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1. Introduction

Consider the following saddle point linear system:

Aξ ≡
(
G BT

B 0

)(
x

y

)
=

(
b

q

)
≡ f, (1.1)

where G ∈ R
n×n is a symmetric and positive semidefinite matrix with nullity (=dim

(kernel(G))) p, the matrix B ∈ R
m×n has full row rank, vectors x, b ∈ R

n, and vectors y, q ∈ R
m,

and vectors x, y are unknown. The assumption thatA is nonsingular implies that null(G) ∩
null(B) = {0}, which we use in the following analysis. Under these assumptions, the system
(1.1) has a unique solution. This system is very important and appears in many different
applications of scientific computing, such as constrained optimization [1, 2], the finite
element method for solving the Navier-Stokes equation [3–6], fluid dynamics, constrained
least problems and generalized least squares problems [7–10], and the discretized time-
harmonic Maxwell equations in mixed form [11].
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Recently, T. Rees and C. Greif explored a preconditioning technique applied to
the problem of solving linear systems arising from primal-dual interior point algorithms
and quadratic programming in [12]. The preconditioner has the attractive property of
improved eigenvalue clustering with increasing ill-conditioned (1, 1) block of the symmetric
saddle point systems. To solve the saddle point system (1.1), Krylov subspace methods are
usually used in modern solution techniques which rely on the ease of sparse matrix-vector
products and converges at a rate dependent on the number of distinct eigenvalues of the
preconditioned matrix [13, 14].

The rest of this paper, two types of block triangular preconditioners are established for
the saddle point systems with an ill-conditioned (1,1) block. Our methodology extends the
recent work done by Greif and Schötzau [11, 15], and Rees and Greif [12].

This paper is organized as follows. In Section 2, we will establish new precondtioners
and study the spectral analysis of the new preconditioners for the saddle point system. Some
numerical examples are given in Section 3. Finally, conclusions are made in Section 4.

2. Preconditioners and Spectrum Analysis

For linear systems, the convergence of an applicable iterative method is determined by the
distribution of the eigenvalues of the coefficient matrix. In particular, it is desirable that the
number of distinct eigenvalues, or at least the number of clusters, is small, because in this case
convergence will be rapid. To be more precise, if there are only a few distinct eigenvalues,
then optimal methods like BiCGStab or GMRES will terminate (in exact arithmetic) after a
small and precisely defined number of steps.

Rees and Greif [12] established the following preconditioner for the symmetric saddle
point system (1.1):

M =

(
G + BTW−1B tBT

0 W

)
, (2.1)

where t is a scalar and W is an m × m symmetric positive weight matrix. Similar to M, we
introduce the following precondtioners for solving symmetric saddle point systems:

Mt =

(
G + BTW−1B (1 − t)BT

0 tW

)
, (2.2)

where t /= 0 is a parameter, and

M̂t =

⎛
⎝G + tBTW−1B tBT

0
1 − t
t
W

⎞
⎠, (2.3)

where 1/= t > 0.
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Theorem 2.1. The matrixM−1
t A has two distinct eigenvalues which are given by

λ1 = 1, λ2 = −1
t

(2.4)

with algebraic multiplicity n and p, respectively. The remainingm − p eigenvalues satisfy the relation

λ =
−μ

t
(
μ + 1

) , (2.5)

where μ are somem − p generalized eigenvalues of the following generalized eigenvalue problem:

BTW−1Bx = μGx. (2.6)

Let {zi}n−mi=1 be a basis of the null space of B, let {ui}
p

i=1 be a basis of the null space of G, and {vi}
m−p
i=1

be a set of linearly independent vectors that complete null(G) ∪ null(B) to a basis of R
n. Then

the vectors [zTi , 0
T ]T (i = 1, . . . , n − m), the vectors [uTi , (1/t)(W

−1Bui)
T ]T (i = 1, . . . , p), and the

vectors [vTi , (1/t)(W
−1Bvi)

T ]T (i = 1, . . . , m − p), are linearly independent eigenvectors associated
with λ = 1, and the vectors [uTi ,−(W−1Bui)

T ]T (i = 1, . . . , p) are linearly independent eigenvectors
associated with λ = −1/t.

Proof. Suppose that λ is an eigenvalue ofM−1
t A, whose eigenvector is

( x
y

)
. So, we have

M−1
t A
(
x

y

)
= λ

(
x

y

)
. (2.7)

Furthermore, it satisfies the generalized eigenvalue problem(
G BT

B 0

)(
x

y

)
= λ

(
G + BTW−1B (1 − t)BT

0 tW

)(
x

y

)
. (2.8)

The second block row gives y = (1/λt)W−1Bx, substituting which into the first block row
equation gives

(λ − 1)
[
λGx +

(
λ +

1
t

)
BTW−1Bx

]
= 0. (2.9)

By inspection it is straightforward to see that any vector x ∈ R
n satisfies (2.9) with λ = 1; thus

the latter is an eigenvalue ofM−1
t A and [xT , (1/t)(W−1Bx)T ]T is an eigenvector ofM−1

t A. We
obtain that the eigenvalue λ = 1 has algebraic multiplicity n. From the nullity of G it follows
that there are p linearly independent null vectors of G. For each such null vector x ∈ null(G)
we can obtain

λ = −1
t
, (2.10)

each with algebraic multiplicity p and [xT ,−(W−1Bx)T ]T is an eigenvalue ofM−1
t A.
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Let the vectors {zi}n−mi=1 be a basis of the null space of B, and let {ui}
p

i=1 be a
basis of the null space of G. Because null(G) ∩ null(B) = {0}, the vectors {zi}n−mi=1 and
{ui}

p

i=1 are linearly independent and together span the subspace null(G) ∪ null(B). Let the
vectors {vi}

m−p
i=1 complete null(G) ∪ null(B) to a basis of R

n. It follows that the vectors
[zTi , 0

T ]T (i = 1, . . . , n − m), the vectors [uTi , (1/t)(W
−1Bui)

T ]T (i = 1, . . . , p), and the vectors
[vTi , (1/t)(W

−1Bvi)
T ]T (i = 1, . . . , m−p), are linearly independent eigenvectors associated with

λ = 1, and the vectors [uTi ,−(W−1Bui)
T ]T (i = 1, . . . , p) are linearly independent eigenvectors

associated with λ = −1/t.
Next, we consider the remaining m− p eigenvalues. Suppose λ/= 1 and λ/= − 1/t. From

(2.9) we obtain

BTW−1Bx = μGx, (2.11)

where μ = −tλ/(tλ + 1), which implies that λ = −μ/(t(μ + 1)).

When the parameter t = −1, we easily obtain the following corollary from Theorem 2.1.

Corollary 2.2. Let t = −1. Then the matrixM−1
t A has one eigenvalue which is given by λ = 1 with

algebraic multiplicity n + p. The remainingm − p eigenvalues satisfy the relation

λ =
μ

μ + 1
, (2.12)

where μ are somem − p generalized eigenvalues of the following generalized eigenvalue problem:

BTW−1Bx = μGx. (2.13)

Theorem 2.3. The matrixM−1
t A has two distinct eigenvalues which are given by

λ1 = 1, λ2 = −1
t

(2.14)

with algebraic multiplicity n and p, respectively. The remainingm − p eigenvalues lie in the interval

(
0,−1

t

)
(t < 0) or

(
−1
t
, 0
)

(t > 0). (2.15)

Proof. According to Theorem 2.1, we know that the matrixM−1
t A has two distinct eigenvalues

which are given by

λ1 = 1, λ2 = −1
t

(2.16)

with algebraic multiplicity n and p, respectively.
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From (2.9), we can obtain that the remaining m − p eigenvalues satisfy

λ = −u
t
, (2.17)

where u = 〈BTW−1Bx, x〉/〈Gx, x〉 + 〈BTW−1Bx, x〉 ∈ R
+, in which 〈·, ·〉 is the standard

Euclidean inner product, x /∈ null(G) and x /∈ null(B). Evidently, we have 0 < u < 1.
The expression (2.17) gives an explicit formula in terms of the generalized eigenvalues of
(2.17) and can be used to identify the intervals in which the eigenvalues lie. Furthermore,
we can obtain that the remaining m − p eigenvalues lie in the interval (0,−1/t)(t < 0) or
(−1/t, 0)(t > 0).

When the parameter t = −1, we easily obtain the following corollary from Theorem 2.3.

Corollary 2.4. Let t = −1. Then the matrixM−1
t A has one eigenvalue which is given by λ = 1 with

algebraic multiplicity n + p. The remainingm − p eigenvalues lie in the interval (0, 1).

Theorem 2.5. The matrix M̂−1
t A has two distinct eigenvalues which are given by

λ1 = 1, λ2 =
1

t − 1
(2.18)

with algebraic multiplicity n and p, respectively. The remainingm − p eigenvalues satisfy the relation

λ =
μt

(t − 1)
(
μt + 1

) , (2.19)

where μ are somem − p generalized eigenvalues of the following generalized eigenvalue problem:

BTW−1Bx = μGx. (2.20)

Let {zi}n−mi=1 be a basis of the null space of B, and let {ui}
p

i=1 be a basis of the null space of G, and let
{vi}

m−p
i=1 be a set of linearly independent vectors that complete null(G) ∪ null(B) to a basis of R

n.
Then the vectors [zTi , 0

T ]T (i = 1, . . . , n −m), the vectors [uTi , (t/(1 − t))(W−1Bui)
T ]T (i = 1, . . . , p),

and the vectors [vTi , (t/(1− t))(W−1Bvi)
T ]T (i = 1, . . . , m− p), are linearly independent eigenvectors

associated with λ = 1, and the vectors [uTi ,−t(W−1Bui)
T ]T (i = 1, . . . , p) are linearly independent

eigenvectors associated with λ = 1/(t − 1).

Proof. The proof is similar to the proof of Theorem 2.1.

When the parameter t = 2, we easily obtain the following corollary from Theorem 2.5.
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Corollary 2.6. Let t = 2. Then the matrix M̂−1
t A has one eigenvalue which is given by

λ = 1 (2.21)

with algebraic multiplicity n + p. The remainingm − p eigenvalues satisfy the relation

λ =
2μ

2μ + 1
, (2.22)

where μ are somem − p generalized eigenvalues of the following generalized eigenvalue problem:

BTW−1Bx = μGx. (2.23)

Theorem 2.7. The matrix M̂−1
t A has two distinct eigenvalues which are given by

λ1 = 1, λ2 =
1

t − 1
(2.24)

with algebraic multiplicity n and p, respectively. The remainingm − p eigenvalues lie in the interval

(
0,

1
t − 1

)
(t > 1) or

(
1

t − 1
, 0
)

(t < 1). (2.25)

Proof. The proof is similar to the proof of Theorem 2.3.

When the parameter t = 2, we easily obtain the following corollary from Theorem 2.7.

Corollary 2.8. Let t = 2. Then the matrix M̂−1
t A has only one eigenvalue which is given by λ = 1

with algebraic multiplicity n + p. The remainingm − p eigenvalues lie in the interval (0, 1).

Remark 2.9. The above theorems and corollaries illustrate the strong spectral clustering when
the (1, 1) block of A is singular. A well-known difficulty is the increasing ill-conditioned (1,
1) block as the solution is approached. Our claim is that the preconditioners perform robust
even as the problem becomes more ill-conditioned; in fact the outer iteration count decreases.
On the other hand, solving the augmented (1,1) block may be more computationally difficult
and requires effective approaches such as inexact solvers. In Section 3, we indeed consider
inexact solvers in numerical experiments.

Remark 2.10. It is clearly seen from Theorems 2.1 and 2.5 and Corollaries 2.2 and 2.6 that our
preconditioners are suitable for symmetric saddle point systems, from Theorems 2.3 and 2.7
and Corollaries 2.4 and 2.8 that our preconditioners are most effective than the preconditioner
of [12].
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Figure 1: Convergence curve and total numbers of inner GMRES(10) iterations for different t when h =
1/16.

Remark 2.11. Similarly, the nonsymmetric saddle point linear systems can also obtain the
above results.

3. Numerical Experiments

All the numerical experiments were performed with MATLAB 7.0. The machine we have
used is a PC-Intel(R), Core(TM)2 CPU T7200 2.0 GHz, 1024 M of RAM. The stopping criterion
is ‖r(k)‖2/‖r(0)‖2 � 10−6, where r(k) is the residual vector after kth iteration. The right-hand
side vectors b and q are taken such that the exact solutions x and y are both vectors with all
components being 1. The initial guess is chosen to be zero vector. We will use preconditioned
GMRES(10) to solve the saddle point linear systems.



8 Mathematical Problems in Engineering

0 10 20 30 40 50 60 70 80

Drop tolerance = 0.01

−7

−6

−5

−4

−3

−2

−1

0

1

(a)

0 10 20 30 40 50 60

Drop tolerance = 0.005

−7

−6

−5

−4

−3

−2

−1

0

1

(b)

0 5 10 15 20 25 30 35 40 45

Drop tolerance = 0.001

−7

−6

−5

−4

−3

−2

−1

0

1

t = −1
t = 1
t = 2

(c)

0 5 10 15 20 25 30

Drop tolerance = 0.0001

−7

−6

−5

−4

−3

−2

−1

0

1

t = −1
t = 1
t = 2

(d)

Figure 2: Convergence curve and total numbers of inner GMRES(10) iterations for different t when h =
1/24.

Our numerical experiments are similar to those in [16]. We consider the matrices taken
from [17] with notations slightly changed.

We construct the saddle point-type matrix A from reforming a matrix Â of the
following form:

Â =

⎛
⎜⎜⎝
F1 0 BTu

0 F2 BTv

Bu Bv 0

⎞
⎟⎟⎠, (3.1)

where G ≡
(
F1 0

0 F2

)
is positive real. The matrix Â arises from the discretization by the maker

and cell finite difference scheme [17] of a leaky two-dimensional lid-driven cavity problem
in a square domain (0 ≤ x ≤ 1; 0 ≤ y ≤ 1). Then the matrix [Bu, Bv] is replaced by a random
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Figure 3: Convergence curve and total numbers of inner GMRES(10) iterations for different t when h =
1/32.

matrix B̂ with the same sparsity as [Bu, Bv], replaced by B1 = B̂(1 : m, 1 : m) − (3/2)Im, such
that B1 is nonsingular. Denote B2 = B̂(1 : m,m + 1 : n), then we have B = [B1, B2] with
B1 ∈ Rm,m and B2 ∈ Rm,n−m. Obviously, the resulted saddle point-type matrix

A ≡
(
G BT

B 0

)
(3.2)

satisfies rank (BT ) = rank (B) = m.
From the matrixA in (3.2) we construct the following saddle point-type matrix:

A1 ≡
(
G1 BT

B 0

)
, (3.3)
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Table 1: Values of n and m, and order ofA1.

h n m Order ofA1

1/16 480 256 736
1/24 1104 576 1680
1/32 1984 1024 3008

Table 2: Number and time of iterations of GMRES(10) with preconditionersMt andM for different drop
tolerances τ and t when h = 1/16. Results of preconditionerM lie inside [ ].

τ t = −1 Time (−1) t = 1 Time (1) t = 2 Time (2)
0.01 3(24) 0.1875 5(49) 0.3125 6(55) 0.3438

[6(58)] [0.4219] [7(65)] [0.4844] [10(93)] [0.6563]
0.005 3(22) 0.1875 4(39) 0.2656 5(44) 0.2969

[5(47)] [0.3594] [6(54)] [0.4063] [9(85)] [0.6406]
0.001 2(18) 0.1719 3(29) 0.2188 3(30) 0.2188

[4(38)] [0.3594] [6(52)] [0.4688] [9(85)] [0.7031]
0.0001 2(16) 0.1719 3(24) 0.2188 3(26) 0.2344

[4(36)] [0.3750] [5(60)] [0.5156] [8(73)] [0.7188]

where G1 is constructed from G by making its first m/4 rows and columns with zero entries.
Note that G1 is semipositive definite and its nullity is m/4.

In our numerical experiments the matrixW in the augmentation block preconditioners
is taken as W = Im. During implementation of our augmentation block preconditioners, we
need the operation (G1 + BTB)−1u for a given vector u or, equivalently, need to solve the
following equation: (G1 + BTB)v = u for which we use an incomplete LU factorization of
(G1 + BTB) = LU + R with drop tolerance τ . Here m(n) means number of outer (inner)
iterations. Time(t) represents the corresponding computing time (in seconds) when taking
the parameter as t.

In the following, we summarize the observations from Tables 1, 2, 3, 4, 5, 6, and 7 and
Figures 1, 2, and 3.

(i) From Tables 2–4, we can find that our preconditioners are more efficient than those
of [12] both in number of iterations and time of iterations, especially in the case of
the optimal parameter.

(ii) Number and time of iterations with the preconditionerM−1 smaller than those with
the preconditionersM1 andM2. In fact,M1 is a diagonal preconditioner.

(iii) Number and time of iterations with the preconditioner M̂t are the smallest when
t = 2.

(iv) Number of iterations decreases but the computational cost of incomplete LU
factorization increases with decreased τ . Therefore, we should not use the
preconditioners with small τ in practical.

(v) The eigenvalues ofM−1
t A1 are strongly clustered. Furthermore, the eigenvalues of

M−1
−1A1 are positive.
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Table 3: Number and time of iterations of GMRES(10) with preconditionersMt andM for different drop
tolerances τ and t when h = 1/24. Results of preconditionerM lie inside [ ].

τ t = −1 Time (−1) t = 1 Time (1) t = 2 Time (2)
0.01 3(28) 1.0469 8(73) 2.6563 8(79) 2.8594

[9(88)] [3.3125] [9(85)] [3.2188] [13(125)] [4.5469]
0.005 3(26) 1.0000 6(59) 2.2969 6(59) 2.1719

[7(63)] [2.4688] [8(72)] [2.7969] [11(109)] [4.2031]
0.001 2(20) 0.9219 4(38) 1.5313 5(43) 1.6875

[5(46)] [1.8438] [6(60)] [2.4688] [10(95)] [3.8750]
0.0001 2(18) 0.8594 3(27) 1.2500 3(28) 1.2656

[4(38)] [1.8750] [6(56)] [2.6875] [9(87)] [4.1563]

Table 4: Number and time of iterations of GMRES(10) with preconditionersMt andM for different drop
tolerances τ , t when h = 1/32. Results of preconditionerM lie inside [ ].

τ t = −1 Time (−1) t = 1 Time (1) t = 2 Time (2)
0.01 3(30) 4.0938 9(83) 11.4688 9(89) 12.1563

[10(93)] [12.7344] [11(103)] [14.1875] [13(128)] [17.4219]
0.005 3(28) 3.8906 7(67) 9.1563 8(74) 10.1719

[8(76)] [10.4375] [9(86)] [11.9688] [12(118)] [16.1719]
0.001 3(22) 3.1719 5(44) 6.2813 5(45) 6.3438

[6(52)] [7.3594] [7(65)] [9.1719] [11(105)] [14.7344]
0.0001 2(18) 2.8906 3(30) 4.6875 4(32) 5.0313

[4(39)] [6.0000] [6(58)] [8.9688] [10(94)] [14.5000]

Table 5: Number and time of iterations of GMRES(10) with preconditioners M̂t for different drop
tolerances τ and t when h = 1/16.

τ t = 1/2 Time (1/2) t = 2 Time (2) t = 4 Time (4) t = 8 Time (8)
0.01 7(67) 0.4844 2(19) 0.1563 3(23) 0.2031 3(28) 0.2188

0.005 6(53) 0.3750 2(17) 0.1563 2(20) 0.1875 3(24) 0.2031
0.001 4(38) 0.3125 2(14) 0.1406 2(16) 0.1719 2(17) 0.1563
0.0001 4(32) 0.3281 2(13) 0.1406 2(13) 0.1406 2(13) 0.1406

Table 6: Number and time of iterations of GMRES(10) with preconditioners M̂t for different drop
tolerances τ and t when h = 1/24.

τ t = 1/2 Time (1/2) t = 2 Time (2) t = 4 Time (4) t = 8 Time (8)
0.01 9(87) 3.36 3(22) 0.87 3(27) 1.03 4(34) 1.30

0.005 8(79) 3.02 2(19) 0.88 3(23) 0.90 3(28) 1.14
0.001 6(52) 2.17 2(16) 0.78 2(19) 0.78 3(22) 1.00
0.0001 4(38) 1.77 2(14) 0.75 2(15) 0.73 2(16) 0.83

Table 7: Number and time of iterations of GMRES(10) with preconditioners M̂t for different drop
tolerances τ , t when h = 1/32.

τ t = 1/2 Time (1/2) t = 2 Time (2) t = 4 Time (4) t = 8 Time (8)
0.01 11(108) 15.06 3(24) 3.39 3(28) 3.9 4(37) 5.14

0.005 9(89) 12.31 3(21) 3.02 3(24) 3.39 3(30) 4.17
0.001 6(58) 8.19 2(17) 2.47 2(20) 2.86 3(24) 3.48
0.0001 4(39) 6.06 2(14) 2.28 2(16) 2.55 2(17) 2.69
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4. Conclusion

We have proposed two types of block triangular preconditioners applied to the linear saddle
point problems with the singular (1,1) block. The preconditioners have the attractive property
of improved eigenvalues clustering with increasing ill-conditioned (1,1) block. The choice of
the parameter is involved. Furthermore, according to Corollaries 2.2, 2.4, 2.6, and 2.8, we give
the optimal parameter in practice. Numerical experiments are also reported for illustrating
the efficiency of the presented preconditioners.

In fact, our methodology can extend the unsymmetrical case; that is, the (1,2) block
and the (2,1) block of the saddle point linear system are unsymmetrical.
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