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This work presents a tracking control model for a flexible nonprismatic link robotic manipulator
using simultaneously motor torques and piezoelectric actuators. The dynamic model of the flexible
manipulator is obtained in a closed form through the Lagrange equations. The control uses the
motor torques for the joints tracking control and also to reduce the low-frequency vibration
induced in the manipulator links. The stability of this control is guaranteed by the Lyapunov
stability theory. Piezoelectric actuators and sensors are added for controlling vibrations with
frequencies beyond the reach of motor torque control. The naturals frequencies are calculated by
the finite element method, and the approximated eigenfunctions are interpolated by polynomials.
Three eigenfunctions are used for the dynamics of the arm, while only two are used for the control.
Numerical experiments on Matlab/Simulink are used to verify the efficiency of the control model.
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1. Introduction

The need of lightweight robots has attracted the attention to robotic manipulators with
flexible links. These robots are essential in mobile applications, such as surface vehicles,
aircrafts, and spacecrafts. The design of these manipulators requires a control system which
takes into account the interaction of the joint angles and the elastic modes. Modelling this
control has the additional complication of the essential uncertainty that characterizes robotic
manipulators, such as variable payload and joint frictional torques [1].

Designing a control for a flexible robot design requires two steps: a robust tracking
control, acting on the joint angles, and a stabilizer for the motion-induced vibration
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suppression. Robotic systems can be approximated as linear with respect to some parameters,
as mass, inertia, and damping factors, but this assumption is too inaccurate for the state.
Therefore, a position control law must be defined with an appropriate tracking error
asymptotic stability, verified with Lyapunov functions [2].

A linearized model-based stabilizer is designed to damp the elastic oscillation [3].
However, the high-frequency modes cannot be eliminated by the motor action alone, because
the torque control system low speed is ill suited for high-frequency vibrations. Thus, the
control of those vibrations must use higher frequency actuators like piezoelectrics.

Piezoelectricity is defined as a relation between an applied electric field and strain
or an applied strain and electric field in certain crystals, ceramics, and films. In general,
flexible robot manipulators feature surface bonded or embedded piezoelectric actuators and
or sensor. The piezoceramic actuator generates a large actuating force and has a fast response
time. Moreover it is smaller than other actuating systems as electrical motor or hydraulics for
the same force [4].

Robots’ flexible links are built in complex geometries, which cannot be modeled by
simple beam bending equations. In this work we propose a methodology for accounting the
complex geometry within the realm of the Euler-Bernoulli beam theory.

The finite element method is used for the solution of the vibration eigenproblem
since the analytical approach is cumbersome for complex nonprismatic beams. However,
we wish to retain the simplicity of the analytic derivation of the control; the eigenvectors
are interpolated from the nodal values with polynomials [5]. The effectiveness of this
interpolation is checked by the Rayleigh quotient [6].

A piezoelectric actuator is applied to single-link flexible manipulators in [7, 8] and
to two-link flexible manipulators in [9]. In these works, the control torque of the motor is
determined based only on the rigid link dynamics, and all the oscillations are suppressed by
applying a feedback control voltage to the piezoelectric actuator.

In this work, we propose a tracking control model for a robot arm with flexible links.
Motor torques control based on the elastic link dynamics is used for the joint motion and
reduces the low-frequency vibrations. The actuation frequencies ranges of the motor and
piezoelectric inserts are chosen to be nonoverlapping, so that their controls are uncoupled.

The lower fundamental modes are responsible for the most of the tip displacement
of the robot arm; therefore only the first three eigenfunctions are considered in the work.
The theory formulated in this work can be use for more than one flexible link, but for
simplification, the simulated model has one rigid and one flexible link. A Matlab/Simulink
code was created to assess the control model efficiency.

2. Dynamic Model

The motion of the robot endpoint is a composition of the successive relative link motions. This
movement is described using homogeneous matrix transformations. These transformations
represent translations and rotations due to the joints angle change and the flexible link
elastic deflections [10]. Flexible Links are modeled as Euler-Bernoulli beams, with vibration
deflection dyi(xi, t) satisfying the partial differential equation

(EI)i
∂4dyi(xi, t)

∂x4
+ ρiai

∂2dyi(xi, t)
∂t2

= pi(x), (2.1)
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where ρi is the density, ai is the cross-section, pi(x) are the external forces actuating on the
beam, and (EI)i is the flexural rigidity constant of the ith link [11]. For small displacements,
the natural frequencies and modes can be considered independent of the external forces.

Exploring the time and space separability on (2.1) by the modal analysis technique,
the link deflection can be expressed as

dyi(xi, t) =
mi∑

i=1

ϕij(xi)δij(t), (2.2)

where each term in the general solution of (2.1) is the product of a time harmonic function of
the term δij(t) = ejωij t, and a space eigenfunction which for uniform cross section is written
as

ϕij(xi) = C1ij sin

(
ρiω

2
ij

(EI)i
xi

)
+ C2ij cos

(
ρiω

2
ij

(EI)i
xi

)
+ C3ij sinh

(
ρiω

2
ij

(EI)i
xi

)

+ C4ij cosh

(
ρiω

2
ij

(EI)i
xi

)
,

(2.3)

where ωij is the jth natural angular frequency of the eigenvalue problem for link i, and mi

is the number of eigenfunctions considered in the truncated analysis. The determination of
the constant coefficients Ckij uses clamped conditions at the link base and mass boundary
conditions representing the balance of bending moment and shearing force at the link
endpoint [12].

This solution is possible when the link geometry is prismatic or slightly nonprismatic.
For irregular link shapes it is very difficult to obtain a closed form analytic solution; so we
propose a more general approach in the next section.

3. Approximating Solutions for Eigenfunctions

The manipulators links are modeled as beams, since their lengths are usually much larger
than the cross-sectional height and depth. Thereby, considering that the control can prevent
large displacements, it is possible to apply the Euler-Bernoulli theory for small displacements,
where (2.1) of motion for a single link is rewritten as

d2

dx2

(
EI

d2ϕj

dx2

)
= −ρaω2

j ϕj , (3.1)

Approximating ϕj by the finite element method requires firstly to write the weak form
of the equation

∫ l

0

d2

dx2

(
EI

d2ϕj

dx2

)
v dx +

∫ l

0
ρaω2

j vϕj = 0, ∀v, (3.2)

where v is a arbitrary variation of ϕj with v(0) = 0.



4 Mathematical Problems in Engineering

We assume admissible solution of the form

ϕj =
N∑

I=1

QIψI,

v =
N∑

J=1

VJψJ .

(3.3)

where QI , VJ are scalar coefficients, and N are the number of basis functions {ψ1, ψ2, . . . , ψN}.
The link is divided in several subdomains; the finite elements and these base functions are
assumed to have compact support on a single element.

Recalling that EI is assumed constant on each finite element [5], using integration by
parts, and substituting (3.3) in the results, we derive the expressions of the stiffness, mass
and damping matrices, respectively,

KIJ =
∫ l

0
EI

d2ψI

dx2

d2ψJ

dx2
dx,

MIJ =
∫ l

0
ρaψIψJdx,

C = αM + βK,

(3.4)

where ψ are the elementwise interpolation functions, and α, β are the Rayleigh damping
constants. Usually four cubic Hermite polynomials are used as interpolation functions in
each two-node finite element; so the unknowns of the approximated problem are nodal
displacements and its derivatives. The mass matrix can be further approximated by its
lumped form. Then the natural modes and frequencies can be computed by the following
matrix eigenvalue problem:

(
K −ω2

jM
)
ϕj = 0, (3.5)

where ω2
j are the characteristic values from (3.5). The eigenvectors represent the vibration

modes in nodal coordinates.
Considering that the control algorithm requires twice differentiable eigenfunctions,

it is necessary to create a continuous interpolation from the discrete values. The natural
choice would be using the same elementwise Hermite polynomials used by the finite
element approximation, but the eigenfunctions ϕ present large oscillations, due to excessive
sensitivity to the numerical imprecision, specially of the derivatives. Figure 1 shows these
oscillations for the first and second mass-normalized eigenfunction interpolation.

It is possible to smooth these disturbances by choosing another set of interpolation
functions. In this case, we chose to forgo the elementwise Hermite approximation for a global
interpolation ignoring the derivatives of the inner nodes. Three alternatives are considered:
interpolating all nodes with a single Hermite approximation, a mixed Hermite-Lagrange set
of polynomials which satisfies the displacements and derivatives at the outermost nodes, but
only the displacements at the inner nodes, and finally a least-squares polynomial regression.
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Figure 1: Eigenfunctions which represent the vibration modes of a link fixed on x = 0. (a) is the first mode
and (b) the second mode. Eigenfunctions generate through the interpolation with Hermite polynomial in
each element.

For computing the coefficients by least-squares it is necessary to consider the
pseudoinverse operator A+ [13]. This operator has the following properties: if ATA is
invertible, then A+ = (ATA)−1AT; if AAT is invertible, then A+ = AT(AAT)−1. The coefficients
from the polynomials are calculated from the results of the linear system Ax = y, hence
x = A+y.

The matrix A comes from the finite element mesh and y from the eigenvectors values:

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

xn1 · · · x
1
1 1

xn2 · · · x
1
2 1

... · · ·
...

...

xnp · · · x1
p 1

⎤
⎥⎥⎥⎥⎥⎥⎦
, y =

⎡
⎢⎢⎢⎢⎢⎢⎣

y1

y2

...

yp

⎤
⎥⎥⎥⎥⎥⎥⎦
, (3.6)

where n is the order of the polynomials, and p is the number of points at the mesh.
All the three options can eliminate the oscillations on the eigenfunctions, but we

interested in the best choice. This work adopts the Rayleigh Quotient [6] as the error criterion,
which for analytic functions can be expressed as

ω2
j =

∫ l
0 EI
(
d2ϕj/dx

2)2
dx

∫ l
0 ρaϕ

2
j dx

. (3.7)

The discrete form is given by ω2
j = ϕTj Kϕj/ϕ

T
j Mϕj , where in this case ϕj are the

eigenvectors.
In this work we tested the numerical implementation of three approximation schemes

proposed. Results show that they can eliminate oscillations but with different effects on
the Rayleigh Quotient. Figure 2 shows the smoothed resulting mode shape, free from the
oscillations for the mixed Lagrange-Hermite formulation.
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Figure 2: Eigenfunctions which represent the vibration modes of a link fixed on x = 0. (a) is the first
mode and (b) the second mode. Eigenfunctions generate through the interpolation with mixed Lagrange-
Hermite polynomials.

The eigenvalue error of the smoothed eigenvectors in (3.7) and the original
eigenvalues from (3.5) are around 1 Hz for the first and the second mode and 2 Hz for the
third mode, which means around 5% for the first vibration mode and smaller for the second
and third.

For the links geometries tested in this work, the complete Hermite approximation
gave smaller eigenfunctions errors, but other geometries might have better results with other
approximation schemes.

4. Equations of Motion

The closed form equations of motion are derived using a Lagrangian approach, written as

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= Fi, i = 1, 2, . . . , n +m, (4.1)

where L = T −U is the Lagrangian, T is the kinetic energy, U is the potential energy, qi are the
generalized coordinates, associated with joint coordinates and link deflections, and Fi are the
generalized forces. In the form of compact matrices [10], it can be written as

B(q)q̈ + C(q, q̇)q̇ +Keq +Dq̇ + g(q) = u, (4.2)

where q = [θ,δ]T is the generalized coordinates vector, θ is the n × 1 joint coordinates vector,
δ is the m × 1 elastic modes coordinates vector, B(q) is the positive definite symmetric inertia
matrix, C(q, q̇) is the Coriolis and centrifugal forces vector, g(q) is the gravitational torque
vector, Ke is the positive definite stiffness diagonal matrix, D is the positive semidefinite link
diagonal damping matrix, and u is the joint input torque vector.
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The various matrices from the dynamic model can be partitioned as

B(q) =

[
Bθθ Bθδ

BT
θδ Bδδ

]
, C(q, q̇) =

[
Cθθ Cθδ

Cδθ Cδδ

]
, Ke =

[
0 0

0 K

]
,

g(q) =

[
gδ(θ)

gθ(δ)

]
, u =

[
τ

0

]
,

(4.3)

where the indeces θθ, δθ, and δδ are the terms from the matrices corresponding with rigid
body, rigid coupling with flexible body, and flexible body, respectively.

5. Tracking Control

This section introduces the flexible robot arm tracking control, presented by [3]. The
algorithm uses an adaptive control for joint tracking and a robust control law to reduce the
elastic vibrations of the arms. The improved tracking controller using nominal compensation
of dynamic nonlinearities of system equation (4.2) is given by

u = B(q)q̈r + C(q, q̇)q̇r +Keqd +Dq̇r + g(q) −Kps, (5.1)

where Kp is the positive definite diagonal gain matrix, q̇r = q̇d − Λq̃ is the reference velocity
vector, with tracking error q̃ = q − qd, q is the robot path, qd is the desired path and s =
q̇ − q̇r = ˙̃q +Λq̃ is the reference error, and Λ is a diagonal gain matrix.

Inserting (5.1) in the dynamics equation (4.2), the error equation becomes

B(q)ṡ = −
(
C(q, q̇)s +Keq̃ +Ds +Kps

)
. (5.2)

In order to prove the stability at the origin of (5.2), consider x = [q̃ ˙̃q]
T

with the
Lyapunov function

V(x, t) = V(x) =
1
2
sTB(q)s + q̃T(ΛKp +Ke

)
q̃. (5.3)

Differentiating (5.3) along (5.2), and using the skew symmetric property of B(q) −
2C(q, q̇) that implies sT(B(q) − 2C(q, q̇))s = 0 [14], it results

V̇(x) = − ˙̃q
T
Kp ˙̃q − q̃T(ΛKp +Ke

)
q̃. (5.4)

Since Kp, Λ, and Ke are diagonal positive definite matrices, then V̇(x) ≤ 0, which
implies that the equilibrium point x = 0 is asymptotically stable [3]. However, it is not
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guaranteed that the deflections tend to zero for weakly damped system. In this case, we can
add a robust control law [2], that damps the system and eliminate the steady vibrations as

D′Δδ̇d =
(
DΔ − diag

{
f11, . . . , f1r1 , . . . , fnr1 , . . . , fnrn

})
δ̇d,

fij =
δ̇dijsdij∥∥δ̇dijsdij
∥∥ + εije−ϕij

, i = 1, . . . , n, j = 1, . . . , ri,
(5.5)

where δ̇dij , sdij are generic elements dependent on desired deflections δd and tracking error
s, ri is the number of deflection generalized coordinates for link i, and n is the number of links.
The robust control law (5.5) shows strong adaptation to various perturbation from modeling
errors and disturbance, and guaranteed transient performance [15].

To prove the stability of the deflections δi we assume that θd is constant, and from
(4.2) we reach partitioned equation for a desired deflection δd

Bδδδ̈d + Cδδd +D′Δδ̇d +Kδd + g(δd) = 0. (5.6)

Considering y = δd +K−1gδ in (5.6) results

Bδδÿ + Cδẏ +D′Δẏ +Ky = 0, (5.7)

with Lyapunov function

Vy(y, ẏ) =
1
2
yTKy +

1
2
ẏTBδδẏ. (5.8)

Taking the time derivative of (5.8) along (5.7) and using again the property that Bδδ −
2Cδ is skew symmetric and yT(Bδδ − 2Cδ)y = 0 [14], it results

V̇y(y, ẏ) = −ẏTD′Δẏ. (5.9)

Since D′Δ is a diagonal positive definite matrix, then V̇y(y, ẏ) ≤ 0, which implies that
the equilibrium point y = 0 is asymptotically stable.

Equation (5.5) is added to (5.1) to obtain the control law of the system equation (4.2)
expressed as

u = B(q)q̈r + C(q, q̇)q̇ +Keqd +Dq̇r + g(q) −Kps +
[
0T

(
D′Δδ̇d

)T]T
. (5.10)

The proof of the stability of this control law can be obtained using Lyapunov stability
theory in a similar manner to that shown in the stability of the control law (5.1). So the control
law (5.10) is stable on the origin, and tracking error q̃ tends to zero. The damping of the
system has been increased, and the deflection modes tend to zero. A detailed proof of the
stability of this control law can be seen in [3].
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Figure 3: Link nonprismatic and flexible.

6. Piezoelectric Vibration Control

Under certain conditions, achieving the suppression of elastic link vibrations by means of
the motor torque alone may be very difficult. Hardware limitations, such as motor saturation
and motor noise, may prevent the control of high-frequency vibration modes. To solve these
problems we use a hybrid controller consisting of the servomotor and piezoelectric actuators
and sensors bonded to the flexible links as shown in Figure 3. This nonprismatic link has a
linearly varying cross section.

We propose a vibration feedback control voltage to the piezoceramic actuator based
on the voltage of the piezofilm sensor [16], expressed as

P(t) = −cTaKcṖf(t) (6.1)

with

ca =
EbEctctfd31

ρbab(Ebtb + 6Ectc)
(
ϕ′
(
xa + apc

)
− ϕ′(xa)

)
, (6.2)

where Kc is the feedback gain, Ec and Eb are the elastic modulus of the piezoceramic and
the link, respectively, tc, tf , and tb are the piezoceramic, piezofilm, and link thicknesses,
respectively, ab is the cross section of the link, d31 is the piezoelectric constant ρb is the mass
density, apc is the size of the actuator, xa is the localization from the actuator on the link, and
Ṗf(t) is the voltage generated by the piezofilm sensor, obtained by integrating the electric
charge developed at a point on the piezofilm, expressed as

Pf(t) = csδ =
k2

31bf

Cg31
dniδ, (6.3)

where k2
31 is the electromechanical coupling factor, C is the capacitance of the film sensor, dni

is the distance from the bottom of the piezofilm sensor to the neutral axis, bf is the width of
piezofilm, and g31 is the piezoelectric stress constant [17]. This additional controller equation
(6.1) is combined to the original one. The resulting control law for the system equation (5.3)
is expressed as

u = B(q)q̈r + C(q, q̇)q̇ +Keqd +Dq̇r + g(q) −Kps +
[
0T

(
D′Δδ̇

)
+ caP(t)

]T
. (6.4)
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Figure 4: Model of planar one-link flexible manipulator featuring piezoelectric actuators and sensors.

Using Lyapunov stability theory on (6.4) we can prove that the trajectory error and
flexible link deflections result assymptotically stable for this control law.

The total potential energy Ue of the flexible manipulator is given by the sum of the
elastic energies at each link and can be expressed as

Ue = δTKeδ, (6.5)

where K is the generalized stiffness matrix of the links. For a link i

Ki =
∫ li

0
(EI)i

d2ϕij

dx2
i

d2ϕik

dx2
i

dxi, (6.6)

where j and k are the eigenfunctions index.
The inclusion of the piezoelectric material on the flexible links is accounted by defining

the beam properties with Heaviside functions to change the geometry and stiffness where the
material is added. The computation of the eigenfunctions for (6.6) is accomplished as shown
in Section 3.

7. Results

The physical system considered in this work is composed by a rigid and a flexible link, joints,
and motors, based on the robot design suggested by Kim et al. [9] and Bottega et al. [18].

However, this work contains significant improvements with respect to the previously
published work [18]. The flexible link geometry was generalized to allow nonprismatic
designs. Three vibration modes are used in the simulation, instead of two, while the control
is still derived with two modes. The main reason behind this last difference is to test if the
control is robust enough to damp the additional mode.

The simplified model robot with the first rigid and the second flexible link is shown
in Figure 4. Gravitational effects were ignored [19]. The Lagrangian coordinate vector is q =
[θ1, θ2, δ1, δ2, δ3]

T .
The results were obtained using a block-diagram implemented in MatLab/Simulink

software presented in Figure 5, where the fourth-order Runge-Kutta method with Δt =
1 milliseconds was used to integrate the equations for a five-second simulation.
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From rigid body dynamics, the torque is proportional to the angular acceleration
and the mass inertia. For the second joint, since the inertia is constant, the torque would
be a positive constant value for the initial instants, zero for the constant speed period, and
negative constant for the deceleration period. For the first joint, the inertia of the second link
is changing due to its relative motion; so it is a bit more complicated but is a simple function
of the motion [20].

In this system, the torque control for joint angle is obtained through (5.10), which
depends on the error path. Because of this, we introduce to control torque a trajectory to
the desired angle for the joints 1 and 2. Here we choose a trapezoidal speed trajectory with
amplitude π/2, without initial tracking error was shown in Figure 6.
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Table 1: Dimensional and mechanical properties of the aluminium link and piezoelectric materials.
Capacitance of the piezofilm (C) 380 pF cm−2. Piezoelectric stress constant of the piezofilm (g31) 216 ×
10−3 (V m−1) (N m−2)−1. Electromechanical coupling factor (k31) 0.44.

Young’s modulus
(GPa)

Thickness
(mm) Density (kg m−3) Width

(mm)
Length (m)

Aluminum link 65 at one side: 1
at other: 0.6 2890 25 1

Piezoceramic (PZT) 64 0.815 7700 25 0.2
Piezofilm 2.0 0.028 1780 25 0.2
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Figure 7: (a) Deflection of first, second, and third modes with damping. (b) Tracking error of the
trapezoidal trajectory tracking system.

7.1. Physical Parameters

Table 1 presents the mechanical and geometrical properties of the piezoelectric materials [7,
8] used in this work. The manipulator geometry and masses are the same as in [3].

8. Simulations

Firstly, we simulated a damped system with a control law (5.1). Figure 7(a) shows that the
elastic deflections tend to zero, and they are limited due to natural damping of the system.
Figure 7(b) shows that the system tracking error also tends to zero.

In the second simulation, we used the control law given by (5.10) in the same system
used before. Figure 8(a) shows an increase in the system damping and a faster deflections
converge to zero. This is a result of the addition of D′Δδ̇d controller.

For the next simulations of the system with control law (6.4), we added piezoelectric
actuators and sensors in the position xa = 0.09 m and sizing apc = 0.39 m of piezoelectric.
Figure 8(b) shows a reduction on the frequency and deflection amplitude induced by the
tracking control when piezoelectric actuators and sensors are added.
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Figure 8: (a) Deflections of first, second, and third modes for damping system with robust control. (b)
Deflections of first, second, and third modes for damping system with piezoelectric actuator and sensor.
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Figure 9: (a) Vertical tip trajectory error with robust control without piezoelectric material. (b) Vertical tip
trajectory error with robust control and piezoelectric actuator and sensor.

Figures 9(a) and 9(b) also show a reduction on the trajectory tracking error control
when piezoelectric actuators and sensors are added. The robot manipulator starts with both
links stretched and ends with the first joint at π/2 and the second at −π/2.

Figures 10(a) and 10(b) show a reduction on the frequency and deflection amplitude,
in the first mode, induced by the tracking control and when piezoelectric actuators and
sensors are added.



14 Mathematical Problems in Engineering

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

δ

0 1 2 3 4 5
t

Deflection mode 1

(a)

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

δ

0 1 2 3 4 5
t

Deflection mode 1

(b)

Figure 10: (a) Deflections of first mode for damping system with robust control. (b) Deflections of first
mode for damping system with piezoelectric actuator and sensor.
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Figure 11: (a) Deflections of second mode for damping system with robust control. (b) Deflections of
second mode for damping system with piezoelectric actuator and sensor.

Figures 11(a) and 11(b) show a reduction on the frequency and deflection amplitude,
in the second mode, induced by the tracking control and when piezoelectric actuators and
sensors are added.

Figures 12(a) and 12(b) show a reduction on the frequency and deflection amplitude,
in the third mode, induced by the tracking control and when piezoelectric actuators and
sensors are added.

It is clearly seen in Figures 8, 9, 10, 11, and 12 that the frequency and deflection
amplitude are reduced by activating the piezoelectric actuators and sensors during the
motion. These simulations show competitive results with other published approaches [9].
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Figure 12: (a) Deflections of third mode for damping system with robust control. (b) Deflections of third
mode for damping system with piezoelectric actuator and sensor.

9. Conclusions and Considerations

In this work we presented the derivation of a tracking and vibration control of a robot with
flexible links. This technique uses the motor torque for the joint angle control and also for
controling the low-frequency vibrations in the robot links. Piezoelectric actuators and sensors
are added to the system to control the high-frequency vibrations that cannot be reduced by
the motor alone.

For geometric complex links, the eigenvectors are approximated using polynomial
interpolation spanning all finite elements of each flexible link. The Rayleigh quotient was
used for the validity of the technique. Hermite polynomials interpolation proved to be the
best approximation for this case.

The simulations for the control system confirmed the effectiveness for this control
technique. The numerical results indicate that oscillations were suppressed, and the tip
trajectory was stabilized.

This methodology can be developed to build light manipulators with flexible links,
while preserving the force and precision. It also reduces the energy consumption and suits
the needs for aerospace systems or for tasks that demand lightness, precision, and agility.
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