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This work deals with the analysis and design of a reaction thruster attitude control for the
Brazilian Multimission platform satellite. The three-axis attitude control systems are activated in
pulse mode. Consequently, a modulation of the torque command is compelling in order to avoid
high nonlinear control action. This work considers the Pulse-Width Pulse-Frequency (PWPF)
modulator which is composed of a Schmidt trigger, a first-order filter, and a feedback loop.
PWPF modulator holds several advantages over classical bang-bang controllers such as close
to linear operation, high accuracy, and reduced propellant consumption. The Linear Gaussian
Quadratic (LQG) technique is used to synthesize the control law during stabilization mode and
the modulator is used to modulate the continuous control signal to discrete one. Numerical
simulations are used to analyze the performance of the attitude control. The LQG/PWPF
approach achieves good stabilization-mode requirements as disturbances rejection and regulation
performance.
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1. Introduction

One of the intentions of this work is to support the ongoing Brazilian multimission platform
(MMP) satellite project [1]. The project takes into consideration a special platform satellite
which can supply multimissions capabilities supporting different payloads to lift up on the
platform. Applications including Earth observation, communication, scientific experiments,
and surveillance are few examples of suitable use of the MMP satellite. The MMP adopted
pulse or on-off reaction thruster for attitude maneuvers, therefore, modulating continuous
command signal to an on-off signal is a required task. Selecting the properly method to
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modulate the control command signal is a key assignment. The aim of this work is to
provide smoother control for improved pointing requirements with less thruster activation
or propellant consumption. The fuel is a deciding factor of the lifetime of the spacecraft
and reduced propellant consumption is highly required, specially, regarding a multimission
spacecraft wherein different payloads are being considered.

In this paper a pulse-width pulse-frequency (PWPF) modulator is considered as a
feasible option for the MMP reaction thruster modulation due to advantages over other types
of pulse modulators as bang-bang controllers which has excessive thruster actuation [2, 3].
The PWPF modulator translates the continuous commanded control/torque signal to an on-
off signal. Its behavior is a quasilinear mode which is possible by modulating the width of
the activated reaction pulse proportionally to the level of the torque command input (pulse-
width) and also the distance between the pulses (pulse-frequency). A PWPF modulator
is composed of a Schmidt trigger, a lag network filter, and a feedback loop. The PWPF
design requires iterative tuning of lag filter and Schmidt trigger. The optimal parameters
achievement is based on the static (test signals) and dynamic (feedback signals) simulation
results. The optimality is in respect to either the number of firings or spent fuel. The work in
[3–5] provides good guidelines for the PWPF tuning task.

The PWPF is synthesized with a Linear Quadratic Gaussian (LQG) controller which
is designed for the MIMO attitude system. The LQG controller, refered to as H2, allows a
tradeoff between regulation performance and control effort. In order to reduce the control
effort or fuel consumption, an iteratively searching of the trade-off can be carried out.
Nevertheless the controller has to attempt all the involved requirements and specifications.
A previous study of the LQG approach applied to the MMP satellite is presented in [6]. The
reaction attitude control system is applied to the stabilization mode of the MMP. The paper
is divided into 5 sections. Section 2 presents the nonlinear model of the satellite, assumed
a rigid body, its linearization around the operation point, and the developed virtual reality
model of the satellite for visualization purposes. Section 3 presents a brief description of the
PWPF modulator and design of the LQG controller, which includes the description of the
LQG controller and provides the tuning parameters range for the PWPF modulator. Section 4
presents the numerical simulation for the reaction thruster attitude control system during
the stabilization mode. Regulation, filtering, and disturbance rejection are investigated and
discussed. Conclusions are presented in Section 5 based on the obtained results.

2. Problem Formulation

In this section we describe the mathematical model of the attitude motion, including
kinematics, dynamics, and the linerization of the satellite model around LHLV reference
frame. Based on that linear model the LQG controller is designed for the stabilization mode.

2.1. Satellite Attitude Model

The attitude of the satellite will be defined in this work by the orientation of the body
frame (x, y, z) (coincident with the three principal axes of inertia) with respect to the orbital
reference frame (xr, yr , zr), also known as Local-Vertical-Local-Horizontal (LVLH) [7]. The
origin of the orbit reference frame moves with the center of mass of the satellite in orbit.
The zr axis points toward the center of mass of the Earth, xr axis is in the plane of the orbit,
perpendicular to zr , in the direction of the velocity of the spacecraft. The yr axis is normal to
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Figure 1: LVLH axis representation.

the local plane of the orbit, and completes a three-axis right-hand orthogonal system. Figure 1
illustrated the LVLH reference frame.

The attitude is represented by the direction cosine matrix R between body frame and
reference frame. During the stabilization mode only small angular variations are considered,
in this case the Euler angles parametrization is an appropriate choice due to the guarantee of
nonsingularity. Thus, by using Euler angles (φ, θ, ψ) in an asymmetric sequence 3-2-1 (z-y-x)
for describing a rotation matrix, one finds [7, 8]

Rzyx =

⎡
⎢⎢⎣

cψcθ sψcθ −sθ
−cφsψ + sφsθcψ cφcψ + sφsθsψ sφcθ

sφsψ + cφsθcψ −sφcψ + cφsθsψ cφcθ

⎤
⎥⎥⎦. (2.1)

For a rotating body the elements of the direction cosine matrix change with time, this change
relative to any reference frame fixed in inertial space can be written as follows [9]:

Ṙ(t) = S
(
ωb
ib

)
R(t), (2.2)

where ωb
ib = (ωx,ωy,ωz)

T is the angular velocity of the body frame relative to the inertial
frame, expressed in the body frame, S is the skew-symmetric operator given by

S
(
ωb
ib

)
=

⎡
⎢⎢⎣

0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤
⎥⎥⎦. (2.3)

According to [10] the angular velocity can be expressed as function of the mean orbital
motion (ω0) and the derivatives (φ̇, θ̇, φ̇), thereafter the kinematics of the rigid body is
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expressed by

ωb
ib =

⎡
⎢⎢⎣

1 0 −sθ
0 cφ sφcθ

0 −sφ cφcθ

⎤
⎥⎥⎦

⎡
⎢⎢⎣
φ̇

θ̇

ψ̇

⎤
⎥⎥⎦ −ω0

⎡
⎢⎢⎣

cθsψ

sφsθsψ + cφcψ

cφsθsψ − sφcψ

⎤
⎥⎥⎦ (2.4)

since large slewing maneuvers of the satellite are not considered, it is save to approximate
cθ ≈ 1, sθ ≈ θ, φψ ≈ 0. According to (2.4) for small Euler angles, the kinematics can be
approximated as

ωb
ib =

⎡
⎢⎢⎣
φ̇

θ̇

ψ̇

⎤
⎥⎥⎦ +ω0

⎡
⎢⎢⎣
−ψ
−1

φ

⎤
⎥⎥⎦. (2.5)

The dynamics of a satellite attitude, equipped with six one-sides thrusters is modelled by
using the Euler equations. Furthermore, the attitude dynamic is written in the body frame, it
yields

τext =
[
dh
dt

]

b

+ωb
ib × hb, (2.6)

where hb = Jωb
ib

is the momentum of the rigid body, J is the satellite inertia matrix, and τext
are the external torques acting in the system including perturbation and thruster actuation.
Using [dh/dt]b = Jω̇

b
ib

, (2.6) becomes

Jω̇b
ib + S

(
ωb
ib

)
Jωb

ib = τbd + τbc , (2.7)

where τb
d

represents all the disturbance torques, for example, atmosphere drag, gravity
gradient, and so on, and τbc represents the control torques used for controlling the attitude
motion. The control torques about the body axes, x, y, and z provide by the thrusters are
τx, τyτz, respectively. The thruster reaction system is discussed in detail in the following
section. The torque effect caused by the gravity gradient is taken into account and it is
included in the linearization process. An asymmetric body subject to a gravitational field
experience a torque tending to align the axis of the least moment of inertia with the
field direction [8]. For small angle maneuvers, the model of the gravity gradient torque is
approximated as [8, 9]

τbg = 3ω2
0

⎡
⎢⎢⎣

(
Jz − Jy

)
φ

(Jx − Jz)θ
0

⎤
⎥⎥⎦. (2.8)

Substituting (2.4) into (2.6) and adding the control and gradient gravity torque, we linearize
the satellite attitude model. Moreover, the linearization is performed around the LHLV orbital
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frame, it is thus adopted for the stabilization mode. Afterwards the attitude model can be
represented in the state space form [6, 10]

ẋ = Ax + Bu,

y = Cx +Du,
(2.9)

with states x = [φ, θ, ψ, φ̇, θ̇, ψ̇]T , and inputs u = [τx, τy, τz]
T .A is the state matrix, B is the

input matrix, C is the output matrix, and D is the direct transmission matrix. In the particular
problem they are given by

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

4ω2
0

(
Jz − Jy

)

Jx
0 0 0 0

ω0
(
Jx − Jy + Jz

)

Jx

0
3ω2

0(Jx − Jz)
Jy

0 0 0 0

0 0
ω2

0

(
Jx − Jy

)

Jz

ω0
(
Jy − Jx − Jz

)

Jz
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

0 0 0

l

Jx
0 0

0
l

Jy
0

0 0
l

Jz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, C = I6×6, D = 06×3.

(2.10)

It is worth to note that x row and z yaw axes belong to a multi-input and multi-output
(MIMO) system 4 × 2 and the y pitch axis could be dealt as a single input and single output
system (SISO) by assuming a tachometry feedback control. Although the controller is project
over the linear model, the nonlinear model is used in the simulations.

2.2. Virtual Reality Model of the Spacecraft

In this work a Virtual Reality (VR) model are developed as a visualization tool. The purpose is
to visualize the simulations giving a fast and a visual feedback of the simulation models over
time. The model is produced by using the virtual reality model language (VRML) format
which includes a description of 3-dimensional scenes, sounds, internal actions, and WWW
anchors. It enables us to view moving three-dimensional scenes driven by signals from the
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Figure 2: A graphical interface in VRML for visualization.

dynamic model, that is, attitude dynamics. The VR model was created with the use of V-
Realm builder tool, a more detailed description can be found in [11]. Figure 2 shows the
basic structure representation of the spacecraft’s bus. The payload is not illustrated.

3. Thruster Attitude Control System

In this section the controller design based on the Linear Quadratic Gaussian (LQG) technique
is briefly described, afterwards the PWPF modulator is presented in details.

3.1. LQG Controller Design

The Linear Quadratic Gaussian (LQG) or H2 control consist of a technique for designing
optimal controllers. The approach is based on the search of the tradeoff between regulation
performance of the states and control effort [12]. The referred optimality is expressed by a
quadratic cost function and allows the designer to shape the principal gains of the return
ration, at either the input or the output of the plant, to achieve required performance or
robustness specifications. Moreover the method is easily designed for Multi-Input Multi-
Output (MIMO) systems. The controller design takes into account disturbances in the plant
and measurement noise from the sensors. Formally, the LQG approach addresses the problem
where we consider a linear system model perturbed by disturbances w, and measurements
of the sensor corrupted by noise ν which includes also the effects of the disturbances by
measurement environment. The state-space model representation of the linear or linearized
system with the addition of the disturbance effects can be mathematically expressed by

ẋ = Ax + Bu +Gw,

yν = Cx +Du + ν,
(3.1)

in our problem A, B, C, and D are given by (2.10). The matrix G is the disturbance balance
matrix. The disturbance and measurements noises are assumed both white noises. The
principle of the LQG is combine the linear quadratic regulator (LQR) and the linear-quadratic
estimator (LQE), that is, a steady-state Kalman filter. The separation principle guarantees that
those can be design and computed independently [13].
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3.1.1. LQR Problem

The solution for the optimal state feedback controller is obtained by solving the LQR problem.
Namely the LQR optimal controller automatically ensures a stable close-loop system, and
achieves guarantee levels of stability and robustness for minimal phase systems, for example,
multivariable margins of phase and gain. The LQR approach gives the optimal controller
gain, denoted by K, with linear control law:

u = −Kx, (3.2)

which minimizes the quadratic cost function, given by

JLQR =
∫∞

0

(
xTQx + uTRu

)
dt, (3.3)

where Q is positive definite, and R is semipositive definite, these are weighting or tuning
matrices that define the trade-off between regulation performance and control efforts. The
first term in (3.3) corresponds to the energy of the controlled output (y = x) and the second
term corresponds to the energy of the control signal. The gain matrix K for the optimization
problem is obtained by solving the algebraic matrix Riccati equation:

ATP + PA − PBR−1BTP +Q = 0. (3.4)

The optimal control gain is then obtained by

K = R−1BTP. (3.5)

The close-loop dynamics model is obtained by substituting (3.5) into (3.1), and taking w =
v = 0, as follows

ẋ = (A − BK)x, (3.6)

which corresponds to an asymptotically stable system.
In order to adopt the LQR formulation the whole state x of the process has to be

measurable. In this case it is necessary to estimate the absent states, so the estimated states
are denoted by x̂. Notice that the output matrix in our case is C = I6×6, it means that the
whole state is measurable. Physically, the angular rates are obtained from the gyros and the
attitude/orientation from the solar sensor. Nevertheless, because of the presence of noise, an
estimation is advice in order to produce better and reliable information about the real states.
The estimation is performed by employing the steady-state Kalman filter.
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3.1.2. Kalman Filter Design

The Kalman filter is used to obtain the estimated state x̂. The filter equation in view of the
attitude model is given by

˙̂x = Ax̂ + Bu + L(yν − Cx̂), (3.7)

where L is the Kalman filter gain. The optimal gain L minimizes the covariance of the error E
between real x and estimated x̂ states, by defining the state estimation error as e := x̂ − x, the
cost function is given by [13]

JLQE = lim
t→∞

E
{

e · eT
}
. (3.8)

We assume that the disturbances affecting the process w and v are zero-mean Gaussian white-
noise process with covariances Qe = E(wwT ) and Re = E(vvT ), respectively. The process and
measurement noises are uncorrelated from each other. The gain L is obtained solving the
algebraic matrix Riccati equation:

ATS + SA − SCR−1
e C

TS +Qe = 0. (3.9)

The optimal estimator gain is then obtained by

L = R−1
e C

TS, (3.10)

and the error dynamics is given by

ė = (A − LC)e, (3.11)

where A − LC is asymptotically stable. From (3.6) and (3.11) the open-loop transfer function
for the LQG controller is found as follows:

Klqg(s)G(s) = K(sI −A + BK + LC)−1LΦ(s), (3.12)

where G(s) = Φ(s) = C(sI −A)−1B is the transfer function of the attitude model, in this case
Gs is a matrix of transfer functions.

3.2. Pulse-Width Pulse-Frequency Modulator

The control signals from the LQG controller are of continuous type. However, pulse thruster
devices can provide only on-off signals generating nonlinear control action. Nonetheless,
those can be used in a quasilinear mode by modulating the width of the activate reaction
pulse proportionally to the level of the torque command input. This is known as pulse-width
modulation (PW). In the pulse-width pulse-frequency (PWPF) modulation the distance
between the pulses is also modulated. Its basic structure is shown in Figure 3.
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To thruster

Figure 3: Pulse-width pulse-frequency (PWPF) modulator.

The modulator includes a Schmitt trigger which is a relay with dead zone and
hysteresis, it includes also a first-order-filter, lag network type, and a negative feedback loop.
When a positive input to the Schmitt trigger is greater than Uon, the trigger input is Um. If
the input falls below Uoff the trigger output is 0. This response is also reflected for negative
inputs in case of two side-thrusters or those thruster that produce negative torques (clockwise
direction). The error signal e(t) is the difference between the Schmitt trigger output Uon and
the system input r(t). The error is fed into the filter whose output signal f(t) and it feeds the
Schmitt trigger. The parameters of interest for designing the PWPF are: the filter coefficients
km and τm, the Schmitt trigger parameters Uon, Uoff, it defines the hysteresis as h = Uon−Uoff,
and the maximal/minimal ± Um. The PWPF modulator can incorporate an additional gain
kpm which will be considered separately from the control gain.

In the case of a constant input, the PWPF modulator drives the thruster valve with
on-off pulse sequence having a nearly linear duty cycle with input amplitude. It is worth to
note that the modulator has a behavior independent of the system in which it is used [3]. The
static characteristics of the continuous time modulator for a constant input C are presented
as follows:

(i) on-time

Ton = PW = −τm ln
(

1 +
h

km(C −Um) −Uon

)
, (3.13)

(ii) off-time

Toff = −τm ln
(

1 − h

kmC − (Uon − h)

)
, (3.14)

(iii) modulator frequency

f =
1

Ton + Toff
, (3.15)
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Table 1: Recommended range for the PWPF parameters.

Static analysis Dynamic analysis Recommended
km 2 < km < 7 N/A 2 < km < 7
τm 0.1 < τm < 1 0.1 < τm < 0.5 0.1 < τm < .5
Uon Uon > 0.3 N/A Uon > 0.3
h h > 0.2Uon N/A h > 0.2Uon

kpm N/A kpm ≥ 20 kpm ≥ 20

(iv) duty cycle

DC =
[

ln[1 + a/(1 − x)]
1 + ln[1 + a/x]

]−1

, (3.16)

(v) minimum pulse-width (PW)

Δ = −τm ln
[

1 − h

kmUm

]
, (3.17)

where the following internal parameters are also defined: dead zoneCd = Uon/km, saturation
levelCs = Um+(Uon−h)/km, normalized hysteresis width a = h/km(Cs−Cd), and normalized
input x = (C − Cd)/(Cs − Cd).

In order to determine the range of parameters for the PWPF modulator, static
and dynamic analyses are carried out. The static analysis involves test input signals, for
example, step, ramp, and sinusoidal signals. The dynamic analysis uses plant and controller.
Afterwards the choice is based upon the number of firings and level of fuel consumption
results. The number of firings gives an indication of the life-time of the thrusters. Table 1
presents the obtained results for the particular problem.

3.3. Specifications and Tuning Schemes

The specification of the requirements for the attitude control system are determined by the
capabilities of the MMP satellite to attempt some desired nominal performance for the linked
payload. Considering the stabilization mode the following specifications are given in terms
of time and frequency domain:

(i) steady state error less than 0.5◦ degrees for each axis;

(ii) overshoot less than 40%;

(iii) short rise time or fast response against disturbances;

(iv) stability margins gain GM ≥ 6 db and PM ≥ 60◦ for each channel.

For the control design, it is necessary to check the limitations and constraints imposed by
the plant. In this sense the optimality of the LQG only holds for the following assumptions:
the matrix [A B] must be stabilizable and [A C] must be detectable. In the case of
the attitude model, both conditions are satisfied. The next step is to design a controller
which achieves the required system performance. During the stabilization mode, it is desired
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attenuation of the effects of disturbances acting on the satellite and accomplishment of
regulation to maintain the satellite in the required attitude. Moreover the output has to be
insensitive to measurements errors. Unfortunately there is an unavoidable tradeoff between
attenuation disturbances and filtering out measurement error. This tradeoff has to be kept
in mind during the design of the controller. In the case of attitude model, the disturbances
acting in the system belong to the spectrum at low frequencies, note that the regulation
signals belongs also to spectrum at low frequencies. On the other hand, the measurement
noises and unmodeled system terms are concentrated at high frequencies. In order to fulfill
the specifications, tuning of LQG gains and PWPF gains have to be careful performed. The
nature of the tuning is an iterative process which turns out less arduous with the use of a
computational tool, in this work the Matlab package is used. In the following, the obtained
weights for LQG controller and PWPF modulator are presented.

3.3.1. LQR Tuning

The first choice for the tuning matrices Q and R is taken from the Bryson’s rule, selecting Q
and R diagonal matrices with the form

Qii =
1

maximum acceptable value of x2
i

i ∈ {1, 2, . . . , n},

Rii =
1

maximum acceptable value of u2
j

j ∈ {1, 2, . . . , m},
(3.18)

where xi and uj are the states input signals boundaries, respectively. The rule is used to keep
the states and inputs below some boundaries. It is advised to avoid large control signals
which from the engineering point of view are unacceptable. On the other hand, the controller
has to fulfill all the system specifications and the LQR formulation does not directly allow
one to achieve standard control system specifications. Nevertheless those can be achieved
by iteration over the values of the weights of Q and R in the cost function till it arrives
at satisfactory controller. For the proposed reaction attitude control system the boundaries
for the states are kept ±5◦ in attitude (φ, θ, ψ), and ±1 degree per second for the rates. The
boundary for the input signals are 1 Newton meter. The result weighting matrices for the
controller which achieved satisfactory controller are

Q = Qii, R = 1 × 10−1 · Rii. (3.19)

The control tuning matrices R and Q were obtained through iterative process following
expectable requirements, for example, allowed (non-saturation) control effort and reasonable
stabilization time.

3.3.2. Filter Tuning

The tuning weight matrices Re and Qe for the Kalman filter are obtained considering Re

large compared to Qe. It corresponds to weighting the measurements less than the dynamics
model. This also leads to a reduction of the poles values for A − LC. The relative magnitude
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Table 2: PWPF parameters used to compose the ACS.

km τm Uon h Kp

1 0.1 0.45 0.3 20

Table 3: Simulation parameters.

Parameters Values

Principal momentum of inertia (without payload) (kgm2)
Jx = 305.89126
Jy = 314.06488
Jz = 167.33919

Torque arm (m) l = 1.0
Mean orbital motion (rad/s) ω0 = 0.001
Mass (kg) 578.05239
Orbit altitude (km) 750
Maximum force (N) 5
Eccentricity ∼= 0
Initial attitude (degrees) slew maneuver (φ,θ,ψ)=(10,10,10)
Initial Angular Rate (degrees/s) ωb

ib
= [1, 1, 1]T

of Re and Qe is determined iteratively till achieves satisfactory gain L in terms of filtering and
smoothing of the measurement vector signal yv. The matrices values are given by

Qe = diag
(
0, 0, 0, qe, qe, qe

)
,

Re = diag(re, re, re, ve, ve, ve),
(3.20)

where qe = 5 × 10−3, re = 1 × 10−1, and ve = 1 × 10−2. Note that the precision for the rate
measurements is bigger than for the attitude measurements, and the tuning values for the
dynamic noise in the attitude are selected as zeros.

3.3.3. Selected PWPF Parameters

In order to compose the entire reaction thruster attitude control system and to achieve the
desire performance the parameters for the PWPF are selected from the optimal range. Table 2
presents those PWPF parameters.

Next section presents the performance of the reaction thruster attitude controller
during the stabilization mode. Filtering noise, rejection of impulse disturbances, and
regulation performance are analyzed.

4. Numerical Simulation and Results

The reaction thruster attitude control is tested through numerical simulations. The tuning
matrices schemes presented in Section 3 are used to obtain the controller and observer gains.
They are able to attempt pointing requirements (<0.5◦) and reasonable margins of stability
for the attitude control system during the stabilization mode. Table 3 includes the values of
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Figure 4: Filtering of the measurement data.

principal momentum of inertia without payload [1]. Although several simulations over a
wide range of initial condition for attitude were performed, just one case is shown.

4.1. Noise Filtering

In order to filter the noise in the measurement yv the steady-state Kalman filter is applied. The
estimated and measurement attitude is shown in Figure 4, on the left side. The errors and the
respective 3 sigma boundary results are shown on the right side of Figure 4. The steady-state
Kalman achieves good estimation of the real attitude with a standard deviation σ ∼= 0.027. The
estimation results present smoother profile compare to the measurements which is favorable
wish for the control system.

4.2. Short Slew Maneuver during Stabilization Mode

Although a set of different initial conditions are simulated and analyzed, we present only the
case when the satellite has a displacement of 10 degrees for each axis in attitude with respect
to LHLV orbital frame. To regulate or stabilize the satellite a short maneuver is needed. The
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Figure 5: Attitude profile during slew maneuver and disturbance effect.

attitude profile is shown in Figure 5. The simulation time corresponds to quarter of the orbital
period (∼= 104) minutes. The satellite executes the maneuver in approximately 100 seconds.

The duty cycle generated by the PWPF modulation is shown in Figure 6. The duty
cycle for row, pitch, and yaw angles are the same order of magnitude. The maximal spent time
to complete a close path is quasi 800 seconds and it occurs in row direction. The specification
of pointing accuracy is achieved, less than 0.5 degrees. In fact reading out Figure 6 the
maximal errors in row, pitch, and yaw are ±0.3, ±0.3, and ±0.25 degrees, respectively. It shows
a high accurate performance of the reaction thruster which is possible by modulating the
control signal using the PWPF modulator.

Figure 7 shows the control command, executed by LQG controller, and the modulation
during the slew maneuver. The thrusters’ profile present small pulse-width modulation (ton)
which leads small impulses and hence less fuel consumption. Positive torques are executed
by 3 of thrusters and negative ones by another 3 thrusters.

4.3. Disturbance Rejection During Stabilization Mode

In order to test the action of the controller against disturbance effects (e.g., atmospheric drag)
or uncertainties in the system (e.g., sloshing), simulations considering impulse disturbance
signals acting in the system are carried out. Figure 5 presents the results obtained for the atti-
tude. It shows a maximal error in attitude of ±0.2 degrees which fulfill the desired precision
specification. The attitude control system is capable of respond fast to the disturbance effects,
less than 60 seconds for an exogenous pulse of 1 Newton. The control signal command and
the PWPF modulation results are presented in Figure 8. The results are satisfactory in terms
of accuracy and fuel since the modulation of the pulse-width is kept small.
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Figure 6: Duty cycle response for stabilization during a short slew maneuver.
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Figure 7: Control command and PWPF modulation during the slew maneuver.
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Figure 8: Control command and PWPF modulation for disturbance rejection.

It is worth to note that the use of magnetic coils actuators or reaction wheel devices can
zero the error residue, for example, duty cycle, by a damped actuation. This actuation will be
very small because of the level of accuracy in attitude achieved by the thruster actuation.

5. Conclusions

The obtained on-off thruster reaction attitude control system based on the LQG/PWPF
modulation is optimal with respect to regulation, (i.e., minimizing the quadratic cost function
of states and control signals), and propellant consumption. The optimality for fuel is obtained
through off-line simulations varying the parameters of the PWPF modulator till less fuel
consumption is achieved. This work presents the set of optimal parameters for the PWPF
modulator by considering static and dynamic analysis.

The LQG design is an efficient way to achieve exponentially stability, moreover it
allows to weight the magnitude of input signal u, restricting the torque commands till
acceptable performance is achieved. The weighting matrices for tuning the optimal LQG
controller are presented and discussed in this work. The previous work, see [6], using the
LQG design, demonstrated successfully, the applicability and suitability of the controller for
the stabilization mode. However, in the foregoing work the required on-off modulation was
not taken into consideration. It is worth to note that the LQG controller is able to stabilize the
system even for large initial attitude displacements within nonlinear dynamics. It shows how
resistent the controller is in face of internal changes in behavior.

The obtained results demonstrate the feasibility of combining LQG/PWPF modulator
in an unique controller for on-off thruster reaction attitude control system. Stability remains
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by adding the PWPF modulator and reasonable accuracy in attitude is achieved, that is,
magnitude of the duty cycle. Practical aspects are included in this study as filtering and
presence of external impulsive perturbations. The advantages of less spent propellant shall
contribute to the MMP project, specially, a satellite conceived to be used on a large number
and different types of missions, in the context of an ever-advancing Brazilian space program.
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