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This work presents the analysis of nonlinear aeroelastic time series from wing vibrations due to
airflow separation during wind tunnel experiments. Surrogate data method is used to justify the
application of nonlinear time series analysis to the aeroelastic system, after rejecting the chance for
nonstationarity. The singular value decomposition (SVD) approach is used to reconstruct the state
space, reducing noise from the aeroelastic time series. Direct analysis of reconstructed trajectories
in the state space and the determination of Poincaré sections have been employed to investigate
complex dynamics and chaotic patterns. With the reconstructed state spaces, qualitative analyses
may be done, and the attractors evolutions with parametric variation are presented. Overall
results reveal complex system dynamics associated with highly separated flow effects together
with nonlinear coupling between aeroelastic modes. Bifurcations to the nonlinear aeroelastic
system are observed for two investigations, that is, considering oscillations-induced aeroelastic
evolutions with varying freestream speed, and aeroelastic evolutions at constant freestream speed
and varying oscillations. Finally, Lyapunov exponent calculation is proceeded in order to infer
on chaotic behavior. Poincaré mappings also suggest bifurcations and chaos, reinforced by the
attainment of maximum positive Lyapunov exponents.
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1. Introduction

The assessment of aeroelastic phenomena with linear models has provided a reasonable
amount of tools for the analysis of most of adverse instability behavior [1, 2]. Nonetheless,
aeronautical engineering has shown advances that lead to faster and lighter aircraft, thereby
increasing the risk of moderate or severe nonlinear aeroelastic problems.

Nonlinear behavior is inherent to aeroelastic systems and can be associated with
aerodynamic sources (compressibility, separated flows, aerodynamic heating, and turbulence
effects) and structural sources (effects of aging, loose attachments, material features, and
large deformations) [3–5]. Aeroelastic systems can face those effects, for instance, in
transonic flight, high angle of attack manoeuvres, and in all cases leading to complex
models beyond linearity suppositions. Nonlinear systems typically present features like,
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multiple equilibrium points, bifurcations, limit-cycle oscillations, and chaos [6, 7]. The
presence of such effects results in modifications to the aeroelastic dynamics, leading to more
laborious prediction of instabilities. For instance, the flutter phenomenon in the presence of
nonlinearities happens in a different way to that foreseen in linear models.

Recently, nonlinear aeroelasticity research has been performed for a greater number
of groups using advanced CFD methods, reduced-order models, and other methodologies
[8–10]. However, these methodologies present deficiencies such as losses in the analysis of
the physical phenomenon and little flexibility to evaluate different flight regimes using the
same model. To validate and verify the mathematical models, experimental analysis makes it
possible to observe the system dynamics without neglecting important effects. Experimental
data furnishes sequences of measurements that correspond to time series with embedded
system dynamics. Time series analysis techniques, such as state space reconstruction and
Lyapunov exponents, can be used in these time series to access important information in the
system dynamics. Therefore, it seems reasonable that by examining raw experimental data
with techniques from time series analysis, one can better assess the effects of aerodynamic
and/or structural nonlinearities on aeroelastic systems. Moreover, such insight may provide
important tools to support and improve mathematical modeling for aeroelastic analysis.
Nonlinear time series analysis techniques can also have an important impact in flutter flight
tests, helping in the extraction of instability parameters which are typically surrounded by
uncertainties.

While many processes in nature seem a priori very unlikely to be linear, their possible
nonlinear nature might not be evident in specific aspects of their dynamics. Moreover, there
is always the danger that one is dealing with nonstationary time series, particularly in the
case of experiments. Testing the properties of a time series is the most prudent action before
starting to draw any conclusion on a system behavior. A variety of techniques to check time
series stationarity are available [11], and the method of surrogate data can also be used
to justify the application of nonlinear time series analysis techniques excluding the linear
hypothesis [12, 13].

Typical dynamic system responses can be assessed by means of reconstructing the
state space from time series using the so-called method of singular value decomposition (SVD)
[14]. The SVD method uses the properties of the covariance matrix to produce uncorrelated
coordinates; as a result of the process the data is filtered, diminishing complications caused
by the noise present in experimental data.

With reconstructed state spaces and Poincaré sections, it is possible to identify
structures associated with limit-cycle oscillations (LCOs) and chaotic patterns [15, 16].
Chaotic behavior may be characterized by the divergence between neighbor trajectories
in state space [17]. The assessment of Lyapunov exponents can be used to quantify this
divergence [15].

The purpose of this work is to apply techniques from time series analysis for
the investigation of nonlinear aeroelastic response behavior present in experimental data
obtained from a wind tunnel tests. The experimental apparatus comprises a flexible wing
model and by exposing it to the wind tunnel airflow, motion-induced aeroelastic responses
occur. By inducing motions at higher angles of attack, flow separation introduces severe
unsteady aerodynamic nonlinearity into the system. Incidence oscillatory variations are
achieved using a turntable that supports the wing model, and structural deformations are
captured by strain gages, thereby providing information on the aeroelastic responses. In this
way, investigations may be made for various wind tunnel freestream speed and turntable
oscillation frequencies.
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The resulting aeroelastic signals are firstly checked for stationarity and nonlinearity
properties. Runtest and reverse arrangements followed by surrogate data tests are used to
the aforementioned time series properties checking.

The SVD method is used to reconstruct the state space from aeroelastic time series.
Evolutions of reconstructed state space and respective Poincaré mapping with parameter
variation are presented and discussed. Finally, the method for estimating the largest
Lyapunov exponents is applied to identify and reinforce the suspect for the presence of
deterministic chaotic behavior in the aeroelastic response time series.

2. State Space Reconstruction

State space reconstruction approaches use time histories or time series (s(t)) to extract the
dynamics of a system. Reconstruction techniques are based on Taken’s embedded theorem
[18], which establishes that a time series s(t) has information on nonobservable states. With
s(t) it is possible to reconstruct the state space of the system comparable to the real case
preserving the invariants of the system, for example, attractor dimension and Lyapunov
exponents. This statement has been proven numerically by Packard et al. [19] and Takens
[18].

There are different methods to reconstruct the state space, like the method of delays
(MODs) and the singular value decomposition method (SVD). The MOD is the most explored
reconstruction method in literature. In this technique a time delay (τ) and an embedding
dimension (d) are required to generate delayed coordinates from time series [20].

The reconstruction method based on singular value decomposition (SVD) has been
proposed by Broomhead and King [14]. The methodology eliminates the need for a time
delay parameter by using the properties of the covariance matrix of the data to generate
uncorrelated coordinates. One of the advantages of SVD is the capacity of filtering the time
series as a result of the reconstruction process. Kugiumtzis and Christophersen [21] and
Vasconcellos [16] have compared MOD and SVD, and they concluded that SVD is more
reliable for noisy data, since MOD may lead to arbitrary conclusions because the approaches
to obtain τ and d are sensitive to noise [16, 22]. Therefore in principle, the SVD approach is
more suitable for experimentally acquired time series.

The SVD approach for state space reconstruction needs the covariance matrix
constructed from data contained in the time series s(t). In this case, each state of the
system can be considered a statistical variable, and the diagonalization of covariance matrix
separates the states by their variance, allowing the assessment of the system dynamics from
those states that have higher variance. As small variance states are dominated by noise,
reconstruction is basically attained with filtering. The application of an n-size window to
a time series of NT data points results in a sequence of N = NT − (n − 1) vectors in the
embedding space, that is, {xi ∈ Rn | i = 1, 2, . . . ,N}. Such a sequence can be used to construct
a so-called trajectory matrix (X), which contains the complete record of patterns that have
occurred within the window, that is:

X =
[
xT

1 xT
2 · · · xT

N

]
. (2.1)

The columns of trajectory matrix constitute the state vectors xi on the reconstructed
trajectory in embedding space. The N state vectors in embedding space are used, in order
to find a set of linearly independent vectors in Rn, which describe efficiently the attracting



4 Mathematical Problems in Engineering

manifold in state space [23]. The X matrix can be decomposed according to the following
relation:

X = SDCT, (2.2)

where S = [s1 s2 · · · sn] and C = [c1 c2 · · · cn] are matrices of the respective singular
vectors, and D = diag[σ1, σ2, . . . , σn] is a diagonal matrix of the singular values [14].

The number of independent eigenvectors ci, which are relevant for the description
of the system dynamics, is equal to the number of nonzero eigenvalues σi, and they also
are the new basis for the trajectories projection. The trajectory can be described in the new
basis by projecting the trajectory matrix on the basis by the XC product, where C = {ci, i =
1, . . . , rank(XXT)}. The new trajectory matrix XC is described by the relation:

(XC)T(XC) = D2. (2.3)

The relationship given by (2.3) corresponds to the diagonalization of the new
covariance matrix, so that in the basis ci the components of trajectory are uncorrelated.

When the system is perturbed by external noise the trajectory begins to be diffuse in
directions corresponding to zero eigenvalues, where the external perturbation dominates.
The projection of trajectory matrix in the basis C works as a lowpass filter for the entire
trajectory. Moreover, the SVD method permits the reconstruction of the original trajectory
excluding all dimensions dominated by noise and the retrieval of a filtered time series. The
presence of a nonzero constant background, or noise floor, in the spectrum σi is sufficient to
distinguish the deterministic components [14]. The original trajectory may be reconstructed
by

Xd =
∑

σ>noise
{Xci}cT

i , (2.4)

where σi corresponds to a singular value above the noise floor.

3. Tools to Characterize Chaotic Patterns

This section presents some techniques that can be employed for the characterization of
complex nonlinear dynamics. There is suggested, as first steps toward chaotic patterns
assessment, tests for stationarity and the surrogate data test to the experimental time series.
If a time series originates from a unknown process, it is important to investigate if the system
parameters remain constant or not during the experiment and whether the data does or not
some nonlinear deterministic dependencies [24].

Violations of the fact that the dynamical properties of the system underlying a signal
must not change during the observation period can be checked simply by measuring them
for several segments of the data set [13]. To investigate if the signal contains some nonlinear
deterministic dependencies, a surrogate data test can be useful. The basic idea with respect
to the surrogate data technique is to make some hypotheses about the data and then try to
contradict this hypothesis. A widely used hypothesis is that colored noise data is generated
by a linear stochastic process. Therefore, the data is modified in such a way that the
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complete structure, except for the assumed properties, will be destroyed. This may be done
by Fourier transforming the data, and by randomly shuffling the phases, the power spectrum
or equivalently the autocorrelation function is not affected. A new time series with the same
power spectrum is obtained by transforming back into the time domain.

If the original data is just colored noise, estimators of dimension, average mutual
information, Lyapunov exponents, prediction errors, and so forth should give the same
results for the original time series and the surrogates. If however, the analysis yields
significant differences, the original data is more than “just noise” [24].

To improve the statistical robustness, several surrogates are generated. Furthermore,
it is necessary to take into account a possibly static nonlinear transformation of the data that
would distort the Gaussian distribution of the assumed colored noise as done by Theiler et al.
[25].

A powerful tool for the verification of complex dynamics, in particular, to identify
chaotic patterns is Poincaré mapping. The Poincaré section of the state space dynamics
simplifies the geometric description of the dynamics by removing one of the state space
dimensions. For instance, a three-dimensional state space presents the Poincaré section as
a two-dimensional plane chosen in such way that the trajectories intersect it transversely.

The key point is that this simplified geometry contains the essential information about
the periodicity, quasiperiodicity, chaosity, and bifurcations of the system dynamics [17].
Bifurcation, in this case, is the term used to describe any sudden change in the dynamics
of the system due to the respective parametric change. Therefore, for any change on the
attractor geometry with a parameter variation, bifurcations can be visualized by plotting one
Poincaré section for each parameter value. The Poincaré section computation has been based
on Merkwirth et al. [26] and Kantz and Shreiber [13], which proposes the section extracted
directly from an embedded time series. The result is a set of (n−1)-dimensional vector points,
used to perform an orthogonal projection.

Lyapunov exponents determination furnishes important indications with respect to
chaotic patterns of dynamic systems. Lyapunov exponents describe the mean exponential
increase or decrease of small perturbations on an attractor and are invariant with respect to
diffeomorphic changes of the coordinate system [24]. When the largest Lyapunov exponent
is positive, the system is said to be chaotic. Direct methods to quantify the largest Lyapunov
exponent estimate the divergent motion from the reconstructed space state, without fitting a
model to the data.

The method proposed by Sato et al. [27] considers the average exponential growth of
the distance of neighboring orbits on a logarithmic scale via prediction error on the number
of time steps k, that is:

p(k) =
1
Nts

N∑

n=1

log2

(∥∥yn+k − ynn+k
∥∥

‖yn − ynn‖

)

, (3.1)

where N is the number of data points, ts is the sampling period, and ynn is the nearest
neighbor of yn.

The dependence of the prediction error p(k) on the number of time steps k may
be divided into three phases: the transient, corresponding to the first phase, where the
neighboring orbit converges to the direction corresponding to the largest Lyapunov exponent;
the second phase, where the distance grows exponentially with e(λ1tsk) until it exceeds the
range of validity of the linear approximation of the flow around the reference orbit yn+k;
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Figure 1: Experimental set-up and strain gages locations.

then, the last phase begins, where the distance increases slower than exponentially until it
decreases again due to foldings in the state space [24]. If the second phase is sufficient long,
a linear segment with slope λ appears in p(k) versus k plot. This slope value (λ) is associated
with the Lyapunov exponent value. This also provides a direct verification of the exponential
growth of distances to distinguish deterministic chaos from stochastic processes, where a
nonexponential separation of trajectories occurs [24].

4. Experimental Apparatus and Database

The experimental apparatus comprises an aeroelastic wing model mounted over a turntable
device driven by a brushless electrical motor and an acquisition system. The wing model is
tested in a wind tunnel test section of approximately 2 m2 cross-section area and a maximum
flow speed of 50 m/s. The wing model was fixed to a turntable that allowed various angles
of incidence of the model, thereby providing exploration of a variety of motion-induced
aeroelastic responses over a range of airflow velocities.

The wing model main structure was constructed with fiberglass and epoxy resin with
a taper ratio of 1 : 1.67, where the width at the root is 250 mm and the semispan is 800 mm.
To provide aerodynamic shape of NACA0012 airfoil, high-density foam and a thick wooden
skin were used, and the chord was fixed in 290 mm from root to the tip. In order to reduce
the effect of aerodynamic cover to the wing structure stiffness, both foam and wooden shell
have been segmented at each 100 mm spanwise. Strain gages were fixed to the plate surface to
register the dynamic response of the wing main structure. The strain gages were distributed
along three spanwise lines. The first and the last lines received three strain gages each, to
register bending motions. The intermediate line also received three strain gages, arranged
in this case to register torsional motion. Figure 1 illustrates the experimental apparatus with
indications of the strain gage locations on the wing model structure.
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Table 1: Experimental test cases.

Fixed oscillatory frequency (at 10.0 rad/s) Fixed freestream speed (at 15.0 m/s)
Freestream speeds (m/s) Turntable oscillatory frequency (rad/s)

8.28 2.0
9.97 4.0

11.64 6.0
13.30 8.0
14.97 10.0

Data acquisition and motion control of the brushless electrical motor were achieved
using a dSPACE DS1103 PPC controller board and real-time interface for SIMULINK. An
HBM KWS 3073 amplifier was used to acquire and amplify the strain gages signal. The
resulting signals are acquired by the dSPACE controller board, for subsequent storage into
a PC compatible computer.

5. Results and Discussion

During experiments, oscillatory motions of the turntable were executed at relatively low
amplitude, that is, 5.5◦ incidence angle, but such oscillations have been considered around
an average incidence angle of 9.5◦. For these cases, highly unsteady separated flow occurs,
inducing complex aeroelastic responses to the wing model. These cases furnish an adequate
database for nonlinear aeroelastic response phenomena analysis.

The cases under consideration are summarized in Table 1 and were collected from
strain gage at position 1 for bending measurement (cf. Figure 1). Table 1 indicates that
aeroelastic time series has been acquired for a range of freestream speed (U), at a fixed
turntable oscillatory frequency (ω), and for a range of turntable oscillatory frequencies at a
fixed airflow velocity. Both cases provide essential information on motion-induced aeroelastic
responses. Each aeroelastic time series has been filtered by SVD method and checked for
stationarity with runtest and reverse arrangements test [11], prior to any analysis. All time
series considered in this work have passed at the significance level of 0.05. Figure 2 presents
a typical aeroelastic response, in this case for U = 14.97 m/s and ω = 10.0 rad/s, where the
existence of complex aeroelastic response can be observed.

In order to justify the use of nonlinear analysis techniques, a surrogate data test was
performed. Using Algorithm II of Theiler et al. [25], 99 surrogates were generated and the
correlation sum was computed for each by using the algorithm proposed by Grassberger and
Procaccia [28]. The correlation sum assesses the relative number of neighboring points closer
than r [24] and is given by

Cd(r) =
2

(N − c)(N − 1 − c)

N∑

i=1

i−c∑

j=1

H
(
r −

∥∥∥yi − yj
∥∥∥
)
, (5.1)

where N is the number of data points, H is the Heaviside function with H(x) = 1 for x > 1
and zero elsewhere, c is a constant accounting for some correlation length (used to omit
points that are close neighbors in time), ‖yi −yj‖ is the mutual distance between the points in
question, and d is the embedding dimension.
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Figure 2: Aeroelastic time series—strain gage measurement at position 1 (U = 14.97 m/s, ω = 10.0 rad/s).

Figures 3 and 4 present the correlation sum of these 99 surrogates in the mean
line with the error bars; the correlation sum computed for the SVD-filtered acquired data
is present in the continuous line. Clearly, the data is out of correlation sum distribution
generated for purely linear stochastic surrogate signal. This evidence reinforces that the signal
may be representative of a deterministic nonlinear process. These results provide enough
information to qualify further investigation using nonlinear analysis tools to characterize
possible aeroelastic chaotic patterns.

Here, state spaces have been reconstructed by the SVD approach. As an example,
Figure 5 shows the singular spectrum and the accumulated variance of the considered
singular values for one case (U = 14.97 m/s, ω = 10.0 rad/s, and strain gage at position 1—cf.
Figure 1), clearly revealing three eigenvalues above the noise floor. This indicates embedding
dimension 3, which was confirmed as the same for all the other cases. The state space was
reconstructed considering only these tree singular values, which represents more than 99%
of the total variance. Figure 6 presents an example of reconstructed state space in terms of
the projections onto the three mutually orthogonal planes spanned by the singular vectors
(c1, c2, c3) and the three-dimensional view. The reconstructed trajectories present complex
shapes, with the presence of more than one center of rotation, which is an indication of a
chaotic pattern [29].

For the cases presented in Table 1 where a fixed oscillation frequency is considered (in
this case, ω = 10.0 rad/s) for a range of airflow velocities, respective aeroelastic responses
have been used to reconstruct the spaces via the SVD technique. The results furnish an
evolution of the reconstructions with respect to freestream speed, allowing investigations of
bifurcations and chaotic patterns. Figure 7 shows the evolution of trajectories in reconstructed
state space due to freestream speed variation. The occurrence of bifurcation is clear, mainly
due to the transition between trajectories at 11.64 and 13.30 m/s as well as between 13.30 and
14.97 m/s. In previous works, Vasconcellos [16] and Marques et al. [30] encountered evidence
that bifurcations occur in a similar system. For increasing freestream speed, separated flow
intensity also increases and different nonlinear mechanisms for this effect occur.

Poincaré sections of reconstructed state spaces have been determined, in order to
supply an easier visualization of the aforementioned transitions or bifurcations. In Figure 8
one may observe considerable changes in the Poincaré sections, as the speed increases, with
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Figure 3: Correlation sum of 99 surrogates (line with error bars) and the tested data for the fixed oscillation
frequency conditions.

the amplitude of the motions enlarging. Between third and fourth sections (corresponding to
freestream speeds of 11.64 and 13.30 m/s), considerable change in the Poincaré section shape
can be observed. The same complex behavior occurs between the fourth and fifth sections
(corresponding to freestream speeds of 13.30 and 14.97 m/s). In all these cases, one can infer
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Figure 4: Correlation sum of 99 surrogates (line with error bars) and the tested data for the fixed freestream
speed conditions.

that the aeroelastic system response is complex, revealing bifurcations associated separated
flowfield effects as well as with distributed structural nonlinearities. Projected Poincaré
sections, as illustrated in Figure 9, show an alternative way to visualize the bifurcations with
respect to airflow velocity evolution.
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Figure 5: Singular spectrum and accumulated variance for aeroelastic time series (case: U = 14.97 m/s, ω
= 10.0 rad/s, and strain gage at position 1—cf. Figure 1).
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Table 2: Lyapunov exponents by prediction error technique [27] for fixed turntable oscillatory frequency
(ω = 10.0 rad/s) and a range of freestream speeds (cf. Table 1).

Freestream speed (m/s) 8.28 9.97 11.64 13.30 14.97

Largest exponent 0.50 0.54 0.56 0.56 0.57

The final step in the investigation of the complex nonlinear behavior of the aeroelastic
signals is the determination of the largest Lyapunov exponent. Here, the exponent for each
of the aeroelastic responses, for fixed turntable oscillatory frequency in a range of airflow
velocities (cf. Table 1), is summarized in Table 2. The calculations were executed using the
prediction error technique as proposed by Sato et al. [27]. It may be observed that the largest
Lyapunov exponent increases with freestream speed. In all conditions, the largest Lyapunov
exponents are positive, indicating chaotic behavior, what implies that the encountered
bifurcations from inspecting state space reconstructions and Poincaré mappings are chaos-
chaos bifurcations. The occurrence of chaotic motions may cause degradation of aircraft flight
performance, leading to future structural problems due to material fatigue. Moreover, abrupt
dynamical behavior changes due to bifurcations may yield severe structural damage or total
failure.

Figure 10 can be seen as a complementary result, because it shows plottings of
solutions for (3.1). The presence of the linear segment slope ensures deterministic chaos
occurence, thereby validating surrogate data tests. In Marques et al. [20] and Simoni
[31], the method developed by Wolf et al. [32] has been used to estimate the Lyapunov
exponents, considering the analysis for similar motion-induced aeroelastic time series.
Positive Lyapunov exponents have also been encountered, with values of approximately 0.3.
Comparative results between techniques for the largest Lyapunov exponents for nonlinear
aeroelastic responses can be found in Marques et al. [33].

The following results are related to investigations of chaotic patterns of aeroelastic
responses for a range of turntable oscillatory frequencies, while the wind tunnel freestream
speed is kept fixed (in this case,U = 15.0 m/s). The respective oscillatory frequency range can
be seen in Table 1. The state spaces are reconstructed for all these conditions, and Figure 11
shows the evolution of trajectories in state space within the range of turntable oscillatory
frequencies. Here, a considerable change in trajectory patterns may be observed, with a clear
increase in the amplitude of motion until 8.0 rad/s, followed by a sudden change in shape
and amplitude at around 10.0 rad/s. Such behavior may be associated with the so-called
bifurcation crises, in which chaotic attractors and their basin of attraction suddenly disappear
or expand; the sudden expansion or contraction of a chaotic attractor is called an interior crises
[17].

The physical events related to these results indicate that separated flow effects and
aeroelastic modes interaction play an important role in the nonlinear behavior. Bifurcation
crises phenomenon manifests itself due to highly separated flow nonlinearities together with
oscillatory evolution leading to nonlinear couplings between different aeroelastic modes.

Poincaré sections obtained from reconstructed state spaces may also be used to verify
the peculiar changes in trajectory shape and amplitude. In Figure 12, one may observe
considerable changes in Poincaré sections, as the turntable oscillatory frequencies increase,
thereby indicating the existence of bifurcations. Again, in all these cases the Poincaré sections
suggest complexity of the aeroelastic system and several changes in geometry of state space
occur. Again, projected Poincaré sections as shown in Figure 13 can be used to infer the
presence of bifurcations.
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Figure 10: Largest Lyapunov exponents with the freestream speeds: 8.28, 9.97, 11.64, 13.30, and 14.97 m/s,
respectively, at fixed oscillatory turntable frequency of ω = 10.0 rad/s.

The largest Lyapunov exponent was also computed via prediction error technique
[27], for turntable frequency variation cases (cf. Table 1). In all conditions, the largest
Lyapunov exponents are positive as presented in Table 3, indicating chaotic patterns for the
aeroelastic wing responses and chaos-chaos bifurcations.
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Figure 11: Reconstructed state space evolution with turntable oscillatory frequencies: 2.0, 4.0, 6.0, 8.0, and
10.0 rad/s, respectively, at fixed wind tunnel freestream speed of U = 15.0 m/s.
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Figure 12: Poincaré sections evolution with turntable oscillatory frequencies: 2.0, 4.0, 6.0, 8.0, and
10.0 rad/s, respectively, at fixed wind tunnel freestream speed of U = 15.0 m/s.
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Figure 13: Projection of the Poincaré sections evolution with turntable oscillatory frequencies: 2.0, 4.0, 6.0,
8.0, and 10.0 rad/s, respectively, at fixed wind tunnel freestream speed of U = 15.0 m/s.
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Figure 14: Largest Lyapunov exponents via prediction error computed for turntable oscillatory frequencies:
2.0, 4.0, 6.0, 8.0, and 10.0 rad/s, respectively, at fixed wind tunnel freestream speed of U = 15.0 m/s.

Similarly to the previous cases (freestream speed range), Lyapunov exponents for that
analysis have been obtained from plottings as presented in Figure 14 and summarized in
Table 3.
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Table 3: Lyapunov exponents by prediction error technique [27] for fixed wind tunnel freestream speed
(U = 15.0 m/s) and a range of turntable oscillatory frequencies (cf. Table 1).

Turntable oscillatory frequency (rad/s) 2.0 4.0 6.0 8.0 10.0

Largest exponent 0.50 0.30 0.41 0.25 0.57

6. Concluding Remarks

Techniques from nonlinear time series analysis theory have been presented in this work to
investigate chaotic patterns of nonlinear motion-induced aeroelastic responses. Experimental
tests with a wind tunnel aeroelastic wing model mounted on an oscillatory turntable have
been executed with highly separated flow field conditions. Aeroelastic time series have been
obtained from strain gages measurements, which were used directly with a variety of time
series analysis tools. The time series have been tested using the surrogate data method, in
order to investigate whether or not the data was representative of a nonlinear process. The
results justify the application of techniques in order to search for bifurcations and chaotic
patterns, since the linear hypothesis could be rejected.

The SVD method has been used to reconstruct the state spaces from the experimentally
acquired aeroelastic time series, and the trajectories and subsequent assessment of the
Poincaré sections have indicated complex behavior, such as bifurcations and chaos.

The evolution with freestream speed for a fixed turntable oscillatory frequency
suggests the occurrence of chaos-chaos bifurcations, since changes in the shape of the
attractor and Poincaré sections have been observed and all largest Lyapunov exponents are
positive. Moreover, evolutions in terms of turntable oscillation frequency at a fixed wind
tunnel freestream velocity also show the occurrence of bifurcations. Reconstructed spaces
have also revealed complex motion amplitude changes with respect to parametric variation
(freestream speed or turntable oscillatory frequency).

The occurrence of bifurcations, mainly in the cases where a sudden increase in
amplitude of motion happens, reinforces the importance of nonlinear behavior study
in aeroelastic systems. Further investigations to check experimental nonlinear aeroelastic
response features with other time series analysis tools are planned.
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