average energy, E, as a function of n. We can
see that the energy grows for small n and then, after a changeover, it reaches a regime of
saturation for large n. The initial velocity was considered fixed as V0 = 2.1ε, while we have
considered an ensemble of M = 5000 different initial phases φ0 uniformly distributed in
the interval [0, 2π). Each initial condition was evolved up to 107 iterations. Since the instant
of each impact of the particle with the moving wall can only be obtained numerically, the
computational time for evaluation of (2.7) is very large. As an attempt to reduce the time
consuming in the numerical simulations, we will discuss in Section 2.1 a simplified version
of the hybrid Fermi-Ulam-bouncer model.

2.1. A Simplified Hybrid Fermi-Ulam-Bouncer Model

In this section, we discuss a simplification used in the model. For the complete model, the
instant of the impact of the particle with the moving wall is obtained via a solution of a
transcendental equation, which yields the simulations to be long-time consuming. However,
instead of considering solving transcendental equations, we will use a simplification in the
model which is commonly used in the literature [2]. We will suppose that both walls are
fixed (one of them is fixed at y = 0 and the other one is fixed at y = l), but that, when
the particle suffers a collision with one of then (say, with the one at y = 0), the particle
exchanges momentum and energy as if the wall was moving. This simplification carries a
great advantage of allowing us to speed up our numerical simulations when compared to
the complete version of the model. Such a simplification also retains the nonlinearity of the
problem. Considering the same dimensionless variables defined for the complete model, the
map for the simplified hybrid Fermi-Ulam-bouncer model can be written as

T :

{
Vn+1 =

∣
∣Vn − 2ε sin

(
φn+1

)∣
∣,

φn+1 =
(
φn + ΔTn

)
mod(2π).

(2.8)
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The modulus function used in the equation of the velocity on the mapping (2.8) was
introduced to preserve the particle into the region between the walls. The expressions for
ΔTn depend on the following conditions:

(1) collision without reflection in the upper wall. Such a condition is verified if
Vn ≤

√
2g(1 − ε cos(φn)). In this case, the particle rises and decelerates due to the

gravitational field only until reaches instantaneously the rest. Then the particle is
accelerated downward until it collides with the wall at y = 0. Thus, ΔTn is given by

ΔTn =
2Vn
g
. (2.9)

(2) Collision with reflection in the upper wall. For such a collision, the condition that
must be observed is Vn >

√
2g(1 − ε cos(φn)). In this case, the particle goes in the

upward direction and hits the upper wall. It is then reflected downward and is also
accelerated by the gravitational field. The expression for ΔTn is written as

ΔTn =
Vn −

√

V 2
n − 2g

g
. (2.10)

The mapping (2.8) preserves the phase space measure since that det(J) = ±1.
The phase space for the mapping (2.8) is shown in Figure 2(a) for the same control

parameters used in Figure 1. We have also evaluated numerically the positive Lyapunov
exponent for the chaotic sea of Figure 2(a). It is well known that the Lyapunov exponent has
great applicability as a practical tool that can quantify the average expansion or contraction
rate for a small volume of initial conditions. As discussed in [41], the Lyapunov exponents
are defined as

λj = lim
n→∞

1
n

ln
∣
∣Λj

∣
∣, j = 1, 2, (2.11)

where Λj are the eigenvalues of M =
∏n

i=1Ji(Vi, φi) and Ji is the Jacobian matrix evaluated
over the orbit (Vi, φi). However, a direct implementation of a computational algorithm
to evaluate (2.11) has a severe limitation to obtain M. Even in the limit of short n, the
components of M can assume very different orders of magnitude for chaotic orbits and
periodic attractors, yielding impracticable the implementation of the algorithm. In order to
avoid such problem, we note that J can be written as J = ΘT, where Θ is an orthogonal
matrix and T is a right triangular matrix. Thus, we rewrite M as M = JnJn−1, . . . , J2Θ1Θ−1

1 J1,
where T1 = Θ−1

1 J1. A product of J2Θ1 defines a new J ′2. In a next step, it is easy to show that
M = JnJn−1, . . . , J3Θ2Θ−1

2 J ′2T1. The same procedure can be used to obtain T2 = Θ−1
2 J ′2, and so

on. Using this procedure, the problem is reduced to evaluate the diagonal elements of Ti:
Ti11, T

i
22. Finally, the Lyapunov exponents are now given by

λj = lim
n→∞

1
n

n∑

i=1

ln
∣
∣Tijj

∣
∣, j = 1, 2. (2.12)
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Figure 2: (a) Phase space generated from iteration of mapping (2.8) for the control parameters ε = 10−3 and
g = 5.628 × 10−5. (b) Behavior of the positive Lyapunov exponent of the chaotic sea for the same control
parameters used in (a). The average value obtained was λ = 1.55 ± 0.01, where the error 0.01 corresponds
to the standard deviation of the 10 samples. (c) Behavior of the average energy, E, as function of n.

If at least one of the λj is positive, then the orbit is classified as chaotic. Figure 2(b) shows
the behavior of the positive Lyapunov exponent plotted against the number of collisions n
with the wall located at y = 0 for 10 different initial conditions on the chaotic sea. The control
parameters used in the construction of Figure 2 were ε= 10−3 and g = 5.628×10−5. The average
of the positive Lyapunov exponent for the ensemble of the 10-time series gives λ = 1.55±0.01,
where the value 0.01 corresponds to the standard deviation of the ten samples. Finally, in
Figure 2(c), we present the behavior of the average energy of the particle for the simplified
model.

3. Scaling Analysis

The main goal of this section is to describe a scaling present in the low-energy regime. We
discuss in full detail the investigation for the simplified and then, at the end of section,
we present the corresponding results for the complete version. Thus, we now discuss the
procedures used to obtain the average velocity on the chaotic low-energy region. The average
velocity (average along an orbit) is defined as

V (n, ε) =
1

n + 1

n∑

i=0

Vi. (3.1)
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Since we obtain the average velocity, it is also easy to obtain the deviation of the average
velocity, sometimes also called as the second momenta of V . It is defined as

ω(n, ε) =
1
M

M∑

i=1

√

V 2
i (n, ε) − Vi

2
(n, ε), (3.2)

where the sum on M refers to an average over an ensemble of M different initial conditions.
In order to iterate (3.2) for the simplified version of the model, we evolved our simulations
considering an ensemble of M = 5 × 103 different initial conditions. Figure 3 shows the
behavior of the deviation around the average velocity for the simplified model as function of
n for three different control parameters, as labelled in the figures. It is easy to see in Figure 3
two different kinds of behaviors. For short n, the deviation of the average velocity grows
according to a power law and suddenly it bends toward a regime of saturation for long
enough values of n. The changeover from growth to the saturation is marked by a cross-over
iteration number nx. It must be emphasized that different values of the parameter ε generate
different behaviors for short n. However, applying the transformation n → nε2 coalesces all
the curves at short n, as shown in Figure 3(b). We can see that different values of ε yield each
curve to saturate at distinct values, thus we can suppose that

(1) when n� nx, the deviation of the average velocity grows according to

ω
(
nε2, ε

)
∝
(
nε2)β, (3.3)

where the exponent β is a critical exponent;

(2) as the iteration number increases, n 
 nx, the deviation of the average velocity
approaches a regime of saturation, that is described as

ωsat(ε) ∝ εα, (3.4)

where the exponent α is also a critical exponent;

(3) the cross-over iteration number that marks the change from growth to the
saturation is written as

nx ∝ εz, (3.5)

where z is a dynamic exponent.

After considering these three initial suppositions, we are now able to describe the
deviation of the average velocity in terms of a scaling function of the type

ω
(
nε2, ε

)
= lω

(
lanε2, lbε

)
, (3.6)

where l is the scaling factor, a and b are scaling exponents. If we chose properly the scaling
factor l, we can relate the scaling exponents a and b with the critical exponents α, β, and z.
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Figure 3: (a) Behavior of the deviation of the average velocity for different values of the control parameter
ε for the simplified model. (b) Their initial collapse after the transformation nε2 for the simplified model.
The control parameter g was fixed as g = 5.628 × 10−5.

×10−2

10.40.10.050.02

ε

0.8

2

3

6

×10−2

ω
sa

t

Numerical data
Best fit

α = 0.5003(6)

(a)

×10−2

10.40.10.050.02

ε

2

7

20

70

×102

n
x

Numerical data
Best fit

z = −0.96(1)

(b)

Figure 4: (a) Plot of ωsat as function of the control parameter ε for the simplified model. (b) Behavior of
the cross-over number nx against ε for the simplified model.

We begin considering that l = (nε2)−1/a. Thus, (3.6) is rewritten as

ω
(
nε2, ε

)
=
(
nε2)−1/a

ω1
((
nε2)−b/aε

)
, (3.7)

where the function ω1((nε2)−b/aε) = ω(1, (nε2)−b/aε) is assumed to be constant for n � nx.
Comparing (3.3) and (3.7), we obtain β = −1/a.

Choosing now lbε = 1, we have l = ε−1/b and (3.6) is given by

ω
(
nε2, ε

)
= ε−1/bω

(
ε−a/bnε2), (3.8)
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Figure 5: (a) Different curves of the ω for four different control parameters for the simplified model. (b)
Their collapse onto a single and universal plots.

where the function ω2 is defined as ω2(ε−a/bnε2) = ω(ε−a/bnε2, 1). It is also assumed as
constant for n 
 nx. An immediate comparison of (3.4) and (3.6) gives us α = −1/b. Given
the two different expressions of the scaling factor l, we obtain a relation for the dynamic
exponent z, that is, given by

z =
α

β
− 2. (3.9)

Note that the scaling exponents are determined if the critical exponents β and α were
numerically obtained. The exponent β is obtained from a power law fitting for the deviation of
the average velocity curves for the parameter ε ∈ [10−4, 10−2] for short iteration number. Thus,
the average of these values gives that β = 0.502(4) ∼= 1/2. Figure 4 shows the behaviors of (a)
ωsat×ε and (b) nx×ε. Applying power law fittings on the figure, we obtain α = 0.5003(6) ∼= 0.5
and z = −0.96(1) ∼= −1. We can also obtain the exponent z considering (3.9) and the previous
values of both α and β; we found that z = −1.003(6) ∼= −1. Such result indeed agrees with
our numerical result. In order to confirm the initial hypotheses, and since the values of the
scaling exponents α, β, and z are now known, we will collapse all the curves onto a single
and universal plots, as demonstrated in Figure 5. With this good collapse of all the curves of
the deviation of the average velocity and considering that the critical exponents are α ∼= 0.5,
β ∼= 0.5 and z ∼= −1, we can conclude that the hybrid Fermi-Ulam-bouncer model belongs
to the same class of universality of a periodically corrugated waveguide [42]. It also belongs
to the same class of universality of the Fermi-Ulam [43, 44] itself and that the presence of
a gravitational field does not seem to create a new universality class, at least for the control
parameters considered in the present study.

Let us now discuss our numerical results for the complete version of the model. Once
the equations of the mapping now be solved numerically, we have considered an ensemble of
less different initial conditions. Such a consideration is mainly to produce a simulation not so
longer. However, it is still relevant to characterize statistical properties of the model. For the
complete version of the model, we have considered an ensemble of M= 103 different initial
conditions. The behavior of ω for the complete version is rather similar to that observed for
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Figure 6: (a) Different curves of the ω for three different control parameters for the complete model. (b)
Their collapse onto a single and universal plots.

the simplified version of the model. After an extensive simulation, we obtain that the critical
exponents are β = 0.50(2) ∼= 0.5, α = 0.501(3), and z = −0.95(3). Evaluating (3.9), we found
that z = −1.00(3). These critical exponents also allow us to produce a good collapse of all the
curves of ω onto a single and universal plots, as shown in Figure 6. Thus, we can conclude
that the scaling properties are unaffected by considering the simplified or complete versions
of the model.

4. Final Remarks

As a final remark of the present paper, we have studied a simplified and the complete version
of the hybrid Fermi-Ulam-bouncer model considering elastic collisions with the walls. We
show that the average energy as well as the deviation around the average velocity for chaotic
orbits for both the complete and simplified versions of the model exhibit scaling properties
with the same critical exponents. Moreover, we have shown that there is an analytical relation
between the critical exponents α, β, and z. Our scaling hypotheses are confirmed by a good
collapse of all the curves of ω onto a single and universal plot, therefore, confirming that this
model also belongs to the same class of universality of the Fermi-Ulam model [43], for the
range of control parameters studied, and the periodically corrugated waveguide [42].
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