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Silvio L. T. de Souza,1 Iberê L. Caldas,2 and Ricardo L. Viana3

1 Universidade Federal de São João del-Rei, Campus Alto Paraopeba, Km 7 Rodovia MG 443,
36420-000 Ouro Branco, Minas Gerais, Brazil

2 Instituto de Fı́sica, Universidade de São Paulo, 05315-970 São Paulo, Brazil
3 Departamento de Fı́sica, Universidade Federal do Paraná, 81531-990 Curitiba, Paraná, Brazil
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The dynamics of a dissipative vibro-impact system called impact-pair is investigated. This system
is similar to Fermi-Ulam accelerator model and consists of an oscillating one-dimensional box
containing a point mass moving freely between successive inelastic collisions with the rigid
walls of the box. In our numerical simulations, we observed multistable regimes, for which the
corresponding basins of attraction present a quite complicated structure with smooth boundary.
In addition, we characterize the system in a two-dimensional parameter space by using the largest
Lyapunov exponents, identifying self-similar periodic sets.
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1. Introduction

In order to study cosmic ray accelerated to high energy, Enrico Fermi proposed an accelerator
model as a dynamical system [1], consisting of a classical particle interacting with a time
dependent magnetic field. The original model was later modified and studied under different
approaches. For example, the dynamics of the well-known Fermi-Ulam model has been
investigated [2]. This model consists of a point mass moving between a rigid fixed wall and
an oscillatory wall. In the recent years, the Fermi-Ulam model has attracted a significant
attention to understand the dynamics of systems with limited energy gain, for certain
parameters and initial conditions, in contrast with the Fermi acceleration [3–6].

In the engineering context, mathematical models describing mechanical impacts
similar to those considered in the Fermi-Ulam model have been intensively studied, like
gearbox model [7–10] and impact damper [11, 12]. These systems, called vibro-impact or
impact oscillator, appear in a wide range of practical problems, such as percussive drilling
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Figure 1: Schematic view of an impact-pair system.

tools [13], print hammers [14], and vibro-impact moling systems [15], just to mention a few.
For these systems a better understanding of their dynamics may help to reduce the negative
effects of impacts and ultimately to improve practical designs. Although the results obtained
for the impact oscillator have different interpretations, the mathematical analyses are similar
to those used to investigate the Fermi-Ulam model.

In this paper, we consider a prototypical vibro-impact system, known as impact-pair.
This system is comprised of a ball moving between two oscillatory walls. Numerical studies
have shown a rich dynamical behavior with several nonlinear phenomena observed, such
as bifurcations, chaotic regimes [16, 17], crises [18], and basin hoppings [19]. In addition,
control of chaotic dynamics can be applied to stabilize unstable periodic orbits embedded
in the chaotic attractor [20]. We aim here to explore some dynamical properties with
emphasis on characterization of basins of attraction with complicated smooth boundaries
and identification of self-similar periodic sets called shrimps [21].

This paper is organized as follows. In Section 2 we present the model and the equations
of motion for the impact-pair system. In Section 3, we investigate coexistence of different
regimes and their basins of attraction. In Section 4, we characterize the impact-pair system in
the two-parameter space. The last section contains our conclusions.

2. Mathematical Description

In this section we present the basic equations of the impact-pair system [16, 17] shown
schematically in Figure 1. In addition, following the mathematical description of [19], we
describe how to obtain an impact map, also called transcendental map. The map is useful to
calculate the Lyapunov exponents [18].

The impact-pair system is composed of a point mass m, whose displacement is
denoted by x, and a one-dimensional box with a gap of length ν. The mass m is free to move
inside the gap and the motion of the box is described by a periodic function, α sin(ωt).

In an absolute coordinate systems, equation of motion of the point mass m is given by

ẍ = 0. (2.1)

On denoting the relative displacement of the mass m by y, we have

x = y + α sin(ωt), (2.2)
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Figure 2: (a) Bifurcation diagram showing coexisting attractors. Velocity ẏT , for a stroboscopic map, as a
function of the amplitude excitation, α, for r = 0.8. (b) The Lyapunov exponents, λ1,2, for the attractors
plotted in blue.

such that, on substituting (2.2) into (2.1), the equation of motion in the relative coordinate
system is

ÿ = αω2 sin(ωt),
(
−ν

2
< y <

ν

2

)
. (2.3)

Integrating (2.3) and for the initial conditions y(t0) = y0 and ẏ(t0) = ẏ0, the
displacement y and the velocity ẏ, between impacts, are

y(t) = y0 + α sin(ωto) − α sin(ωt) +
[
ẏ0 + αω cos(ωt0)

]
(t − t0),

ẏ(t) = ẏ0 + αω cos(ωt0) − αω cos(ωt).
(2.4)

An impact occurs wherever y = ν/2 or −ν/2. After each impact, we apply into (2.4)
the new set of initial conditions (Newton’s law of impact)

t0 = t, y0 = y, ẏ0 = −rẏ, (2.5)

where r is a constant restitution coefficient.
Therefore, the dynamics of the impact-pair system is obtained from (2.4) and (2.5). In

this case, the system depends on control parameters ν, r, α, and ω.
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Since there is an analytical solution for the motion between impacts, we can obtain
an impact map. First, we define the discrete variables yn, ẏn, tn as the displacement, the
velocity, and the time (modulo 2π) collected just the nth impact. Substituting the Newton
law of impact into (2.4), we have a two-dimensional map that is given by

yn+1 = yn + α sin(ωtn) − α sin(ωtn+1) +
[
−rẏn + αω cos(ωtn)

]
(tn+1 − tn),

ẏn+1 = −rẏn + αω cos(ωtn) − αω cos(ωtn+1),
(2.6)

where yn = ν/2 or −ν/2.
As mentioned before, this map, obtained by considering the analytical solutions and

the sequence of impact times, is only used to evaluate the Lyapunov exponents [18]. The
system dynamics is directly analyzed from the analytical solutions of (2.4) and (2.5). The
Lyapunov exponents are computed through

λi = lim
n→∞

1
n

ln|Λi(n)| (i = 1, 2), (2.7)

where Λi(n) are the eigenvalues of the matrix A = J1 · J2, . . . , Jn with Jn being the Jacobian
matrix of the map (2.6), computed at time n. For systems without analytical solutions
between the impacts, the Lyapunov exponents can be calculated by using the method
proposed by Jin et al. [22].

3. Multistability with Complex Basins of Attraction

The dynamics was investigated using bifurcation diagrams, phase portraits, Lyapunov
exponents, basins of attraction, uncertainty exponent, and parameter space diagrams. We
fix the control parameters at ν = 2.0 (length of the gap), ω = 1.0 (excitation frequency) and
vary the parameters r (restitution coefficient) and α (excitation amplitude).

In order to obtain a representative example of the kind of dynamics generated by the
impact-pair system, we use a bifurcation diagram for the velocity, ẏT , versus the amplitude
excitation, α. The dynamical variable ẏT is obtained from a stroboscopic map (Time-2π).
To characterize the nature of the behavior observed, we calculate the Lyapunov exponents.
If the largest Lyapunov exponent is positive the attractor is chaotic, if not the attractor is
periodic.

In Figure 2(a), we present a bifurcation diagram showing multiple coexisting
attractors plotted in different colors. For example, we can note two period-1 orbits at α = 3.2.
In this case, these attractors are symmetric and appear due to the pitchfork bifurcation for
α ≈ 3.0878. For α ≈ 3, the diagram shows two coexisting attractors depicted in green and
blue. The Lyapunov exponents for attractors plotted in blue are shown in Figure 2(b).

In Figures 3(a) and 3(b), we show the phase portraits of the two symmetrical
coexisting periodic attractors for α = 3.2. For the same set of parameters, we identify two
more other possible solutions, namely, two equilibrium points shown in Figures 3(c) and
3(d).
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Figure 3: Phase portrait of velocity versus displacement of two coexisting periodic attractors (a) and (b).
Time histories of two equilibrium points (c) and (d). For the control parameters α = 3.2 and r = 0.8.

The corresponding basins of attraction of the four possible solutions are depicted in
Figure 4(a). This figure is constructed using a grid of equally spaced 1000 × 1000 cells as set
of initial conditions for velocity versus time (modulo 2π) with initial position fixed at y0 = 0.
The basins of the periodic attractors are plotted in blue and red, and the equilibrium points
in white and green.

As can be seen, the structure of the basins is quite complex and the basin boundary
between periodic attractors is convoluted and apparently fractal (Figures 4(b) and 4(c)).
However, in contrast to fractal basin boundaries, we cannot observe an infinitely fine scaled
structure with magnifications of the boundary region, as shown in Figure 4(d). Therefore,
the basin boundary here is composed of smooth curve with dimension one. In this case,
the complexity of basins structure is generated by band accumulations [23–25]. Moreover,
the observed smooth basin boundary was also observed for other parameter regions with
coexisting periodic or chaotic attractors.

As a consequence of the complex basins of attraction observed, uncertainty in initial
conditions leads to uncertainty in the final state. To evaluate the final state sensitivity we can
calculate the uncertainty exponent, β, which was proposed by Grebogi and his collaborators
[26] and has been used to characterize fractal basin boundaries [10, 12].
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Figure 4: Basins of attraction and successive magnifications for the parameters α = 3.2 and r = 0.8, varying
initial conditions ẏ0 and t0 with y0 = 0. Basins in red and blue for the two coexisting attractors were shown
in Figures 3(a) and 3(b) basins, in green and white for the two equilibrium points were shown in Figures
3(c) and 3(d).

To obtain the uncertainty exponent, we choose randomly a large number of set initial
conditions A : (τ0, ẏ0) for y0 constant. We keep ẏ0 constant and vary the other coordinate by
a small amount ε. We also choose the slightly displaced initial conditions B : (τ0 + ε, ẏ0) and
C : (τ0 − ε, ẏ0). If the trajectory starting from initial condition A goes to one of the basins, and
either one (or both) of the displaced initial conditions, B or C, go to the other basin, we call
A as an ε-uncertain initial condition. By considering a large number of such points, we can
estimate the fraction of ε-uncertain points, f(ε). This number scales with the uncertain radius
as a power-law f(ε) ∼ εβ, where β is called uncertainty exponent [24, 26].

For the basins of attraction shown in Figure 4(c), we obtain the uncertainty exponent
β = 0.490 ± 0.001, as indicated in Figure 5. In this case, if we want to gain a factor 2 in the
ability to predict the final state of the system, it is necessary to increase the accuracy of
initial condition by a factor approximately 4 (21/0.49 ≈ 4). In general a noninteger uncertainty
exponent is a consequence of a fractal basin boundary. However, in this case the considered
boundary is smooth with a dimension dB = 1; but even so the uncertainty to predict the final
state remains.
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Figure 5: Uncertain fraction versus uncertainty radius ε for basins of attraction showed in Figure 4(c) for
α = 3.2 and r = 0.8. The solid curve is a linear regression fit with slope β = 0.490 ± 0.001.

4. Self-Similar Periodic Sets in Parameter Space

In order to obtain a further insight into the influence of the restitution coefficient r and
amplitude excitation α on the dynamics of the impact-pair system, we construct parameter
space diagrams, depicted in Figures 6(a) to 6(d). To obtain these diagrams, we use a grid of
1000 × 1000 cells with the initial conditions fixed at (y0, ẏ0, τ0) = (0, 1, 0). For each point the
largest Lyapunov exponent is calculated and plotted with the appropriately allocated color.
Chaotic attractors (λ1 > 0) are plotted in blue and periodic attractors (λ1 < 0) according to
a color scale ranging from minimum value in red and maximum in green. Zero Lyapunov
exponents (bifurcation points) are plotted in blue.

To clarify how the parameter space diagram was constructed, we fix the restitution
coefficient at r = 0.683 for Figure 6(c) and vary the amplitude excitation α determining
bifurcation diagram and the corresponding largest Lyapunov exponents in Figures 7(a)
and 7(b), respectively. Comparing the Lyapunov exponents with parameter space diagram
(Figure 6(c)), we can note that red lines correspond with the local minimum of exponents and
blue lines embedded in green region (periodic region) correspond with bifurcation points.

On examining the parameter space diagram (Figure 6(b)), we note a main periodic
structure existing embedded in chaotic region. Around this structure a vast quantity of self-
similar periodic sets is found. For instance, we can see in Figure 6(c) a very regular network
of self-similar structures for a magnification of small box of Figure 6(b). These self-similar
structures have been observed before [27–31] and have been referred to as shrimps [32–34]. In
our work, the shrimps organize themselves along a very specific direction in parameter space
with a series of accumulations and fractality can be observed with successive magnifications
of the parameter space, as shown in Figure 6(d) for a magnification of a shrimp of Figure 6(c).
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Figure 6: (a) Parameter space diagram with periodic structures. (b)–(d) Successive magnifications of
parameter space diagram.

To finalize, in Figures 8(a) and 8(b) we depict two successive magnifications of the
parameter space diagram (Figure 6(b)). In this case, we can observe a high concentration
of periodic structures with different shapes (Figure 8(a)). These structures cross each other
indicating coexistence of periodic attractors. In Figure 8(b), we identify a periodic structure
that appears abundantly in parameter space, for the system considered, consisting of three
shrimp shapes connected. In addition, we again observe crossings between periodic sets.

5. Conclusions

In this paper, we considered the impact-pair system studying its dynamics by a means
of numerical simulations. Initially, we discussed the coexistence of attractors with smooth
basin boundary, but with complicated and evoluted basins structure. According to the
uncertainty exponent evaluated for a certain region in phase space, this type basins of
attraction is associated with effect of obstruction on predictability of time-asymptotic final
state (attractor). In other words, the uncertainty in initial conditions leads to uncertainty in
the final state.
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Figure 7: Bifurcation diagram of velocity ẏT as a function of the amplitude excitation α for r = 0.683. (b)
The largest Lyapunov exponents, λ1, for attractors of the bifurcation diagram.
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Figure 8: (a) Parameter space diagram with periodic structures. (b) Magnification of a portion of the
previous figure.

In the end, we explored the dynamics in the two-dimensional parameter space by
using the largest Lyapunov exponents. We identified several periodic sets embedded in
chaotic region. Some of them, known as shrimps, present self-similar structures and organize
themselves along a very specific direction in parameter space with a series of accumulations.
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In addition, the periodic sets cross each other indicating a large quantity of coexisting periodic
attractors.
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