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1. Introduction

New power systems include nonlinear, switching, and frequency dependent elements.
An algorithm is required to calculate the periodic steady-state solutions of such systems.
Different algorithms to this end have been developed by many researchers. These algorithms
are classified, in terms of their formulation methodologies, into three categories: harmonic
domain methods [1, 2], time domain methods [3, 4], and hybrid methods [5, 6]. In time
domain method the nonlinearity and switching are modeled with ease, but frequency
dependency of elements is a complicated concern. On the other hand, for the case of steady-
state solution, the transient response of the system must be eliminated by adjusting the
initial conditions [4]. Also when switching devices are modeled, especially in large systems
with distributed elements, the step time of simulation must be decreased which leads to
reduction of simulation speed. To solve this problem and to consider frequency dependency,
the harmonic domain that relates to Fourier space is introduced and developed by many of
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researchers. In harmonic domain the system is studied discretely in different frequencies. On
the other hand, the harmonic content of the system must be identified before any simulation
is carried out. This means that not only a part of frequency content that is not known is
eliminated, but also noninteger harmonics is neglected. Other problem that may occur is the
weak homogenization of solution specially for switching devices.

To extract the complete spectrum of a physical signal, that contains harmonics
of integer and noninteger orders, the main form of Fourier transform cannot be used.
Hence, a modified form of this transform called Gabor’s transform is employed from
which FFT algorithm is constructed. For signal analysis in steady-state condition, FFT
method is adequate since it can extract the complete spectrum accurately. However, the
kernel function of Gabor’s transform cannot construct a functional basis for power system
simulation. Therefore, Fourier function-based methods cannot be used for power system
analysis.

The wavelet analysis neither need to use a single window function in all frequency
components, nor has linear resolution in the whole frequency domain, while these are
essential and week points for Fourier analysis. Much of the interest regarding wavelet
concentrates on time-frequency analysis. Power system analysis in multiresolution analysis
(MRA) space is introduced by other authors in [7–9]. The speeds of solution described
in these papers make them inefficient for numerical simulation and are hence considered
impractical for a real power system with relevant large dimensions.

In this paper MRA space is used for power system simulation in nonsinusoidal and
periodic conditions. Wavelet-Galerkin method guaranties the validation of this study from
the mathematical point of view [10]. The FFT method can only be employed for signal
analysis, but the proposed method can be used for spectrum analysis of a power system
in less time as compared to other methods.

The paper is organized as follows. In Section 2 a brief description of mathematical
theory of MRA is presented. Section 3 describes modeling of power system in the new
suggested domain. In Section 4 the relationship between the new domain and spectral
analysis is illustrated. Two-case studies are simulated in the new domain and the results of
these simulations are compared with a time domain simulation in Section 5.

2. Mathematical Theory

2.1. Galerkin Method

The Galerkin method is one of the most reliable methods for finding numerical solution to
differential equations [10]. Its simplicities make it perfect for many applications. The Galerkin
approach is based on finding a functional basis for the solution space of the equation. It then
projects the solution on the functional basis and minimizes the residual with respect to it.
Standard polynomial basis or trigonometric basis is used for Galerkin method. However
wavelets used to describe MRA space provide both time and frequency localization.

2.2. Multiresolution Analysis

In this section the orthonormal basis of compactly supported wavelets is reviewed briefly.
The orthonormal basis of compactly supported wavelets of L2(R) is formed by the dilation
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and translation of single function ψ(x) [11, 12]:

ψj,k(x) = 2−j/2ψ
(

2−jx − k
)
, (2.1)

where j, k ∈ Z, the function ψ(x) has a companion, the scaling function ϕ(x), and these
functions satisfy the following relations:

ϕ(x) =
√

2
J−1∑
k=0

hkϕ(2x − k),

ψ(x) =
√

2
J−1∑
k=0

gkϕ(2x − k).

(2.2)

The coefficients H = {hk}k=J−1
k=0 and L = {gk}k=J−1

k=0 in (2.2) are quadrature mirror filters.
The number J of coefficients in (2.2) is related to the number of vanishing moments M. The
wavelet basis induces an MRA on L2(R), that is, the decomposition of Hilbert space into a
chain of closed spaces:

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · , (2.3)

such that

⋂
j∈Z
Vj = {0},

⋃
j∈Z
Vj = L2(R). (2.4)

By defining Wj as an orthonormal complement of Vj in Vj+1:

Vj+1 = Vj ⊕Wj, (2.5)

with an MRA, one can use ϕn,k(x) and ψn,k(x) as the basis functions for Galerkin method.

2.3. Wavelet-Galerkin Solution of a Periodic Problem

In the MRA space the numerical solution of a differential equation based on Wavelet-Galerkin
method in the jth level can be written in this matrix form [13]

Sjx = f. (2.6)

The decomposition Vj+1 = Vj ⊕Wj allows the operator Sj to be split into four pieces
(Wj is called the wavelet space, i.e., the detail or fine-scale component of Vj+1) which can be
written as follows:

(
Asj Bsj

Csj Tsj

)(
dxj

sxj

)
=

(
dfj

sfj

)
, (2.7)
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where

ASj : Wj −→Wj, BSj : Vj −→Wj,

CSj : Wj −→ Vj, TSj : Vj −→ Vj.
(2.8)

And dxj , dfj ∈ Wj , sxj , sfj ∈ Vj are the L2-orthonormal projections of x and f onto Wj

and Vj spaces. The projection sxj is the coarse-scale component of the solution x, and dxj is
the fine-scale component. To solve (2.7),

RSj = Tsj − CsjA
−1
sj Bsj ,

sx = R−1
sj

(
sf − CsjA

−1
sj df

)

dx = A−1
sj

(
df − Bsjsx

)
.

, (2.9)

At this stage, TSj is selected and investigated. As the problem described above is
periodic and supposing that the differential operator is equal to dm/dxm, the general form of
TSj is

TSj =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Ω(m)
0 · · · Ω(m)

−N+2 · · · Ω
(m)
N−2 · · · Ω

(m)
1

Ω(m)
1 Ω(m)

0 · · · Ω(m)
−N+3 · · · 0 · · · Ω(m)

2

...
... · · ·

... · · ·
...

...
...

Ω(m)
−1 Ω(m)

−2 · · · 0 · · · Ω(m)
N−3 · · · Ω

(m)
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (2.10)

where

Ω(m)
k−l =

∫+∞

−∞
ϕj,k(x)

dm

dtm
(
ϕj,k(t)

)
dx. (2.11)

The general forms of the other pieces of Sj are also similar to TSj . For a circulant matrix
such as TSj , the eigenvalues λα are [14]

λα =
N−2∑

k=−N+2

Ω(m)
k exp(−2πiαk/n), α = 0, 1, . . . , n − 1, (2.12)

and the corresponding orthonormal eigenvectors vα are

(vα)k =
(−1)α√

n
exp(−2πiαk/n), k = 0, 1, . . . , n − 1. (2.13)

These relations lead to provision of quasidiagonal form of represented operators in
MRA space without using conventional methods in a lesser time. Using diagonal form offers
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several advantages that are explained in the next parts. Using (2.12) and (2.13), (2.7) can be
rewritten as

⎛
⎝Asj Bsj

Csj Tsj

⎞
⎠
(
d̂xj

ŝxj

)
=

(
d̂fj

ŝfj

)
, (2.14)

where

d̂xj = Γ−1dxj , ŝxj = Γ−1sxj ,

d̂fj = Γ−1dfj , ŝfj = Γ−1sfj .
(2.15)

In these equations Γ is the modal matrix. The columns of Γ are calculated using (2.13).
Asj , Bsj , Csj , and Tsj are diagonal matrices and their elements calculated by (2.12). So to
calculate d̂xj,i and ŝxj,i (the ith values of d̂xj and ŝxj), the following equation must be solved:

(
aisj bisj

cisj tisj

)(
d̂xj,i

ŝxj,i

)
=

(
d̂fj,i

ŝfj,i

)
. (2.16)

The volume of calculations is decreased significantly using the above technique. In
other words, instead of calculating the inverse of matrices with N/2 × N/2 dimensions in
(2.7); (2.16) is used for N/2 iterations. For problems with small dimensions this method
seems not to be beneficial. However, as shown in the following sections, this approach could
be useful for solving differential equations of large power systems. This is because in such
systems the dimension of Sj in (2.6) is obtained by the multiplication of the system dimension
and the number of considered samples (N).

3. Power System Representation in the New Domain

3.1. Linear Elements Representation

The aim of this part is to obtain the expression for linear elements using mathematical
operator representation in the new suggested domain. In this work, modeling in the MRA
space has been carried out on the same basis as suggested by other researchers [7, 8]. For the
purpose of wavelet domain study, the resistor, inductor, and capacitor models are set up in
the following section.

3.1.1. Resistor

The relationship between voltage and current of a resistor r in the time domain is described
as

v(t) = ri(t). (3.1)
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Then, this relation is expressed in a wavelet expansion as

(
Vdj

Vsj

)
= r

(
U 0

0 U

)(
Idj

Isj

)
, (3.2)

where U is an identity matrix with N/2(Jmax−j+1) dimensions, N is signal length, and J is
resolutionlevel.

3.1.2. Inductor

The relationship between voltage and current of an inductor � is

v(t) = �
di(t)
dt

. (3.3)

The N point discretization of (3.3) leads to

V = �[DT ]I, (3.4)

where DT is the discrete form of derivative operator.
In the jth level of MRA space, (3.4) can be written as

(
Vdj

Vsj

)
= � ·WDT

(
Idj

Isj

)
, (3.5)

where

WDT =

(
HDTH HDTL

LDTH LDTL

)
=

(
Asj Bsj

Csj Tsj

)
. (3.6)

To transfer (3.5) from the highest level (the finest scale) to the next lower level (coarser
scale) and, respectively, in a hierarchical form to other levels (scales) of MRA space, DT is
substituted with LDTL of the higher resolution level. Of course in each subsequent level the
dimensions of matrices will be different from previous ones and its magnitude is divided by
2. The submatrices of WDT have a circulant form and this feature is specific to all orders of
derivative operator in MRA space. Also, the Γ matrix and eigenvectors are the same for all
orders in each level of MRA space. Rewriting (3.5) using (2.12) and (2.13) leads to obtain a
quasidiagonal form as follows:

⎛
⎝V̂dj

V̂sj

⎞
⎠ = � ·WDT

⎛
⎝Îdj

Îsj

⎞
⎠, WDT =

⎛
⎝HH HL

LH LL

⎞
⎠, (3.7)
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where � · WDT represents the wavelet domain impedance of inductor. There are four
submatrices for impedance definition of inductor, the first submatrix (�HH deals with
Wj → Wj) belongs to high frequency part of level j. Also the fourth submatrix (�LL relates
to Vj → Vj) represents the impedance in low frequency part.

3.1.3. Capacitor

There is a time domain relationship between the voltage and current of a capacitor c as
represented by

v(t) =
1
c

∫
i(t)dt. (3.8)

Projecting the above equation onto discrete time domain leads to

V =
1
c
[DT ]

−1I, (3.9)

whereD−1
T is the discrete form of integral operator in periodic conditions. Thus, in the wavelet

domain, D−1
T is expressed as

WD′T =

⎛
⎝HH ′ HL′

LH ′ LL′

⎞
⎠. (3.10)

To compute ith value of HH ′,HL′, . . . this relation is used

(
hh′i hl

′
i

lh′i ll′i

)
=

(
hhi hli

lhi lli

)−1

, (3.11)

where hhi, hli, lhi, and lli are the ith values of HH,HL, . . . .

3.2. Transmission Line Modeling in the New Domain

There are many papers about transmission line modeling for transient studies [15–17]. In this
section, the distributed modeling of single phase line for power system studies in the new
suggested domain is discussed briefly.

The V-I characteristic of a differential element of transmission line in continuous time
domain is represented by

−∂v
∂x

= ri + �
∂i

∂t
, (3.12)

− ∂i
∂x

= gv + c
∂v

∂t
, (3.13)
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where r, �, g, and c are resistance, inductance, conductance, and capacitance of the differential
element of transmission line, respectively. If (3.12) is replaced in (3.13), we have

∂2v

∂x2
= r1 · v + r2 ·

∂v

∂t
+ r3 ·

∂2v

∂t2
, (3.14)

where

r1 = r · g, r2 = r · c + � · g, r3 = � · c. (3.15)

If (3.14) is transformed to the new domain for ith element of jth level, the following relation
can be obtained:

⎛
⎜⎜⎜⎝

∂2V̂dj,i

∂x2

∂2V̂sj,i

∂x2

⎞
⎟⎟⎟⎠ =

(
r1 + r2hhi + r3hh

2
i r2hli + r3hl

2
i

r2lhi + r3lh
2
i r1 + r2lli + r3ll

2
i

)(
Vdj,i

Vsj,i

)
, (3.16)

where hhi, . . . , lli and hh2
i , . . . , ll

2
i are the ith diagonal elements of HH, . . . , LL and

HH2, . . . , LL2, respectively. Also, HH2 = H · D2
T · HT, . . ., LL2 = L · D2

T · LT and D2
T is

the disceretized form of second-order derivative operator. In the above method, only the
distribution of the line parameters is considered. In modeling of transmission line with
frequency dependency, r1, r2, and r3 in (3.16) are not scalars, as they are of matrix form.
In the new domain they are diagonal matrices. Each element of these matrices belongs to
a special frequency whose details are expressed in Section 4. Based on the relation between
new domain and spectral analysis, the parameter adjustments for these frequency dependent
matrices are performed.

3.3. Switching Devices Modeling

In this part, modeling method for switching devices is investigated. These devices are the
main sources of harmonics in power network. Modeling of these devices is explained by
many authors for harmonic studies [18–22]. Since wavelet makes a local analysis instead
of a general analysis, modeling of switching devices in the new domain can be facilitated.
Assume that a linear load is connected to network in series with a power electronic switch.
The relation between voltage and current of load without considering the switch is

i(t) = f(v(t)), (3.17)

where f is a linear operator. As load is in series with the switch, the relation between current
and voltage is

i(t) = p(t) · f
(
p(t) · v(t)

)
, (3.18)
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Ix

AC
source Vin

r
c

�

Figure 1: Parallel RLC circuit.

where p(t) is switching signal. Switching signal is a periodic function defined as follows:

p(t) =

⎧
⎨
⎩

1 : switch is on,

0 : switch is off.
(3.19)

Discretizing equation (3.18) leads to

I = [S] · V , (3.20)

[S] = [P] · [F] · [P]. (3.21)

This relation is obtained based on this fact that mathematical operator f is linear. It
is not necessary to suppose that the switching device is synchronized with power system
frequency. Transferring (3.21) to the new suggested domain does not result a diagonal matrix.
This refers to existence of cross-couplings between harmonics. As the transferred matrix is
not diagonal, using this matrix directly in the network equation increases the computational
volume which leads to reduced efficiency in the numerical solution. To avoid this, the
matrix is not considered in admittance matrix and the switching device is modeled as a
voltage dependent current source. Therefore, simulation at each level is carried out without
considering the admittance of switching device. Then, using the voltage of switching device
node that is obtained from the simulation and admittance matrix obtained from (3.20), the
current of switching device branch is calculated. For the first iteration this current is not exact.
To have an exact solution this current is used for next iteration and the switching device will
be modeled as a current source. This process is repeated until the solution homogenizes to a
certain value.

3.4. Network Representation

To develop this method for power network simulation, a simple circuit is considered (see
Figure 1). Applying the KCL relation yields

−ix +
vin

r
+ c

d

dt
vin +

1
�

∫
vindt = 0. (3.22)
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According to the modified nodal method that is used in harmonic analysis:

⎛
⎝

1
r
+ cp +

1
�p

1

1 0

⎞
⎠
(
v1

ix

)
=

(
0

vin

)
, (3.23)

where p is derivative operator, (3.23) could also be written as follows:

(
CR + pCC +

1
p
CL

)(v1

ix

)
=

(
0

vin

)
, (3.24)

where

CR =

⎛
⎝

1
r

1

1 0

⎞
⎠, CL =

⎛
⎝

1
�

0

0 0

⎞
⎠, Cc =

(
c 0

0 0

)
. (3.25)

CR, Cc, and CL are resistive coefficients matrix, capacitive coefficients matrix, and
inductive coefficients matrix, respectively. These matrices can be defined according to the
modified nodal method. In the new domain at the jth level, the general form of (3.24) is the
same as (2.14), where

d̂fj =

(
0

Γ−1 · Vin,dj

)
, ŝfj =

(
0

Γ−1 · Vin,sj

)
,

d̂xj =

(
Γ−1 · V1,dj

Γ−1 · Iin,dj

)
, ŝxj =

(
Γ−1 · V1,sj

Γ−1 · Iin,sj

)
.

(3.26)

Now according to Section 2 these equations are obtained

asj,i = CR + hhi · CC + hh′i · CL,

bsj,i = hli · CC + hl′i · CL,

csj,i = lhi · CC + lh′i · CL,

tsj,i = CR + lli · CC + ll′i · CL.

(3.27)

The formula (3.27) could be written for any network directly. Using these matrices, the
ith value of response vectors can be computed

rsj,i = tsj,i − csj,ia−1
sj,ibsj,i,

ŝxj,i = r−1
sj,i

(
ŝfj,i − csj,ia−1

sj,id̂fj,i
)
,

d̂xj,i = a−1
sj,i

(
d̂fj,i − bsj,iŝxj,i

)
,

(3.28)
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where d̂xj,i and ŝxj,i are the ith values of d̂xj and ŝxj . To obtain jth level of response vector in
MRA space, that is, dxj and dxj , Γ is multiplied to d̂xj and ŝxj , respectively.

The steps for Nonsinusoidal steady-state analysis are as follows.

(1) Determine number of levels (Jmax) and number of samples (N), where Jmax is the
index of finest scale in MRA space.

(2) Calculate the CR, CC, and CL matrices according to the modified nodal method.

(3) Set J = 1.

(4) Set j = Jmax − J , where j is the index of current resolution level.

(5) Compute DT , HDTH,HDTL, . . . for jth level.

(6) Compute the Γ matrix using (2.13) and then transfer the input vector to the new
domain.

(7) Set i = 1.

(8) Calculate asj,i, bsj,i, csj,i, and tsj,i using (3.27). Then by using (3.28), calculate d̂xj,i
and ŝxj,i.

(9) If i =N/2J then set i = i + 1 and go to step (8).

(10) Calculate the response vector in MRA space for jth resolution level, (i.e., dxj and
sxj).

(11) If J is not equal to Jmax, then set J = J + 1 and go to step (5).

(12) End.

Figure 2 shows the flowchart of nonsinusoidal steady-state analysis in the proposed
domain.

4. The New Domain and Spectral Analysis

Spectral analysis is the most significant aim of power quality estimation in electrical power
networks [23, 24]. Transferring the simulation results from the new proposed domain to
time domain seems to be unnecessary step for obtaining harmonic information. Required
information such as THD and harmonic amplitudes could be extracted directly from the
results in the new suggested domain which has the advantage of less time being consumed
for simulation.

If a column of Γ matrix is multiplied by a vector of wavelet coefficients of a signal such
as dfj , then

[(vα)k]
T · dfj =

(−1)α√
n

N−1∑
k=0

dfj,k exp
(−j · 2 · π · α · k

n

)
, (4.1)

where (vα)k is the αth column of Γ introduced in (2.13), and dfj,k is the kth element of dfj .
Equation (4.1) shows that multiplication by a column of Γ returns the DFT of dfj . In extracting
harmonic contents of a typical signal, in the coarsest scale, the first element of ŝfj represents
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Start

Determine level no.(Jmax) and sample no. (N)

Calculation of CR, CC , and CL

Set J = 1

Set j = Jmax − J
Calculation of DT , HDTH, HDTL,

LDTH, LDTL for jth level

Computation of Γ,
transfer of input vectors to the new domain

Set i = 1

Calculation of asj,i, bsj,i, csj,i,
and tsj,i

Computation of d̂xj,i and

Ŝxj,i

i = i + 1 No
i ==N/2J

Yes

Calculation of response vector in MRA
space

J = J + 1 No
J == Jmax

Yes

Stop

Figure 2: Flowchart of nonsinusoidal steady-state analysis.

the DC content of the signal which could easily be proven mathematically. For other harmonic
contents, the number of considered periods has an important role in identifying the element
representing the value of a special harmonic. If only one period of the original signal is
considered, the second element of ŝfj from the coarsest scale (lowest level) represents the
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G Util

50:GEN-1
100:Util-69

1:69-1

51:AUX

5:FDR F

49:RECT 39:T3 Sec

26:FDR G

29:T11 Sec

6:FDR H

3:MILL-1

11:T4 Sec 19:T7 Sec

Figure 3: The 13-bus test system.

content of the main harmonic. With respect to the frequency band, (n + 1)th element of ŝfj
and d̂fj in each level represents the contents of nth harmonic order.

To calculate THD value of a signal from its multiplication by Γ matrix, we define these
relations as follows:

Ad,j =

√√√√ 1
N

N/c∑
k=2

∣∣∣2 · d̂j,k
∣∣∣

2
, j = 0, . . . , Jmax; c = 2(Jmax−j+2),

Ac,0 =

√√√√ 1
N

N/c∑
k=2

∣∣2 · ŝj,k
∣∣2 j = 0,

THD =

√(∑Jmax
j=0 Ad,j2

)
+A2

c,0

S1
,

(4.2)

where N is the number of original signal samples, and S1 is the amplitude value of the main
harmonic.
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Figure 5: Test system.

5. Case Studies

To verify the accuracy and computational performance, the proposed method is demon-
strated for two-case studies and the results are compared with the time domain simulation
results.

5.1. Case Study 1

The periodic steady-state solution of the test network shown in Figure 3 is calculated by the
proposed algorithm. This network is a test system for Harmonics Modeling and Simulation
[25], where a harmonic source is located on the bus 49-RECT as ASD load. Disregarding
the frequency dependency, generally a simple model is used for lines and transformers.
The test system is connected to a larger plant from 100:Util-69 bus. An equivalent model
is hence obtained for the larger plant from the fault MVA level. The system consists of a local
generator, modeled by a voltage source in series with a subtransient impedance. The whole
system is therefore transformed into the new suggested domain where THDs are computed
directly from results. Figure 4 shows the IUtil waveforms obtained from the time and new
domain simulations for which there is a perfect overlap. The consumed time for simulation
of test network was found to be 4.7 seconds. Simulation was coded with MATLAB version
7, using 512 samples, 3 levels for MRA space via a personal computer with Pentium 4 CPU
(2.8 GHz) and 512 RAM. Tables 1 and 2 compare THDs for the new proposed method and
those obtained from SIMULINK time domain simulations.
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Figure 6: TCR current: new proposed domain and time domain.
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Figure 7: Load Voltage (V3): new proposed domain and time domain.

5.2. Case Study 2

To examine the validation of the proposed models for the distributed transmission line and
switching devices mentioned earlier, a 132 KV test system is selected and simulated using the
new suggested domain. This simple system consists of two transmission lines with 50 Km
length and a switching load (see Figure 5). The associated test system parameters are listed
in Table 3. The switching load is a SVC which has a thyristor controlled reactor (TCR) with
the firing angle of 130◦ and a fixed capacitor (FC). In Table 4 the THD percentages and the
consumed times for this simulation are compared. The THDs are calculated directly from
the new proposed domain. db4 wavelet function is used in this simulation. As far as the
simulation time is concerned, the new proposed domain reduced this almost by half from
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Table 1: THD percentage values.

Bus voltages New proposed method Time domain method Error (%)
49-RECT 2.48 2.57 3.568
05:FDR F 2.41 2.52 4.400
09:FDR H 2.40 2.52 4.789
03:MILL 2.41 2.52 4.396
50:GEN-1 2.32 2.43 4.497
100:UTIL-69 0.17 0.18 3.111

Table 2: THD percentage values.

Current New proposed method Time domain method Error (%)
IUtil 2.49 2.54 2.106
IG 20.54 21.16 2.945

Table 3: Test system parameters.

TL1 and TL2
Rl = 0.0955 [Ω/Km] Ll = 2.134 × 10−3 [H/Km]

Cl = 12.371 × 10−9 [F/Km]
SVC Xc = −377j [Ω] XL = 377j [Ω] RXL = 10 [Ω]
Loads R1 = R2 = 300Ω XL1 = XL2 = 264j [Ω]

Table 4: Comparing of THD percentages and simulation times.

V2 V3 Iin Simulation time (sec)
Time domain (FFT) 3.3806 6.5168 4.9402 3.44
New domain (N = 512, J = 3) 3.3679 6.4900 4.8984 1.85

3.44 seconds to 1.85 seconds. This can further be reduced using fast numerical algorithms,
especially in transferring input vectors and operators to the new domain which was not
considered in this work.

Figures 6 and 7 show the simulation results from time domain and the new suggested
domain for TCR current and load voltage, respectively.

6. Conclusions

This paper describes a new approach based on MRA space for the Nonsinusoidal Steady-
State Power System Analysis. By applying operator representation theory, the system
components such as resistor, inductor, capacitor, transmission lines, and switching devices are
modeled in the wavelet domain. The model of switching device is based on switching signal
while the interaction between network and switching device is also considered. Discrete
nature of the model, easy adoptability for nonlinear, and frequency dependent components
are the main advantages of the proposed modeling technique.

Simulation results confirm the effectiveness and accuracy of the proposed system
model and analysis scheme. The proposed method might well be applied to several fields
including power quality analysis and power system protection.
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