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We present a study of the behavior of a ball under the influence of gravity on a platform. A
propagating surface wave travels on the surface of the platform while the platform remains
motionless. This is a modification of the classical bouncing ball problem and describes the transport
of particles by surface waves. Phase and velocity maps cannot be expressed in the explicit form due
to implicit formulations, and no formal analytical analyses is possible. Numerical analysis shows
that the transition to chaos is produced via a period doubling route which is a common property
for classical bouncers. These numerical analysis have been carried out for the conservative and
for the viscous cases and also for elastic and for inelastic collisions. The bouncing process can be
sensitive to the initial conditions and can be useful for control techniques which can dramatically
increase the effectiveness of particle transport in practical applications. Finally, we also consider
the mechanical model of a particle sliding on a surface which is also important because it has
important physical implications such as the transportation of thin films in biomedical applications,
among others.
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1. Introduction

A particle falling down, in a constant gravitational field, on a moving platform is called a
bouncing ball problem, or a bouncer. This model was suggested more than thirty years ago
[1, 2] as an alternative to the Fermi-Ulam model [3] of cosmic ray acceleration [4]. In the
ensuing years many approaches to the bouncer model have been studied theoretically and
experimentally [5–8]. It has been proved to be a useful system for experimentally exploring
several new nonlinear effects [9, 10]. Moreover, it has been implemented into a number of
engineering applications [11, 12].



2 Mathematical Problems in Engineering

The bouncer model can be briefly characterized by the following basic statements. (i)
Maps derived for the bouncer model can be exactly iterated for any time function describing
the moving platform [7, 9] (though usually the platform is assumed to oscillate with a single
frequency). (ii) The ball-platform collisions can be characterized by a coefficient of restitution
α changing from α = 1 for a perfectly elastic case to α = 0 for a completely inelastic situation.
(iii) The chaotic bouncer can be easily used to relate theoretical predictions to experimental
results, [9, 10] what makes it a paradigm model in nonlinear dynamics.

In this paper we assume that a particle is falling down in a constant gravitational field
on a stationary platform. A propagating surface wave travels on the surface of the platform
while the platform remains motionless. Such a model can be used to describe the transport
of particles by propagating surface waves, which is an important problem with numerous
applications. Powder transport by piezoelectrically excited ultrasonic surface waves [13],
manipulation of bioparticles using traveling wave electrophoresis [14, 15], and conveyance
of submerged buoys in coastal waters [16] are just a few examples of problems involving the
interaction between propagating waves and transported bouncing particles.

This paper is organized as follows. In Section 2 we present a complete description
of our model, the bouncer system. Section 3 presents numerical simulations showing that
the modified bouncer model possesses such an inherent chaotic dynamics. These results are
carried out for both, the conservative and the dissipative cases. The case of a particle sliding
on the surface is fully analyzed in Section 4. Conclusions and discussions of the main results
of this paper are presented in Section 5.

2. Model Description

We consider the two-dimensional system shown in Figure 1, where the surface of an elastic
plate is represented by a solid line which coincides with the x-axis in the state of equilibrium.
A point of the surface in the state of equilibrium (x, 0) is translated to coordinates (X,Y )
when a wave process takes place. This translation is sensitive to time t and coordinate x:

X = x + η(x, t),

Y = ζ(x, t),
(2.1)

where the functions η(x, t) and ζ(x, t) determine deflections from the state of equilibrium.
Explicitly, the longitudinal and transverse displacements of the medium at the surface

of flat boundary with travelling Rayleigh wave can be expressed like [17]
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Figure 1: Schematic diagram illustrating the collision between the particle and the surface.

where ux and uy are the longitudinal and transverse displacements, x the coordinate of
the surface point of the medium before the wave process took place; C is a constant, k the
wavenumber and ρ the density. χ can be found from the following algebraic equation:

χ6 − 8χ4 + 8
(
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)
χ2 − 16
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)
= 0, (2.3)

and the angular velocity ω can be found from the following transcendental equation:
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the Poisson’s ratio and λ the first Lamé constant. It can be noted that the ratio between
the amplitudes of transverse and longitudinal deformations depends on ν. In usual elastic
media it is quite normal that the transverse displacement is about 1.5 times larger than the
longitudinal displacement [18]. The motion of a point in the medium is an ellipse. Also, the
direction of the velocity of the particles at the peaks of the wave is opposite to the direction
of wave propagation.

Rayleigh waves are dispersive due to a dependence of the wave’s speed on its
wavelength. Typical example is Rayleigh waves in the Earth where waves with a higher
frequency travel more slowly than those with a lower frequency. Rayleigh waves thus often
appear spread out on seismograms recorded at distant earthquake recording stations [19].
Surface acoustic waves (SAWs) generated by SAW devices on rough anisotropic materials
also experience considerable dispersion [20]. On the other hand, film waves generated on a
surface of a finite liquid bed [21] can be characterized by a single frequency wave component.
Therefore we concentrate on a one single frequency steady-state Rayleigh wave propagation
and disregard dispersion.

Whenever a traveling nondispersive Rayleigh surface wave occurs in a medium, it can
be characterized by a retrograde elliptic motion of the particles of that medium:

η(x, t) = a sin(ωt − kx),

ζ(x, t) = b cos(ωt − kx),
(2.5)
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where a and b are longitudinal and transverse amplitudes of the oscillations; ω is the angular
frequency, and k is the wave number. Remind that in a usual elastic medium it is quite
normal for the transverse displacement to be about 1.5 times larger than the longitudinal
displacement [18].

The coordinates of the particle are denoted as (u, v). Assume that the particle is in
contact with the surface at time moment t, then the following constrain takes place:

v = ζ(x, t), (2.6)

where x is to be found from the following algebraic equality (where u and t are given and x
is the unknown):

x + η(x, t) = u. (2.7)

In other words, the instantaneous shape of the surface cannot be described by an
explicit function. Nevertheless, the tangent to the surface at the point with abscise u can be
expressed explicitly:

tan γ =
∂ζ(x, t)/∂x

1 + ∂η(x, t)/∂x
, (2.8)

where γ is the angle between the tangent and the x-axis. Instantaneous velocities (x- and
y-components) of the point of the surface in contact with the particle can be expressed as
∂η(x, t)/∂t and ∂ζ(x, t)/∂t accordingly.

The governing equations of motion of a particle in a free flight mode are

mü + hu̇ = 0,

mv̈ + hv̇ = −mg,
(2.9)

where top dots denote full derivative by time, m is the mass of the particle, h is the coefficient
of viscous damping of the media above the surface, and g is the free fall acceleration. Initial
conditions u(t0) = u0; u̇(t0) = u̇0; v(t0) = v0; v̇(t0) = v̇0 yield partial solutions:
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(2.10)

The free flight stage continues until the particle collides with the surface. Unfortu-
nately, it is impossible to determine the explicit time moment of the collision due to the
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fact that the instantaneous shape of the surface cannot be expressed by an explicit function.
Instead, one has to use iterative numerical techniques in order to determine the exact moment
of the bounce.

Localization of the root (the time moment of the collision) is performed using a time
marching technique starting from the initial conditions until

v(t0 + i ·Δt) < ζ(xi, t0 + i ·Δt) (2.11)

where Δt is the time step; i = 1, 2, . . . , r; r is the step number for which (4.8) is satisfied for the
first time, and xi is the solution of (4.4) at fixed i:

xi + η(xi, t0 + i ·Δt) = u(t0 + i ·Δt); (2.12)

and u(t0+i ·Δt), v(t0+i ·Δt) are determined by (4.7). Solution of (4.9) also requires an iterative
numerical algorithm.

When the root t̂ is localized in the interval t0 + (r − 1) ·Δt < t̂ ≤ t0 + r ·Δt, one needs to
fine down the value of t̂ using an iterative computational algorithm. This iterative algorithm
can be a most simple bisection method, though more sophisticated algorithms comprising
the golden section rule or Newton’s iterations for example can be used instead until the
desirable accuracy is achieved. As the collision moment t̂ is fined down in every iteration,
the coordinate x̂ (corresponding to the collision point û : x̂ + η(x̂, t̂) = û) is also made more
precise. Initially, xr−1 < x̂ ≤ xr ; every iteration helps to reach a better accuracy.

Such iterative method of determination of the collision moment leads us to the
important conclusion that phase and velocity maps cannot be expressed in an explicit form,
and no formal analytical analysis is possible.

Nevertheless, the geometrical coordinates of the point of collision are (û; ζ(x̂, t̂)) and
can be reconstructed using computational techniques. Velocities of the particle just before the
collision are u̇(t̂) and v̇(t̂). Similarly, instantaneous velocities of the surface in contact with
the particle are η′t(x̂, t̂) and ζ′t(x̂, t̂).

Projections of the particle’s velocities just before the collision to the normal and to the
tangent to the surface at the contact point can be expressed in the following form:

̂̇Pn = −u̇
(
t̂
)

sin γ + v̇
(
t̂
)

cos γ,

̂̇Pt = u̇(t̂) cos γ + v̇
(
t̂
)

sin γ,
(2.13)

where the angle γ is determined from (4.5) at the point of collision.
Analogously, projections of velocities of the point of the surface in contact with the

particle to the normal and to the tangent take the following form:

Ṡn = −η′t
(
x̂, t̂
)

sin γ + ζ′t
(
x̂, t̂
)

cos γ,

Ṡt = η′t
(
x̂, t̂
)

cos γ + ζ′t
(
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)

sin γ.
(2.14)
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Then, the velocities of the particle just after the collision (in the normal and tangent
directions) are

Ṗn = (1 + α)Ṡn − α ̂̇Pn,
Ṗt = βṠn −

(
1 + β

) ̂̇Pt,
(2.15)

where α is the coefficient of restitution for the collision in the normal direction. This constant
is a measure of the energy loss at each impact. For elastic collisions α = 1, and α < 1 for
inelastic collisions. Coefficient β determines the friction between the particle and the surface
at the moment of collision. There is no friction between the particle and the surface when
β = 0. The utmost value β = 1 represents the situation when the projection of the particle’s
velocity (immediately after the impact) and the projection of the surface’s point velocity to
the tangent are equal.

The free flight stage starts over again immediately after the collision, and the initial
conditions are

u
(
t̂
)
= û,

u̇
(
t̂
)
= −Ṗn sin γ + Ṗt cos γ,

v
(
t̂
)
= ζ
(
x̂, t̂
)
,

v̇
(
t̂
)
= Ṗn cos γ + Ṗt sin γ.

(2.16)

The presented model is a modification of the classic bouncer model which can be
derived assuming ζ(x, t) = b cos(ωt) and η(x, t) = 0. In that case u = x, and the model
becomes explicit.

3. Complex Dynamics in the Modified Bouncer Model

We will demonstrate that the modified bouncer model possesses such an inherent feature
as chaotic dynamics. Moreover, we will show that the sensitivity to initial conditions can be
exploited for the control of the process of conveyance. We will show these results for the
conservative or nonviscous case (h = 0) and for the viscous case (h/= 0).

3.1. Nonviscous Case

We take h = 0, for which the media above the surface is non-viscous, α = 1 (elastic collisions)
and β = 0 (no damping generated by sliding).

The dynamics of a bouncing particle on a surface of a propagating wave is very
sensitive to the initial conditions if the dynamics is Hamiltonian. Apparently, it is possible
to find such a set of initial conditions which lead to regular and periodic dynamics. This is
illustrated in Figure 2 where collision heights v(t̂) are plotted versus initial velocity u̇(0). 50
successive collisions are used for every discrete value of u̇(0) to produce this diagram. The
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Figure 2: Collision heights v(t̂) plotted versus initial velocity u̇(0) for u̇(0) = ω/k at ω = 1, k = 1, m = 0.5,
g = 1, a = b/1.5, u(0) = π , v(0) = 0, and v̇(0) = −0.5.
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Figure 3: Period 1 trajectory of a bouncing particle for ω = 1, k = 1, m = 0.5, g = 1, a = b/1.5, u(0) = π ,
u̇(0) = 1, v(0) = 0, and v̇(0) = −0.5.
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Figure 4: Chaotic trajectory of a bouncing particle for ω = 1, k = 1, m = 0.5, g = 1, a = b/1.5, u(0) = π ,
u̇(0) = 2, v(0) = 0, and v̇(0) = −0.5.

initial condition u̇(0) = ω/k produces a period 1 motion at ω = 1, k = 1, m = 0.5, g = 1,
a = b/1.5, u(0) = π , v(0) = 0 and, u̇(0) = −0.5. This is illustrated in Figure 3.

We plot the trajectory of the particle in 3D for better visual interpretation. Collision
moments are marked as black dots. At every moment of collision we also plot the
instantaneous shape of the surface (one can note that the instantaneous shape of the surface
is not harmonic). One can clearly see the difference in the complexity of the particle dynamics
at u̇(0) = 1 (see Figure 3) and u̇(0) = 2 (see Figure 4).
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Figure 5: Transport of particles at increasing wave speeds (elastic collisions, viscous media over the
surface). Reduced impact representation (a) shows the transition to chaos via a period doubling route.
Note that impact heights are distributed in the interval [−0.5, 0.5]. Nondimensional longitudinal particle’s
transport velocity Tu drops down at higher wave speeds due to the viscosity of the media above the surface
(b). System’s parameters are α = 1; β = 0; η(x, t) = (2/3) sin(ωt − x); ζ(x, t) = (1/2)cos(ωt − x); h = 0.1;
m = 0.5; g = 9.81.

3.2. Viscous Case

For this case, we assume that collisions are completely elastic (α = 1), and there is no
tangential friction between the particle and the surface (β = 0), but the media above
the surface is viscous fixing the value of h = 0.1 as in [22]. We use the reduced impact
representation, where the height of the bouncing ball is sampled at each impact with the
surface (impact sampling). Since the system is dissipative, we plot the bouncing process
after the initial transients cease down (see Figure 5(a)). We skip 1500 successive bounces
before starting to plot the collision heights v(t̂) for every discrete value of ω. Parameter ω
is varied following the rule ωi = 1 + (3/ ln 21) ln(1 + 20i/1024); i = 1, . . . , 1024, which helps
to expand the cascade of period doubling bifurcations. The control parameter in our case
is not the amplitude of the platform’s oscillation but the velocity of the wave propagation;
the collision height is used instead of collision velocity for a reduced impact representation.
Moreover, the media above the surface of the plate is viscous. It appears that the transition to
chaos via a period doubling route observed for a classical bouncer [23] is observed also for a
particle bouncing on a surface of a stationary platform with a propagating wave traveling on
its surface.

A phenomenological model could be used to exemplify the bifurcation diagram
presented in Figure 5(a). The logistic map [24] is probably the simplest model ever used to
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study the transition to chaos via a period doubling route. Simple computational experiments
with appropriately chosen parameter values of the logistic map would illustrate the
universality of the bifurcation diagram in Figure 5(a).

An important parameter characterizing the effectiveness of the transport is the average
longitudinal velocity of the particle u̇. We average it over a long period of time after the initial
transients cease down. In order to calculate a nondimensional quantity we divide it from the
velocity of the traveling wave Tu = ku̇/ω. Thus, the average velocity of conveyance is equal
to the velocity of the traveling wave if Tu is equal to 1 as shown in Figure 5(b).

It is interesting to observe that the particle is transported with the average velocity
of the traveling wave until the period 3 bouncing mode after a cascade of period doubling
bifurcations (see Figure 5(a)). The particle’s average transportation velocity drops down
only when the period 3 bouncing mode experiences its own cascade of period doubling
bifurcations. External damping forces acting to the particle prevent its motion with the
average wave’s velocity in the direction of the wave propagation when this velocity
becomes large enough (even though the collisions are elastic). Also, the bouncing process is
insensitive to initial conditions–eventually it converges to the one and only attractor shown
in Figure 5(a) (at fixed ω).

Figures 6(a)–6(d) show different dynamical behaviors of the transient processes for
the elastic case (α = 1) once we fixed the parameter values as follows: β = 0, k = 1, m = 0.5,
g = 9.81, b = 0.5, and a = b/1.5. We obtain both, periodic and chaotic motions depending on
the value of the parameter ω. Figures 6(a)–6(c) show for ω = 2, ω = 3, and ω = 3.45 period 1,
period 2, and period 3 processes, respectively. Chaotic bouncing for the value ω = 4 is shown
in Figure 6(d).

The situation becomes different when collisions are inelastic, as shown in [22]. In the
presence of inelastic collisons, a vanishing bouncing process takes place (complete chattering
[23]) when the particle sets into the state of rest on a slope of the propagating wave. The term
complete chattering is used in literature to describe the process when the time interval between
inelastic bounces tends to zero and the ball finally “sticks” to the surface of the oscillating
platform. As we mentioned previously, a complete description of this phenomenon is given
in [22].

4. The Sliding Particle Model

In this section we thoroughly analyze the case in which the particle is sliding on the surface
instead of the case in which it is falling down on it, analyzed previously. Our motivation
is the following. Conveyance of particles and bodies by propagating waves is an important
scientific and engineering problem with numerous applications. Manipulation of bioparticles
and gene expression profiling using traveling wave dielectrophoresis [14, 25, 26], segregation
of particles in suspensions subject to ac electric fields [27], transport of sand particles and
oil spills in coastal waters [28, 29], powder transport by piezoelectrically excited ultrasonic
waves [13, 22], transportation of thin films in biomedical applications [21] are just a few
examples of problems involving interaction between propagating waves and transported
objects.

We now describe, as in the bouncer model, the equations of motions of our sliding
particle model.

It is assumed that a mass particle is in contact with the deformed surface at a point
(u, v) at a time moment t (Figure 7). A point of the surface in the equilibrium state (x, 0) is
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Figure 6: Transient processes for parameter values as follows: h = 0.1, α = 1, β = 0, k = 1, m = 0.5, g = 9.81,
b = 0.5, and a = b/1.5. We observe the following behaviors: (a) period 1 process for ω = 2, (b) period 2
process for ω = 3, (c) period 3 process for ω = 3.45, and (d) chaotic bouncing for ω = 4, respectively.

translated to coordinates (u, v) at time moment t. This translation is sensitive to time t and
coordinate x:

u = x + η(x, t),

v = ζ(x, t),
(4.1)

where η(x, t) and ζ(x, t) are predefined functions.
The condition that the particle is located on the surface leads to the following

constraint:

v = ζ(x, t), (4.2)
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Figure 7: A geometric scheme of the dynamical system showing the particle sliding on the surface.

where x is to be found from the following algebraic equality (in which u is given and x is
unknown):

x + η(x, t) = u. (4.3)

Though the instantaneous shape of the oscillating surface cannot be described by an
explicit function, the tangent to the surface at the point (u, v) can be expressed as

tanα =
ζ′x(x, t)

1 + η′x(x, t)
. (4.4)

Instantaneous velocities of the surface’s point (u, v) in the direction of x- and y-axis
can be expressed as follows:

u̇|x=const = η
′
t(x, t),

v̇|x=const = ζ
′
t(x, t),

(4.5)

where dots denote derivatives by t.
When a mass particle slides on the surface, it does not necessarily move in contact with

one point of the surface. Therefore x is no longer a constant. Thus,

u̇ = ẋ
(
1 + η′x

)
+ η′t,

ü = ẍ
(
1 + η′x

)
+ ẋ2η′′xx + 2ẋη′′xt + η

′′
tt.

(4.6)

The condition that the mass particle continuously slides on the surface brings another
constraint into force (the relative velocity in the normal direction to the surface at the contact
point must be zero):

tanα =
v̇ − ζ′t(x, t)
u̇ − η′t(x, t)

. (4.7)
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Equation (4.4) with (4.7) in force yields

v̇ =
u̇ − η′t
1 + η′x

ζ′x + ζ
′
t, (4.8)

which together with (4.6) produces the following relationship:

v̇ = ẋζ′x + ζ
′
t. (4.9)

Differentiation of (4.9) yields

v̈ = ẍζ′x + ẋ
2ζ′′xx + 2ẋζ′′xt + ζ

′′
tt. (4.10)

Then the relative sliding velocity of the particle on the surface v12 can be expressed as

v12 =
(
u̇ − η′t

)
cosα +

(
v̇ − ζ′t

)
sinα =

ẋ√
1 + tan2α

(
1 + η′x + ζ

′
x tanα

)
= ẋ
√(

1 + η′x
)2 + ζ′x

2.

(4.11)

The condition of dynamic equilibrium leads to the following system of equations:

mü +N sinα + F cosα = 0,

mv̈ +mg + F sinα =N cosα,
(4.12)

wherem is the mass of the particle;N is the reaction force at the contact point; g is the gravity
acceleration; F is the friction force between the mass particle and the surface. The system of
equations in (4.12) is in force when N > 0. Otherwise the particle jumps off the oscillating
surface.

It is assumed that the friction force is linear. Thus F can be expressed like

F = hv12, (4.13)

where h is the coefficient of linear friction.
Finally, the governing equation of motion can be derived from (4.12). Elementary

transformations and substitutions lead to the following explicit differential equation:

B1(x, t) · ẍ + B2(x, t) · ẋ + B3(x, t) + B4(x, t) · (ẋ)2 = 0, (4.14)
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where

B1(x, t) = m

(
1 + η′x +

(ζ′x)
2

1 + η′x

)
,

B2(x, t) = 2m

(
η′′xt +

ζ′xζ
′′
xt

1 + η′x

)
+ h

(
1 + η′x +

(ζ′x)
2

1 + η′x

)
,

B3(x, t) = m

(
η′′tt + g

ζ′x
1 + η′x

+
ζ′xζ

′′
tt

1 + η′x

)
,

B4(x, t) = m
(
η′′xx +

ζ′xζ
′′
xx

1 + η′x

)
.

(4.15)

A major obstacle is eliminated, and direct numerical time marching techniques can be
used for integration of (4.14)–computation of u and v is straightforward if the coordinate x
is given at time t (4.1). Existence of a stability of the dynamic equilibrium can be analyzed
explicitly.

But before proceeding with the analysis of dynamic equilibrium the following
observation can be done. If kinematic relationships describing a traveling Rayleigh wave are
in force, the change of variables

z = ωt − kx (4.16)

transforms (4.14) to the following autonomous form:

C1(z) · z̈ + C2(z) · ż + C3(z) + C4(z) · (ż)2 = 0, (4.17)

where

C1(z) = −
m

k

(
1 − ka cos(z) +

k2b2sin2(z)
1 − ka cos(z)

)
,

C2(z) =
h

m
C1(z),

C3(z) =
ω h

k

(
1 − ka cos(z) +

k2b2sin2(z)
1 − ka cos(z)

)
+mg

kb sin(z)
1 − ka cos(z)

,

C4(z) = −m
(
a sin(z) +

kb2 sin(z) cos(z)
1 − ka cos(z)

)
.

(4.18)

An important conclusion can be done. Dynamics of a particle sliding on the surface
of a propagating Rayleigh wave cannot be chaotic. This is due to the fact that the governing
equation of motion is a second-order autonomous ordinary differential equation with smooth
parameter functions [30].
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Equation (4.8) yields the dynamic equilibrium which represents a motion of the
particle on a slope of the propagating wave with the velocity of its propagation:

ü = 0,

u̇ =
ω

k
,

u =
ω

k
· t − ψ,

(4.19)

where ψ is a constant. Then, it follows from (4.4) that

x + a sin(ωt − kx) = ω

k
· t − ψ. (4.20)

The term a sin(ωt − kx) is bounded, therefore (4.20) will be in force when

x =
ω

k
· t − θ, (4.21)

where θ is a constant satisfying the equality −θ + a sin(kθ) = −ψ. Moreover, conditions of
existence of the dynamic equilibrium are similar in terms of x or u:

ẋ =
ω/k − η′t

1 + η′x
=
ω

k
,

ẍ =
−ẋ2η′′xx − 2ẋη′′xt − η′′tt

1 + η′x
= 0.

(4.22)

As mentioned earlier, the explicit governing equation is formulated in terms of x,
not the coordinate of the contact point u. First, coordinates of the unstable saddle point are
determined. Then coordinates of the same saddle point are calculated in the frame (ωt−ku); u̇
using the relationship in (4.3). Forward and reverse time marching techniques are used to
construct basin boundaries of attractors when partial solutions of (4.14) are sought from the
infinitesimal surrounding of the saddle point.

The described computational technique is used to construct basin boundaries of the
system’s attractors (Figure 8). Solutions in terms of u (forward and reverse) are visualized
only. It can be noted that two stable attractors can coexist–a stable equilibrium point and a
stable limit cycle. Shaded regions in Figure 8 correspond to a basin (attracting set of initial
conditions) of stable equilibrium points, while white region corresponds to a basin of the
limit cycle. The phase plane in Figure 8 is periodic by 2π and can be visualized in cylindrical
coordinates, but the plane representation is clearer.

A special attention should be paid to dashed line intervals on basin boundaries.
Equation (4.14) describes a motion of a particle on the surface of a propagating wave. This
governing equation of motion holds until the reaction force N in (4.12) is positive. Whenever
N gets equal or lower than zero, the particle looses a contact with the surface and starts a free
fly in a gravitational field until it bounces on the surface again. Therefore, the moment when
the particle looses the contact with, the surface is detected, and the trajectory is marked by
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Figure 8: Basin boundaries at b = 0.5; a = b = 1.5; m = 0.4; h = 0.1; ω = k = 1, shaded regions illustrate the
basin of attraction of stable equilibrium points.
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ωt − ku

Figure 9: Illustration of the attractor control strategy: limit cycle is represented as a periodic trajectory in
frame (ωt−ku; u̇); small external impulse kicks the trajectory to basin boundary of stable equilibrium point
where the particle eventually settles down.

a dashed line. It can be noted that such motions occur only at relatively high particle velocities
(Figure 8).

Conveyance of a particle by a propagating Rayleigh wave is a nonlinear problem,
so such effects as the coexistence of stable attractors should not be astonishing. Stable
equilibrium point type attractor in Figure 8 corresponds to a surf-type motion on a slope
of a propagating wave; stable limit cycle corresponds to a motion with an average velocity
much lower than the velocity of the propagating wave. Coexistence of attractors (a stable
equilibrium point and a stable limit cycle) enables development of motion control strategies
based on a small external impulses which can bring the system from the regime of motion
with small average velocity into motion with the propagating wave’s velocity [21]. Such
attractor control strategy is illustrated in Figure 9 where the particle first oscillates in the
limit cycle, and then a small external impulse kicks it to the basin of attraction of the stable
focus point.

It can be noted that the up-mentioned control strategy can be implemented only when
the stable equilibrium point and the stable limit cycle coexist. Thus, it would be impossible to
transport a sand particle with the velocity of the propagating wave by an acoustic surface
Rayleigh wave. Nevertheless, such attractor control strategies could be implemented for
transportation of biomedical objects on the surface of an undulation film [21]. The sliding
particle model presented in this section also exhibits a very rich dynamics as in the case of
the bouncer model. In particular, the sliding particle model should also have the sensitivity
to the initial conditions for certain sets of parameter values as occuring in the bouncer model
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(see [22]). The sensitivity of transient processes to initial conditions takes place for both, the
bouncer model and the sliding particle model.

5. Conclusions and Discussion

Transport of particles by surface waves is an important scientific and engineering problem,
with numerous practical applications, including MEMS (micro-electro-mechanical systems)
used to manipulate objects like particles or cells. We show that this problem is a modification
of the classical bouncer model which is considered as a paradigm model in nonlinear
physics. The formulations of our model are implicit, thus phase and velocity maps cannot
be expressed in explicit form.

Chaotic dynamics of a conveyed particle is not an unexpected fact due to the
complexity of the constitutive model. More surprising is the rich dynamical behavior in
models comprising dissipative dynamics, elastic and inelastic collisions. It appears that the
transition to chaos via a period doubling route is a universal property for bouncers and
is observed in our model of particles transport in both, conservative and viscous media.
Moreover, the sensitivity to initial conditions can be useful for control techniques which can
dramatically increase the effectiveness of particles transport by surface waves. These results
are relevant in the sense that we have also found the sensitivity to the initial conditions for the
sliding particle model, which may have important applications in practical implementations
as powder transport by piezoelectrically excited ultrasonic waves, transport of sand particles,
among others.

Though the numerical analysis was concentrated on the dimensionless system only,
theoretical and experimental investigation of dry particle conveyance and its control is a
definite object for future research.
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[10] Z. J. Kowalik, M. Franaszek, and P. Pierański, “Self-reanimating chaos in the bouncing-ball system,”
Physical Review A, vol. 37, no. 10, pp. 4016–4022, 1988.

[11] M.-O. Hongler, P. Cartier, and P. Flury, “Numerical study of a model of vibro-transporter,” Physics
Letters A, vol. 135, no. 2, pp. 106–112, 1989.

[12] M.-O. Hongler and J. Figour, “Periodic versus chaotic dynamics in vibratory feeders,” Helvetica
Physica Acta, vol. 62, no. 1, pp. 68–81, 1989.

[13] M. Mracek and J. Wallaschek, “A system for powder transport based on piezoelectrically excited
ultrasonic progressive waves,” Materials Chemistry and Physics, vol. 90, no. 2-3, pp. 378–380, 2005.

[14] M. S. Talary, J. P. H. Burt, J. A. Tame, and R. Pethig, “Electromanipulation and separation of cells using
travelling electric fields,” Journal of Physics D, vol. 29, no. 8, pp. 2198–2203, 1996.

[15] C.-F. Chou, J. O. Tegenfeldt, O. Bakajin, et al., “Electrodeless dielectrophoresis of single- and double-
stranded DNA,” Biophysical Journal, vol. 83, no. 4, pp. 2170–2179, 2002.

[16] R. H. Plaut, A. L. Farmer, and M. M. Holland, “Bouncing-ball model of ‘dry’ motions of a tethered
buoy,” Journal of Vibration and Acoustics, vol. 123, no. 3, pp. 333–339, 2001.

[17] J. D. Achenbach, Wave Propagation in Elastic Solids, Elsevier, New York, NY, USA, 1984.
[18] L. D. Landau and E. M. Lifshitz, Theory of Elasticity, Pergamon Press, Oxford, UK, 1986.
[19] K. Aki and P. G. Richards, Quantitative Seismology, Freeman, New York, NY, USA, 1980.
[20] C. M. Flannery and H. Von Kiedrowski, “Dispersion of surface acoustic waves on rough anisotropic

materials,” in Proceedings of the IEEE Ultrasonics Symposium, vol. 1, pp. 583–586, 2001.
[21] M. Ragulskis and K. Koizumi, “Applicability of attractor control techniques for a particle conveyed

by a propagating wave,” Journal of Vibration and Control, vol. 10, no. 7, pp. 1057–1070, 2004.
[22] M. Ragulskis and M. A. F. Sanjuán, “Transport of particles by surface waves: a modification of the

classical bouncer model,” New Journal of Physics, vol. 10, Article ID 083017, 2008.
[23] J. M. Luck and A. Mehta, “Bouncing ball with a finite restitution: chattering, locking, and chaos,”

Physical Review E, vol. 48, no. 5, pp. 3988–3997, 1993.
[24] R. M. May, “Simple mathematical models with very complicated dynamics,” Nature, vol. 261, no.

5560, pp. 459–467, 1976.
[25] C.-F. Chou, J. O. Tegenfeldt, O. Bakajin, et al., “Electrodeless dielectrophoresis of single- and double-

stranded DNA,” Biophysical Journal, vol. 83, no. 4, pp. 2170–2179, 2002.
[26] L. Cui and H. Morgan, “Design and fabrication of travelling wave dielectrophoresis structures,”

Journal of Micromechanics and Microengineering, vol. 10, no. 1, pp. 72–79, 2000.
[27] A. D. Dussaud, B. Khusid, and A. Acrivos, “Particle segregation in suspensions subject to high-

gradient ac electric fields,” Journal of Applied Physics, vol. 88, no. 9, pp. 5463–5473, 2000.
[28] W. N. Hassan and J. S. Ribberink, “Transport processes of uniform and mixed sands in oscillatory

sheet flow,” Coastal Engineering, vol. 52, no. 9, pp. 745–770, 2005.
[29] S. D. Wang, Y. M. Shen, and Y. H. Zheng, “Two-dimensional numerical simulation for transport and

fate of oil spills in seas,” Ocean Engineering, vol. 32, no. 13, pp. 1556–1571, 2005.
[30] R. C. Hilborn, Chaos and Nonlinear Dynamics, Oxford University Press, New York, NY, USA, 1994.


