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1. Introduction

In this paper, we consider the unconstrained optimization problem

min
{
f(x) | x ∈ Rn}, (1.1)

where f : Rn → R is a continuously differentiable function, and its gradient at point xk
is denoted by g(xk), or gk for the sake of simplicity. n is the number of variables, which
is automatically assumed to be large. The iterative formula of nonlinear conjugate gradient
method is given by

xk+1 = xk + αkdk, (1.2)
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where αk is a steplength, and dk is a search direction which is determined by

dk =

⎧
⎨

⎩

−g0, if k = 0,

−gk + βkdk−1, if k ≥ 1,
(1.3)

where βk is a scalar. Since 1952, there have been many well-known formulas for the scalar βk,
for example, Fletcher-Reeves (FR), Ploak-Ribiére-Polyak (PRP), Hestenes-Stiefel (HS), and
Dai-Yuan (DY) (see [1–4]),

βFR
k =

‖gk‖2

‖gk−1‖2
, βPRP

k =
gT
k
yk−1

‖gk−1‖2
, βHS

k =
gT
k
yk−1

dT
k−1yk−1

, βDY
k =

‖gk‖2

dT
k−1yk−1

, (1.4)

where yk−1 = gk−gk−1, symbol ‖·‖ denotes the Euclidean norm of vectors. Their corresponding
methods generally specified as FR, PRP, HS, and DY conjugate gradient methods. If f is
a strictly convex quadratic function, all these methods are equivalent in the case that an
exact line search is used. If the objective function is nonconvex, their behaviors may be
distinctly different. In the past two decades, the convergence properties of FR, PRP, HS, and
DY methods have been intensively studied by many researchers (e.g., [5–13]).

In practical computation, the HS and PRP methods, which share the common
numerator gTk yk−1, are generally believed to be the most efficient conjugate gradient methods,
and have got meticulous in recent years. One remarkable property of both methods is that
they essentially perform a restart if a bad direction occurs (see [7]). However, Powell [14]
constructed an example showed that both methods can cycle infinitely without approaching
any stationary point even if an exact line search is used. This counter-example also indicates
that both methods have a drawback that they may not globally be convergent when the
objective function is non-convex. Therefore, during the past few years, much effort has been
investigated to create new formulae for βk, which not only possess global convergence for
general functions but are also superior to original method from the computation point of
view (see [15–22]). An excellent survey of nonlinear conjugate gradient methods with special
attention to global convergence properties is made by Hager and Zhang [7].

Recently, Dai and Liao [18] proposed two new formulae (called DL and DL+) for
βk based on the secant condition from quasi-Newton method. More lately, Li, Tang, and
Wei (see [20]) also presented another two formulae (called LTW and LTW+) based on a
modified secant condition in [21]. In addition, the corresponding conjugate gradient method
for βk with DL+ (or LTW+) converges globally for non-convex minimization problems, the
reported numerical results showed that it excels the standard PRP method. However, the
convergence result of the method for βk with formula DL (or LTW) has not been totally
explored yet. In this paper, we further study conjugate gradient method for the solution of
unconstrained optimization problems. Meanwhile, we focus our attention on the scalar for βk
with DL (or LTW). Our motivation mainly comes from the recent work of Zhang et al. [22].
We introduce two versions of modified DL and LTW conjugate gradient-type methods. An
attractive property of both proposed methods are that the generated directions are always
descending. Besides, this property is independent of line search used and the convexity of
objective function. Under some favorable conditions, we establish the global convergence
of the proposed methods. We also do some numerical experiments by using a large set of
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unconstrained optimization problems, which indicate the proposed methods possess better
performances when compared with the classic PRP method.

We organize this paper as follows. In the next Section, we briefly review the
conjugate gradient methods are proposed in [18, 20]. We present two conjugate gradient
methods in Sections 3 and 4, respectively. Global convergence properties are also discussed
simultaneously. In the last Section we perform the numerical experiments by using a set of
large problems, and do some numerical comparisons with PRP method.

2. Conjugate Gradient Methods with Secant Condition

In this section we give a short description of the new conjugate gradient method of Dai and
Liao in [18]. In the following, we also briefly review another effective conjugate gradient
method of Li, Tang, and Wei in [20]. Motivated by the these methods, we introduce our new
versions of conjugate gradient-type methods in the following sections.

The following two assumptions are often utilized in convergence analysis for
conjugate gradient algorithms.

Assumption 2.1. The objective function f is bounded below, and the level set F = {x ∈ Rn |
f(x) ≤ f(x0)} is bounded.

Assumption 2.2. In some neighborhood N of F, f is differentiable and its gradient is Lipschitz
continuous, namely, there exists a positive constant L such that

‖g(x) − g(y)‖ ≤ L‖x − y‖, ∀x, y ∈ N. (2.1)

The above assumption implies that there exists a positive constant γ such that

‖g(x)‖ ≤ γ, ∀x ∈ F. (2.2)

2.1. Dai-Liao Method

Note that, in quasi-Newton method, standard BFGS method, and limited memory BFGS
method, the serch direction dk always have the common form

dk = −B−1
k gk, (2.3)

where Bk is some n × n symmetric and positive definite matrix satisfing the secant condition
(or quasi-Newton equation)

Bksk−1 = yk−1. (2.4)

Combing the above two equations, we obtain

dTkyk−1 = dTk (Bksk−1) = −gTk sk−1. (2.5)
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Keeping these relations in mind, Dai and Liao introduced the following conjugacy condition:

dTkyk−1 = −tgTk sk−1, (2.6)

where t ≥ 0 is a parameter. Multiplying (1.3) with yk−1 and making use of the new conjugacy
condition (2.6), Dai and Liao obtained the following new formula for computing βk:

βDL
k =

gT
k

(
yk−1 − tsk−1

)

dT
k−1yk−1

, t ≥ 0. (2.7)

In order to ensure the global convergence for general functions, Dai and Liao restrict βk to be
positive, that is,

βDL+
k = max

{
gT
k
yk−1

dT
k−1yk−1

, 0

}

− t g
T
k
sk−1

dT
k−1yk−1

, t ≥ 0. (2.8)

The reported numerical experiments showed that the corresponding conjugate gradient
method is efficient.

2.2. Li-Tang-Wei Method

Recently, Wei et al. [21] proposed a modified secant condition

Bksk−1 = y∗
k−1 = yk−1 + λk−1sk−1, (2.9)

where

λk−1 =
2
[
f(xk−1) − f(xk)

]
+ (gk + gk−1)

Tsk−1

‖sk−1‖2
. (2.10)

Notice this new secant condition contains not only gradient value information, but also
function value information at the present and the previous step. Additionally, this modified
secant condition has inspired many further studies on optimization problems (e.g., [23–25]).

Based on the modified secant condition (2.9), Li, Tang and Wei (see [20]) presented
the new conjugacy condition:

dTky
∗
k−1 = −tgTk sk−1, t ≥ 0. (2.11)
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Similar to the Dai-Liao formulas in (2.7) and (2.8), Li, Tang, and Wei also constructed the
following two conjugate gradient formulas for βk:

βLTW
k =

gTk
(
ỹ∗
k−1 − tsk−1

)

dT
k−1ỹ

∗
k−1

, t ≥ 0,

βLTW+
k = max

{
gT
k
ỹ∗
k−1

dTk−1ỹ
∗
k−1

, 0

}

− t g
T
k sk−1

dTk−1ỹ
∗
k−1

, t ≥ 0,

(2.12)

where ỹ∗
k−1 = yk−1 + max{λk−1, 0}sk−1.

Obviously, the new secant condition (2.11) gives a more accurate approximation for
the Hessian of the objective function (see [21]). Hence the formulas (2.12) should outperform
the Dai-Liao’s methods from theoretically, and the numerical results in [20] confirmed
this claim. In addition, based on another modified quasi-Newton equation of Zhang et al.
[26], Yabe and Takano [27] also proposed some similar conjugate gradient methods for
unconstrained optimization.

Combing with strong Wolfe-Powell line search, the conjugate gradient methods with
βk from DL+ or LTW+ were proved convergent globally for non-convex minimization
problems. But for βk from DL or LTW, there are no similar results. The major contribution
of our following work is to circumvent this difficulty. However, our attention does not focus
on the general iterative style (1.3), our idea mainly originate from the very recently three-term
conjugate gradient method of Zhang et al. [22].

3. Modified Dai-Liao Method

As we have stated in the previous section, the standard conjugate gradient method with (1.2)-
(1.3) and (2.7) cannot guarantee the sequence {xk} approaches to any stationary point of the
problem. In this section, we will appeal to a three-term form to take the place of (1.3).

The first three-term nonlinear conjugate gradient algorithm was presented by
Nazareth [28], in which the search direction is determined by

dk+1 = −yk +
yTkyk

yTkdk
dk +

yT
k−1yk

yTk−1dk−1
dk−1 (3.1)

with d−1 = 0, d0 = −g0. The main property of dk is that, for a quadratic function, it remains
conjugate even without exact line searches. Recently, Zhang et al. [22] proposed a descent
modified PRP conjugate gradient method with three terms as follows:

dk =

⎧
⎨

⎩

−g0, if k = 0,

−gk + βPRP
k

dk−1 − θkyk−1, if k ≥ 1,
(3.2)
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where θk = gTk dk−1/‖gk−1‖2. A remarkable property of the method is that it produces a descent
direction at each iteration. Motivated by the nice descent property, we also give a three-term
conjugate gradient method based on the DL formula for βk in (2.7), that is,

dk =

⎧
⎨

⎩

−g0, if k = 0,

−gk + βDL
k dk−1 − ξk

(
yk−1 − tsk−1

)
, if k ≥ 1,

(3.3)

where t ≥ 0 and ξk = gT
k
dk−1/d

T
k−1yk−1. It is easy to see that the sufficient descent condition

also holds true if no line search is used, that is,

gTk dk = −‖gk‖2. (3.4)

In order to achieve the global convergence result of the PRP method, Grippo and
Lucidi [9] proposed a new line search below. For given constants τ > 0, δ > 0, and λ ∈ (0, 1),
let

αk = max

{

λj
τ
∣∣gTk dk

∣∣

‖dk‖2
; j = 0, 1, . . .

}

(3.5)

satisfy

f(xk+1) ≤ f(xk) − δα2
k‖dk‖2,

−c1‖g(xk+1)‖2 ≤ g(xk+1)
Tdk+1 ≤ −c2‖g(xk+1)‖2,

(3.6)

where 0 < c2 < 1 < c1 are constants. Here we prefer this new line search to the classical Armijo
one for the sake of a greater reduction of objective function and wider tolerance of α‖dk‖ (see
[9]).

Introducing the line search rule, we are now ready to state the steps of the modified
Dai-Liao (MDL) conjugate gradient-type algorithm as follows.

Algorithm 3.1 (MDL).

Step 1. Given x0 ∈ Rn. Let 0 < δ < σ < 1, t ≥ 0 and d0 = −g0. Set k := 0.

Step 2. If ‖gk‖ = 0 then stop.

Step 3. Compute dk by (3.3).

Step 4. Find the steplength αk satisfying

f(xk + αkdk) − f(xk) ≤ −δα2
k‖dk‖2, (3.7)

g(xk + αkdk)
Tdk ≥ σgTk dk. (3.8)

Let xk+1 = xk + αkdk.
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Step 5. Set k := k + 1, go to Step 2.

From now on, we use fk to denote f(xk). For MDL algorithm, we have the following
two important results. The proof of the following first lemma was established by Zoutendijk
[29], where it is stated for slightly different circumstances. For convenience, we give the
detailed proof here.

Lemma 3.2. Consider the conjugate gradient-type method in the form (1.2) and (3.3), and let the
steplength αk be obtained by the line search (3.7)-(3.8). Suppose that Assumptions 2.1-2.2 hold. Then
one has

∞∑

k=0

α2
k‖dk‖2 <∞. (3.9)

Proof. Since αk is obtained by the line search (3.7)-(3.8). Then, by (3.4) and (3.7) we have

fk+1 − fk ≤ −δα2
k‖dk‖2 ≤ 0. (3.10)

Hence, {fk} is a decreasing sequence and the sequence {xk} is contained in F. Hence,
Assumptions 2.1-2.2 imply that there exists a constant f∗ such that

lim
k→∞

fk = f∗. (3.11)

From (3.11), we have

∞∑

k=0

(
fk − fk+1

)
< +∞. (3.12)

This together with (3.10) implies that (3.9) holds.

Lemma 3.3. If there exists a constant ε > 0 such that

‖gk‖ ≥ ε, ∀k ≥ 0, (3.13)

then there exists a constantM > 0 such that

‖dk‖ ≤M, ∀k ≥ 0. (3.14)

Proof. From the line search (3.7)-(3.8) and (3.4), we have

yTk−1dk−1 = gTk dk−1 − gTk−1dk−1 ≥ −(1 − σ)gTk−1dk−1 = (1 − σ)‖gk−1‖2. (3.15)
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By the definition of dk in (3.3) , we get from (2.1), (2.2), (3.4), and (3.13) that

‖dk‖ ≤ ‖gk‖ + 2
‖gk‖ ‖yk−1 − tsk−1‖‖dk−1‖

(1 − σ)‖gk−1‖2
≤ γ + 2(L + t)γαk−1‖dk−1‖

(1 − σ)ε2
‖dk−1‖. (3.16)

Lemma 3.2 indicates that αkdk → 0 as k → ∞, then there exists a constant γ ∈ (0, 1) and an
integer k0, such that the following inequality holds for all k ≥ k0:

2(L + t)γ
(1 − σ)ε2

αk−1‖dk−1‖ ≤ γ. (3.17)

Hence, we have for any k > k0

‖dk‖ ≤ γ + γ‖dk−1‖ ≤ γ
(

1 + γ + γ2 + · · · + γk−k0−1
)
+ γk−k0‖dk0‖ ≤ γ

1 − γ + ‖dk0‖. (3.18)

Setting M = max{‖d1‖, ‖d2‖, . . . , ‖dk0‖, γ/(1 − γ) + ‖dk0‖}, we deduce that ‖dk‖ ≤ M for all
k.

Using the preceding lemmas, we are now ready to give the promised convergence
results.

Theorem 3.4. Suppose that Assumptions 2.1-2.2 hold. Let {xk} be generated by Algorithm MDL.
Then one has

lim inf
k→∞

‖gk‖ = 0. (3.19)

Proof. We proceed by contradiction. Assume that the conclusion is not true. Then there exists
a positive constant ε such that

‖gk‖ ≥ ε, ∀k ≥ 0. (3.20)

If lim infk→∞αk > 0, we have from (3.9) that lim infk→∞‖gk‖ = 0. This contradicts
assumption (3.20).

Suppose that lim infk→∞αk = 0. Using Assumptions 2.1-2.2 and (3.8), we obtain

−(1 − σ)gTk dk ≤ (
gk+1 − gk

)T
dk ≤ Lαk‖dk‖2. (3.21)

Combining with (3.4) yields

(1 − σ)‖gk‖2 ≤ Lαk‖dk‖2. (3.22)

The above inequality and Lemma 3.3 imply lim infk→∞‖gk‖ = 0, which contradicts (3.20).
This completes the proof.



Mathematical Problems in Engineering 9

4. Modified Li-Tang-Wei Method

In a similar manner, we provide a modified Li-Tang-Wei method with three terms in the form:

dk =

⎧
⎨

⎩

−g0, if k = 0,

−gk + βLTW
k

dk−1 − ζk
(
ỹ∗
k−1 − tsk−1

)
, if k ≥ 1,

(4.1)

where ζk = gTk dk−1/d
T
k−1ỹ

∗
k−1. It is not difficult to see that the sufficient descent property (3.4)

also holds.
Combing with the line search (3.7)-(3.8), we state the steps of the modified Li-Tang-

Wei (MLTW) conjugate gradient-type algorithm as follows.

Algorithm 4.1 (MLTW).

Step 1. Given x0 ∈ Rn. Let 0 < δ < σ < 1, t ≥ 0 and d0 = −g0. Set k := 0.

Step 2. If ‖gk‖ = 0 then stop.

Step 3. Compute dk by (4.1).

Step 4. Find the steplength αk satisfying (3.7)-(3.8). Let xk+1 = xk + αkdk.

Step 5. Set k := k + 1, go to Step 2.

Lemma 4.2. Consider the conjugate gradient-type method in the forms (1.2) and (4.1), let the
steplength αk be obtained by the line search (3.7)-(3.8). Suppose that Assumptions 2.1-2.2 hold. Then
one has

∞∑

k=0

α2
k‖dk‖2 <∞. (4.2)

Proof. See Lemma 3.2.

Lemma 4.3. Consider the conjugate gradient-type method in the form (1.2) and (4.1), let the
steplength αk be obtained by line search (3.7)-(3.8). Suppose that Assumptions 2.1-2.2 hold. Then
one has

‖ỹ∗
k‖ ≤ 2L‖sk‖, (4.3)

where L was defined as in Assumption 2.2.

Proof. Since αk is obtained by (3.7)-(3.8), from (3.10) we know that

xk ∈ F, ∀k ≥ 1. (4.4)
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By mean value theorem, we know that there exists ηk ∈ [0, 1] such that

fk+1 − fk = g
(
xk + ηk(xk+1 − xk)

)T (xk+1 − xk) = g
(
xk + ηksk

)T
sk. (4.5)

Using (4.4) we get

xk + ηksk = xk + ηk(xk+1 − xk) ∈ coF, (4.6)

where coF denotes the closed convex hull of F. It follows from the definition of λk and (4.5)
that

λk =
2
[
f(xk) − f(xk+1)

]
+ (gk+1 + gk)

Tsk

‖sk‖2

=
[gk + gk+1 − 2g(xk + ηksk)]

Tsk

‖sk‖2

≤
(‖gk − g

(
xk + ηksk

)‖ + ‖gk+1 − g
(
xk + ηksk

)‖)

‖sk‖2
‖sk‖

≤
(
Lηk‖sk‖ + L

(
1 − ηk

)‖sk‖
)

‖sk‖2
‖sk‖

= L.

(4.7)

From the definition of ỹ∗
k and Assumption 2.2, we know that

‖ỹ∗
k‖ = ‖yk + max{λk, 0}sk‖ ≤ ‖yk + Lsk‖ ≤ ‖yk‖ + L‖sk‖ ≤ 2L‖sk‖. (4.8)

This verifies our claims.

Lemma 4.4. If there exists a constant ε > 0 such that

‖gk‖ ≥ ε, ∀k ≥ 0, (4.9)

then there exists a constantM > 0 such that

‖dk‖ ≤M, ∀k ≥ 0. (4.10)
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Proof. From the line search (3.7)-(3.8) and (3.4), we have

dTk−1ỹ
∗
k−1 = dTk−1

(
yk−1 + max{λk−1, 0}sk−1

)

≥ dTk−1yk−1

≥ −(1 − σ)gTk−1dk−1

= (1 − σ)‖gk−1‖2.

(4.11)

According to the definition of dk in (4.1), we get from (2.1), (2.2), (4.9), and (4.11) that

‖dk‖ ≤ ‖gk‖ + 2
‖gk‖‖ỹ∗

k−1 − tsk−1‖‖dk−1‖
(1 − σ)‖gk−1‖2

≤ γ + 2γ(2L + t)αk−1‖dk−1‖
(1 − σ)ε2

‖dk−1‖.
(4.12)

Lemma 4.3 shows that αkdk → 0 as k → ∞. Hence there exists a constant γ ∈ (0, 1) and an
integer k0, such that the following inequality holds for all k ≥ k0:

2(2L + t)γ
(1 − σ)ε2

αk−1‖dk−1‖ ≤ γ. (4.13)

Hence, we have for any k > k0

‖dk‖ ≤ γ + γ‖dk−1‖ ≤ γ1

(
1 + γ + γ2 + · · · + γk−k0−1

)
+ γk−k0‖dk0‖ ≤ γ

1 − γ + ‖dk0‖. (4.14)

Let M = max{‖d1‖, ‖d2‖, . . . , ‖dk0‖, γ/(1 − γ) + ‖dk0‖}, we get (4.10).

Now we can establish the following global convergence theorem for MLTW method.
Since its proof is essentially similar to Theorem 3.4, we omit it.

Theorem 4.5. Suppose that Assumptions 2.1-2.2 hold. Let {xk} be generated by Algorithm MLTW.
Then one has

lim inf
k→∞

‖gk‖ = 0. (4.15)

Proof. Omitted.

To end of this section, we show that MLWT method is equivalent to all the general
method (1.4) if an exact line search is used. In deriving this equivalence, we work with an
exact line search rule, that is, we compute αk such that

f(xk + αkdk) = min
α≥0

f(xk + αdk) (4.16)
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is satisfied. Hence,

∇f(xk + αkdk)Tdk = 0. (4.17)

Subsequently,

ζk =
gTk dk−1

dTk−1ỹ
∗
k−1

= 0. (4.18)

Moreover, let

f(x) =
1
2
xTGx + bTx + c, (4.19)

where G is an n × n symmetric positive definite matrix, b ∈ Rn, and c is a real number. In this
case, it is not difficult to see that λk−1 = 0. Note that by the definition of βLWT

k
in (2.12), we

have

βMLWT
k =

gT
k

(
ỹ∗
k−1 − tsk−1

)

dTk−1ỹ
∗
k−1

=
gTk ỹ

∗
k−1

dT
k−1ỹ

∗
k−1

=
gT
k
yk−1

dT
k−1yk−1

= βHS
k .

(4.20)

Then we have the main properties of a conjugate gradient method. The following theorem
shows that MLWT method have quadratic termination property, which means that the
method terminates at most n steps when it is applied to a positive definite quadratic. The
proof can be found in Theorem 4.2.1 in [30] and is omitted.

Theorem 4.6. For a positive definite quadratic function (4.19), the conjugate gradient method (1.2)–
(4.1) with exact line search terminates after m ≤ n steps, and the following properties hold for all i,
(0 ≤ i ≤ m),

dTi Gdj = 0, j = 0, 1, . . . , i − 1,

gTi gj = 0, j = 0, 1, . . . , i − 1,

dTi gi = −gTi gi,

(4.21)

wherem is the number of distinct eigenvalues of G.
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The theorem also shows that conjugate gradients (1.2)–(4.1) represent conjugacy of
directions, orthogonality of gradients, and descent condition. This also indicates that methods
(1.2)–(4.1) preserve the property of being equivalent to the general conjugate gradient
method (1.4) for strict convex quadratics with exact line search. The cases of DL, LWT, and
MDL can be proved in a similar way.

5. Numerical Experiments

The main work of this section is to report the performance of the algorithms MDL and MLTW
on a set of test problems. The codes were written in Fortran77 and in double precision
arithmetic. All the tests were performed on a PC (Intel Pentium Dual E2140 1.6 GHz,
256 MB SDRAM). Our experiments were performed on a set of 73 nonlinear unconstrained
problems that have second derivatives available. These test problems are contributed by
N. Andrei, and the Fortran expression of their functions and gradients are available at
http://www.ici.ro/camo/neculai/SCALCG/evalfg.for. 26 out of these problems are from
CUTE [31] library. For each test function we have considered 10 numerical experiments with
number of variables n = 1000, 2000, . . . , 10000.

In order to assess the reliability of our algorithms, we also tested these methods
against the well-known routine PRP using the same problems. The PRP code is coau-
thored by Liu, Nocedal, and Waltz, it can be obtained from Nocedal’s web page at
http://www.ece.northwestern.edu/∼nocedal/software.html/. While running of the PRP
code, default values were used for all parameters. All these algorithms terminate when the
following stopping criterion is met:

‖gk‖ ≤ 10−5. (5.1)

We also force these routines stopped if the iterations exceed 1000 or the number of function
evaluations reach 2000 without achieving convergence. In MDL and MLTW, we use δ =
10−4, σ = 0.1. Moreover, we also test our proposed methods MDL and MLTW with
different parameters t to see that t = 1.0 is the best choice. Since a large set of problems
is used, we describe the results fully on the first author’s web page at the web site:
http://maths.henu.edu.cn/szdw/teachers/xyh.htm. The tables contain the number of the
problem (Problem), the dimension of the problem (Dim), the Number of iterations (Iter),
the number of function and gradient evaluations (Nfcnt), the CPU time required in seconds
(Time), the final function value (Fv), and norm of the final gradient (Norm).

There are 30 problems that were excluded from the first two tables because they lead an
“overflow error” when evaluated at some point by MDL and MLWT methods. However, the
same error was occurred on 43 problems when evaluated by PRP method. From these tables,
we also see that MDL and MLWT failed to satisfy the termination condition (5.1) on other 66
and 81 problems, respectively. But PRP method cannot achieve convergence on 89 problems.
So only 634 problems remain where at least one method runs successfully. Now, we change
our attention to consider the function values of the remaining problems founded by all three
methods. We note that, on 592 problems, the differences of these functional values obtained
by each method is less than the pretty small tolerance 10−7. Therefore, it is reasonable to think
that all the three methods obtained the same optimal solution on these problems.

To approximatively assess the performance of MDL, MLWT, and PRP methods on the
remaining 592 problems, we use the profile of Dolan and Moré [32] as an evaluated tool. That
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Figure 1: Performance profiles based on iterations.
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Figure 2: Performance profiles based on function and gradient evaluations.

is, for subset of the methods being analyzed, we plot the fraction P of problems for which any
given method is within a factor τ of the best. Meanwhile, we use the iterations, function and
gradient evaluations, and CPU time consuming as performance measure, since they reflect
the main computational cost and the efficiency for each method. The performance profiles of
all three methods are plotted in Figures 1, 2, and 3.

Observing Figures 1 and 2, respectively, it concludes that MDL and MLWT are always
the top performer for almost all values of τ , which shows that they perform better than
PRP method regarding iterations, function, and gradient evaluations. Figure 3 shows the
implementation of the these methods using the total CPU time as a measure. This figure
shows that PRP method is faster than the others. Why do our methods need more computing
time though requiring less iterations? We think that it is highly possible that our new version
of formula is a somewhat more complicated than the standard PRP method.
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Figure 3: Performance profiles based on function and gradient evaluations.

Taking everything into consideration and albeit both proposed conjugate gradient
methods did not obtain significant development as we have expected, we think that, for some
specific problems, the enhancement of the proposed methods are still noticeable. Hence, we
believe that each one of the new algorithm is a valid approach for the problems and has its
own potential.
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