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This paper is concerned with an evolutionary search for limit cycle operation in a class of nonlinear
systems. In the first part, single input single output (SISO) systems are investigated and sinusoidal
input describing function (SIDF) is extended to those cases where the key assumption in its
derivation is violated. Describing function matrix (DMF) is employed to take into account the
effects of higher harmonic signals and enhance the accuracy of predicting limit cycle operation.
In the second part, SIDF is extended to the class of nonlinear multiinput multioutput (MIMO)
systems containing separable nonlinear elements of any general form. In both cases linearized
harmonic balance equations are derived and the search for a limit cycle is formulated as a
multiobjective problem. Multiobjective genetic algorithm (MOGA) is utilized to search the space
of parameters of theoretically possible limit cycle operations. Case studies are presented to
demonstrate the effectiveness of the proposed approach.
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1. Introduction

The theory of linear dynamic systems is now well understood and is widely applied to many
fields of engineering such as robotics, processes control, ship stirring to name a few. However,
nonlinear systems have received less attention, the reason being the diversity and complexity
of these systems. With the advent of fast and powerful digital computers, research for a more
precise and accurate analysis of nonlinear systems has grown considerably [1–3]. One such
method which traditionally has been applied is the replacement of nonlinear behavior with a
quasi-linear gain called describing function (DF) [4].

Describing function theory and techniques represent a powerful mathematical
approach for analyzing and designing nonlinear systems. The main motivation for DF
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Figure 1: Feed back configuration for nonlinear systems.

techniques is the need to understand the behavior of nonlinear systems, which in turn is
based on the simple fact that every system is nonlinear, except in very limited operating
regimes. The basic philosophy of DF is to replace each nonlinear element with a quasi-
linear descriptor or describing function. The functional form of such a descriptor is governed
by several factors, the type of input signal, (which is assumed in advance), and the
approximation criterion, for example, minimization of mean squared error. This technique
is dealt with very thoroughly in a number of texts for the case of nonlinear systems with
a single nonlinearity [4]. One category of DFs that has been particularly successful is the
sinusoidal input describing function (SIDF).

The fundamental ideas and use of the SIDF approach can best be introduced by
overviewing the most common application, limit cycle analysis for a system with a single
nonlinearity. A limit cycle (LC) is a periodic signal, xLC(t + T) = x(t) for all t and for some
T (the period), such that perturbed solutions either approach xLC (a stable limit cycle) or
diverge from it (an unstable one). Recently several analytical techniques have been proposed
in the framework of the Bifurcation theory for investigating different aspects of limit cycle
operation [5, 6]. Nonlinear techniques for modeling the periodic signal in general and limit
cycles in particular have also been suggested [7]. However, an approach to LC analysis that
has gained widespread acceptance is the graphical frequency-domain SIDF method [8, 9].

In this paper the describing function method is first extended to the case of single
input single output (SISO) systems, where the condition for elementary SIDF application
is not strictly satisfied [10]. When the linear system element does not attenuate the super-
harmonic components around the feedback loop, the input to the nonlinear element will not
be a pure sinusoid and will be a distorted waveform containing higher harmonics. The first
part of this paper uses the (DFM), to account for higher harmonics and widen the scope of
applications of the SIDF method [11].

The second part of the paper further extends the SIDF techniques to a class of
multiloop nonlinear systems in which the nonlinear elements are separable from the linear
part. In both cases, emphasis is placed on the multiobjective formulation of predicting the
limit cycle operation and the subsequent solution of the harmonically linearised system
equations by the multiobjective genetic algorithms (MOGA).

2. Harmonic Analysis

The harmonic balance equation for the autonomous feedback configuration of Figure 1, in
which the nonlinearity exists as a separable element in an otherwise linear system, is given
as

1 +N(a,ω)G(jω) = 0, (2.1)

where N(a,ω) is the SIDF representing the nonlinear element and G(jω) is the frequency
transfer function of the linear part. In a simple harmonic analysis, some form of the solution
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of (2.1) is sought. However, the valid application of the SIDF requires that the input signal to
the nonlinear element be essentially sinusoidal in form. This is a condition which imposes an
overall low-pass frequency characteristic on the linear system elements such that the super-
harmonic signals are attenuated around the feedback loop. Based on the assumption that the
input to the nonlinear element is a pure sinusoidal, the SIDF is derived as

N(a,ω) =

(
b1 + jc1

)
ejωt

aejωt
=

1
a

(
b1 + jc1

)
, (2.2)

where b1 and c1 are the first harmonics in the Fourier series of N, and a is the amplitude
of the input sinusoidal. In general the SIDF is a function of both input amplitude and input
frequency, however, for single valued, sector bounded nonlinearities which are the subject of
this work, the describing function is real and only a function of input amplitude a, therefore
for brevity N(a) is used to denote the SIDF.

3. Extension of Higher Harmonic Analysis to SISO Systems

In cases where the requirements of the overall low-pass characteristics of the linear system
elements are met, the conventional graphical technique in the frequency domain has been
shown to give acceptable results [9]. This elementary SIDF analysis and the associate
graphical solution are well documented [4]. However, in those cases where the amplitude of
higher harmonics of the Fourier series at the output of the nonlinear element are significant
and are not suppressed around the feedback loop, the key assumption in derivation of the
SIDF is violated [10]. The reason being that the input to the nonlinear element will be a
distorted waveform containing the fundamental as well as other harmonics. One method to
remedy this circumstance is to find error bounds for the elementary SIDF. Based on Tsypkin’s
method, a strategy with which to find systems with a low-pass linear part for which the
describing function technique erroneously predicts limit cycles is outlined in [10]. A more
attractive method that widens the scope of the SIDF applications, as well as achieving a
more accurate limit cycle prediction is to account for additional harmonics. An appropriate
technique is the so called “describing function matrix” (DFM), which is a mathematical
formulation that allows an arbitrary number of harmonics to be taken into account in the
SIDF analysis [11, 12].

Consider a nonlinear element N which gives output y = N(x) for an input x. It is
required to examine the behavior of N under an input which is exactly periodic. Let this be

x = Re

[
∞∑
r=0

are
jrωt

]
, (3.1)

where a = (a0, a1, a2 . . .)
T is the vector of amplitudes of the harmonic components at

the input to the nonlinear element and for a finite number of harmonics (r = m), am =
(a0, a1, a2, . . . , am)

T , T denotes transposition of a. Let C be an analogous vector of complex
Fourier coefficients of the nonlinearity output y, then an infinite matrix N (the describing
function matrix) may be defined as follows:

The 0th column is given by Nk0 = C(a0)/a0,

The 1st column is given by Nk1 = [(Ck(a1) − Ck(a0))/a1],
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where, for example, the (3.1), (2.1) element represents the amplitude of the 3rd output
harmonic divided by that of the 1st input harmonic. In general, the jth column is given by,

Nkj =
[
Ck

(
aj
)
− Ck

(
aj−1
)

aj

]
, (3.2)

where k signifies the row number and is the index of harmonic components. If the nonlinear
element is not frequency dependent and no bias level is present, then the 0th column can be
ignored, and in this case the first element of the first column is the normal SIDF. Also note
that if the nonlinear element is symmetrical and odd valued, then even rows (k = 2, 4, 6, . . .)
can be ignored.

Now define the linear part Gm = Diag(g(0jω), g(jω), g(j2ω), . . . , g(jmω)) and
representing the nonlinear element with DFM for m harmonic components, the condition for
existence of oscillation is that the following simultaneous harmonic balance equation (3.3)

(
I +NmGm)am = 0 (3.3)

has a solution ψm = [
ω

am
]. The reason forG being a diagonal matrix is that different harmonics

do not interact in passing through the linear element.
Consider the nonlinear SISO system shown in Figure 1 in which G(jω) and N(a)

are scalars. Assume a fundamental plus a third harmonic to be present at the input to the
nonlinear element. Further, assume that the nonlinear element is not frequency dependent,
but is symmetrical and odd valued function. The describing function matrix for an input of
the following form

x(t) = a1 sinωt + a3 sin(3ωt + φ) (3.4)

can be constructed as

N �

⎡⎢⎢⎢⎣
c1
(
a1
)

a1

c1
(
a1, a3

)
− c1
(
a1
)

a3

c3
(
a1
)

a1

c3
(
a1, a3

)
− c3
(
a3
)

a3

⎤⎥⎥⎥⎦ , (3.5)

where φ is the phase shift between the two harmonics and c1(a1), c3(a3) are respectively,
the first and the third coefficients of Fourier components at the nonlinear output, due to the
component a1 sin(ωt) only, and c1(a1, a3), c3(a1, a3) are the corresponding coefficients due to
the sum of the two signals at the input to the nonlinear element.

In the case of only two harmonics such as x(t) given by (3.4), the harmonic balance
equation (3.3) is reduced to the following two simultaneous equations

(
I +N2G2), (3.6)
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where N2 is the second order (first and the third harmonic) DFM and G2 is a 2 × 2 diagonal
matrix (

1 0

0 1

)
+

(
n11
(
a1
)
n12
(
a1, a3

)
n21
(
a1
)
n22
(
a1, a3

))(g(jω) 0

0 g(j3ω)

)(
a1

a3∠φ

)
= 0, (3.7)

equation (3.7) may be written as

(
1 + n11

(
a1
)
g(jω)

)
a1 + n12

(
a1, a3

)
g(j3ω)a3∠φ = 0,

n21
(
a1
)
g(jω)a1 +

(
1 + n22

(
a1, a3

)
g(j3ω)

)
a3∠φ = 0,

(3.8)

where n11, n12, n21, n22 represent the elements of matrix N as defined by (3.5).
Rearranging the second equation in the equation set (3.8)

a3∠φ = −
∣∣∣∣ n21

(
a1
)
g(jω)

1 + n22
(
a1, a3

)
g(j3ω)

∣∣∣∣a1. (3.9)

A search has to be carried out in the space of (a1, φ, ω, a3 in that order) to find those values of
a3 and φ which will satisfy (3.9). If such values are found, the result will be substituted into
the first equation of equation set (3.8), to test for this equation which governs the fundamental
oscillation.

Substituting (3.9) into the first equation of equation set (3.8) and rearranging yields

n11
(
a1
)
g(jω)a1 +G1 = −1, (3.10)

where G1 = −n12(a1, a3)g(j3ω)n21(a1)g(jω)/(1 + n22(a1, a3)g(j3ω)),(3.10) represents the
overall harmonic balance equation for both the fundamental and the third harmonic
components. Hence, a limit cycle with parameters (a1, a3, ω, φ) exists when the following
two equations are simultaneously satisfied;

∣∣n11
(
a1
)
g(jω)a1 +G1

∣∣ = 1,

∠
(
n11
(
a1
)
g(jω)a1 +G1

)
= 180 ± 2kπ, k = 0, 1, . . . .

(3.11)

Alternatively, (3.8) may be rearranged as follows and be directly used as the objective (fitness
function) in the subsequent MOGA search as the satisfaction of these objectives implies the
solution of the two simultaneous harmonic balance equations (3.8)

Obj1 =
∣∣(1 + n11

(
a1
)
g(jω)

)
a1 + n12

(
a1, a3

)
g(j3ω)a3 exp(jφ)

∣∣ ≤ ε,
Obj2 =

∣∣n21
(
a1
)
g(jω)a1 +

(
1 + n22

(
a1, a3

)
g(j3ω)

)
a3 exp(jφ)

∣∣ ≤ ε. (3.12)

For the exact solution of the simultaneous equations (3.12), values of Obj1 and Obj2 should
reach zero but ε is a small positive number (as near to zero as possible). An intelligent search
based on MOGA with the above defined objective (fitness) function is carried out over the
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space of (a1, a3, ω, φ) to facilitate an efficient and an accurate prediction of limit cycle in the
presence of higher harmonics.

4. Extension of Harmonic Analysis to MIMO System

Extension of describing function techniques to multiloop nonlinear systems is not new
and follows the development of the frequency domain multivariable linear theory [13, 14].
A numerical technique with a graphical interpretation for quantifying the limit cycle
parameters in multivariable systems in the frequency domain is reported in [15]. The
extension of the graphical techniques to multiloop systems with coupled multivalued
nonlinear elements is reported in [16]. Another graphical method based on the phasor
diagram which particularly gives accurate limit cycle prediction for relay systems is
developed in [8]. A computer aided design (CAD) tool for limit cycle prediction aimed
at educational purposes is reported in [9]. Another novel numerical technique based
on deriving the least damped eigenvalue to the imaginary axis for nonlinear systems
with multiple nonlinearities is suggested in [17]. Based on defining an appropriate error
function, the authors use both eigenvalue and eigenvectors to formulate a generalized
Newton-Raphson method to solve for the state variable amplitude in a minimum norm
sense [17]. Most of the above mentioned techniques are essentially dependent on the
graphical displays in the frequency domain. While this is useful for getting insight into the
subsequent compensator design, an efficient technique for accurately quantifying the limit
cycle parameters is still highly desirable.

In this paper, a multiobjective formulation is presented to search numerically for limit
cycles in a class of multiloop nonlinear systems. The approach is computationally efficient
and is based on multiobjective genetic algorithms (MOGA).

5. Limit Cycle Prediction in Nonlinear Multivariable Systems

Provided that certain limitations are placed on the form of the linear system elements, the
extension of the of harmonic linearization to multivariable systems is conceptually straight-
forward. The equation governing limit cycle operation in the autonomous multivariable
nonlinear feedback system of Figure 1 can be expressed as

(T(a, jω) + I)a = 0, (5.1)

where T(a, jω) = N(a, jω)G(jω) and N(a,ω) is the matrix of sinusoidal input describing
function corresponding to the nonlinear elements of N, and a is the column vector of the
sinusoid at the inputs to these elements. The use of a single sinusoidal describing function
analysis implies the following assumptions:

(a) Each element of G(jω) acts as a low pass system so that higher harmonic signal
components are effectively suppressed.

(b) If a limit-cycle is present, then all loops will oscillate at the same frequency. Expe-
rience indicates that this is a reasonable assumption, particularly if the nonlinear
elements are similar and if the dominant linear elements have approximately the
same frequency characteristics.
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Equation (5.1) will have a nontrivial solution only if

det[N(a,ω)G(jω) + I] = 0. (5.2)

Thus for no limit cycle to exist, no eigenvalue of N(a,ω)G(jω) can equal (−1, j0).
The conventional graphical frequency domain method for the solution of (5.2) for

single input single output systems with a single nonlinear element may be extended to MIMO
systems employing Nyquist or the Inverse Nyquist Array. Invoking the Inverse Nyquist
Array method [13], the possibility of limit cycle existence may be examined by studying the
following inequalities:

∣∣nkk(ak) + ĝkk(jω)∣∣ >∑
j /= k

∣∣njk(ak) + ĝjk(jω)∣∣, (5.3)∣∣nkk(ak) + ĝkk(jω)∣∣ >∑
j /= k

∣∣njk(ak)∣∣ +∑
j /= k

∣∣ĝjk(jω)∣∣, (5.4)

where njk(a) and ĝjk(jω) are the jkth elements of the matrices, N(a) for single valued
nonlinear elements and G−1(jω), respectively. Inequality (5.3) implies that no limit cycle
operation is theoretically possible if Gershgorin bands associated with each diagonal element
of (N(a)+G−1(jω)) do not encompass the origin in the complex frequency domain. Inequality
(5.4) implies the same result, provided that the bands traced out by the Gershgorin discs
on the loci of ĝii(jω) and nii(a) do not intercept for every i. The former representation
is computationally more demanding, but gives less conservative results because of the
weakening step between inequalities (5.3) and (5.4). The Gershgorin discs set bounds to the
eigenvalue locations and any method of limit cycle prediction based on band intersection
should have a tendency to be conservative.

An alternative approach lies in calculating eigenvalue of the harmonically linearised
return ratio system equation. For a general system which contains both on and off diagonal
nonlinear elements, the computational effort involved in determining the eigenvalue
becomes almost formidable as, at any frequency, the return ratio matrix is a function of the
signal amplitude at the input to the nonlinear elements [16].

A numerically based technique called the sequential loop balance method has also
been devised [15]. This method is based on (5.1) for which T(a, jω) has elements of the form
tij(aj , jω), and a is a column vector at the input to the nonlinear elements such that aj =
Aj exp(jφi), j = 1, 2, . . . , n, for all j, i = 1, 2, . . . m over arbitrary ranges A, ω, and φ, a possible
infinite number of solutions may exist for (5.1). For a specified value of frequency and a
specified range of discrete values of the reference signal a1 = A1e

j0, A1 > A2, A3, . . . , An a
finite number of p sets of sinusoids (a1k, a2k, . . . , ank), k = 1, 2, . . . , p which will satisfy the
condition for harmonic signal balance in the nth system loop as given by (5.5) are found;

(
tnn + 1

)
an +

n−1∑
j=1

tnjaj = 0. (5.5)

Next, the (n − 1)th loop is considered but using only those finite sets of solution sinusoids
derived from (5.5). If there are q solution sets of sinusoids (q ≤ p) which satisfy both
equations, the (n − 2)th loop equation is next examined using only the q sets of solution
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Figure 2: A two-input two-output nonlinear system.

sinusoids and the process is repeated in a sequential manner until loop 1 is reached. Clearly
this method is also computationally demanding due to an indirected search over the specified
ranges of parameters. Further, it does not search for the phase difference between the
oscillating loops, and as discrete data are used in the computation, there is the possibility
of solution sets which exist over the data intervals.

Considering the 2 × 2 autonomous system shown in Figure 2, the set of equations
governing this model is given by (5.6)

(
1 + n11

(
a1
)
g11(jω)

)
a1 + n21

(
a2
)
g21(jω)a2e

jφ = 0,(
n12
(
a1
)
g12(jω)a1 + 1 + n22

(
a2
)
g22(jω)

)
a2e

jφ = 0.
(5.6)

In this case there are two equations and four variables (unknown). The solution of these
equations is sought over a range of specific values of a1, a2, ω and ϕ, where a1 and a2 are
amplitudes of limit cycles in loop 1 and 2, respectively, ω is frequency of oscillation for both
loops and φ is the phase-shift between the loops.

6. Multiobjective Genetic Algorithms

Genetic algorithms (GAs) are search procedures based on the evolutionary process in nature.
They differ from other approaches in that they use probabilistic and not deterministic criteria
for progressing the search. The idea is that GA operates on a population of individuals,
each individual representing a potential solution of the problem, and applies the principle
of survival of the fittest to the population, so that the individuals evolve towards better
solutions of the problem. Each individual is given a chromosoidal representation, which
corresponds to the genotype of an individual in nature. Three operations can be performed
on individuals in the population, selection, cross-over and mutation. These correspond to the
selection of individuals in nature for breeding, where the fitter members of a population breed
and pass-on their genetic material. The cross-over corresponds to the combination of genes by
mating, and mutation to genetic mutation in nature. The selection is biased so that the “fittest”
individuals are more likely to be selected for cross-over, the fitness being a function of the
criteria which is being minimized. By means of these operations, the population will evolve
towards a solution. Most GAs have been used for single objective optimization problems
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[18], although several multiobjective schemes have been proposed [19, 20]. Applications
of multiobjective evolutionary schemes to control systems analysis and design have been
widespread [21, 22]. A formulation called the multiobjective genetic algorithm (MOGA)
maintains the genuine multiobjective nature of the problem, and is essentially the scheme
adapted here [23]. Further details for the MOGA can be found in [20]. The design philosophy
of the MOGA differs from other methods in that a set of simultaneous solutions are sought
and the designer then selects the best solution from the set. The idea behind the MOGA is to
develop a population of Pareto-optimal or near Pareto-optimal solutions. The aim is to find
a set of solutions which are nondominated and satisfy a set of inequalities. An individual j
with a set of objective functions ϕj = (ϕj1, . . . , ϕ

j
n) is said to be nondominated if for a population

of N individuals there are no other individuals k = 1, N; k /= j such that

(a) ϕki ≤ ϕji ∀ i = 1, 2, . . . , n,

(b) ϕki < ϕ
j

i for at least one i.
(6.1)

The MOGA is set into a multiobjective context by means of the fitness function. Individuals
are ranked on the basis of the number of other individuals they are dominated by for the
unsatisfied inequalities. Each individual is then assigned fitness according to their rank. The
mechanism is described in detail in [20]. To summarize, the MOGA problem could be stated
as:

Find a set of M admissible points Pj, j = 1, . . . ,M such that

ϕ
j

i ≤ εi (j = 1, 2, . . . , m), (i = 1, 2, . . . , n). (6.2)

And such that ϕj (j = 1, . . . ,M) are nondominated.
Genetic algorithms are naturally parallel and hence lend themselves well to

multiobjective settings. They also work well on nonsmooth objective functions. Thus MOGA
can be used to search the existence of any possible limit cycle operation in nonlinear MIMO
systems.

7. Applications

7.1. SISO System

The feedback configuration of the single input single output system considered in this
example is shown in Figure 3.

A Fourier analysis of the nonlinearity output shows that the amplitude of the third
harmonic component is significant. Therefore, the elementary describing function analysis
does not give accurate limit cycle prediction. Based on the calculation of the required Fourier
coefficients at the output of the nonlinear element for the input of the form given by (3.4), the
describing function matrix as defined by (3.5) is derived as,

DFM =

⎡⎢⎢⎢⎣
1.91
a1

−1.12
a3

0.64
a1

0.89
a3

⎤⎥⎥⎥⎦ (7.1)
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Figure 3: SISO nonlinear feedback system.

Table 1: MOGA parameters for the SISO system.

Number of
generation

Population
size

Selection
method

Representation
method

Multiobjective
method

Mutation
probability

Cross over
probability

50 100 Tournament Binary 8 bit for
each parameter Pareto 0.02 0.7

Table 2: Results of limit cycle prediction with MOGA for SISO system.

Best ranked ω rad./sec. a1 a3 ϕ radians Objective 1 Objective 2
1 0.68 6.853 0.103 5.41 0.01 0.015
2 0.68 6.854 0.103 5.41 0.012 0.006
3 0.68 6.858 0.103 5.41 0.009 0.08
Simulation (actual) 0.69 6.9 0.1 5.21

a1 and a3 denote the amplitude of the first and third harmonics at the input to the nonlinear
element. The harmonic balance equation is formulated in the presence of the third harmonic
using (3.12) with ε = 0.01. The range of limit cycle parameters are specified as

0.1 ≤ ω ≤ 1.5, 3 ≤ a1 ≤ 8.0, 0.05 ≤ a3 ≤ 0.5, 0.1 ≤ φ ≤ 2π. (7.2)

The population is initialized randomly and the MOGA program is run to search the space
of these parameters for the simultaneous satisfaction of objectives (3.12). The parameters of
MOGA are shown in Table 1 and after 18 generations the algorithm converged with the value
of ε = 0.012. The first three solutions are ranked based on the concept of non dominance and
are listed in Table 2. The results obtained from simulation are also shown in bold in Table 2
and are comparable with those predicted by MOGA. The phase space of the predicted limit
cycle is shown in Figure 4.

The computation time required depends largely on the number of generations,
population size and on the number of bits specified for each parameter. For this example
with the above specifications, 50 generations took 6.2 seconds on a Toshiba Centrino 1.6 with
512 M Ram and 2 M cashe.
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Figure 4: Phase space of limit cycle for SISO example.

7.2. MIMO Systems

In this section, two 2× 2 nonlinear systems are presented. In the first example the elements of
the nonlinear matrix are similar and consist of four ideal relays.

In both examples the numerical solution of (5.6) is formulated as a 2-objective
problem, and the satisfaction of these objectives implies the solution of the simultaneous
harmonic balance (5.6)

Obj1 =
∣∣(1 + n11

(
a1
)
g11(jω)

)
a1 + n21

(
a2
)
g21(jω)a2e

φ
∣∣ ≤ ε,

Obj2 =
∣∣n12
(
a1
)
g12(jω)a1 +

(
1 + n22

(
a2
)
g22(jω)

)
a2e

jφ
∣∣ ≤ ε, (7.3)

where Obj1 and Obj2 are the values of the right-hand side of (5.6) which ideally should tend
towards zero for specific values of a1, a2, ω, and φ. Upper and lower bounds are specified
for ω, a1, a2, and φ, then the real generational MOGA with specified selection method,
cross over, mutation rate and population size is called to search over the parameter space of
ω, a1, a2, and φ. The required numerical accuracy may be achieved by specifying the number
of genes (binary bits) for each individual in accordance with the value of ε. If conditions for
inequalities (7.3) exist, then MOGA converges to the correct values of limit cycle parameters
after a number of generations. If finer and more accurate parameter values are required,
the bounds on the parameters ω, a1, a2, and φ may be tightened and the number of
genes increased on the subsequent run of the MOGA program. In order to avoid the local
minima and premature convergence the mutation probability rate may be taken higher at the
beginning and decreased exponentially toward the end of the run. One advantage of limit
cycle prediction based on MOGA is that multiple solutions may be distinguished by using
the Niching mechanism [19].

Due to the inherent approximation in using the SIDF, and also the nature of
multiobjective formulation, it may not be possible to reach the exact minimum which is
zero, as required by the equation set (7.3). Therefore MOGA may converge to a set of Pareto
optimal solutions and in the following examples the three best ranked are given as the final
solutions.
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Figure 6: Convergence curve for MIMO Example 7.1.

Example 7.1. The nonlinear control system with two inputs and two outputs has the
configuration of Figure 2 with four similar nonlinear elements (n11 = n12 = n21 = n22) of
the form shown in Figure 5.

The linear system matrix is

G =

⎡⎢⎢⎢⎣
0.5

s
(
s2 + 1.5s + 0.5

) −0.15
s2 + s + 1

0.8
s2 + 3s + 2

1
s
(
s2 + 1.6s + 0.8

)
⎤⎥⎥⎥⎦ . (7.4)

In order to make the MOGA search more realistic, upper and lower bounds are specified for
all parameters of possible limit cycle operation, namely, the frequency and amplitude for each
loop. For this example, lower and upper bounds for ω, a1 and a2 are specified as 0.1 and 1.5
for all three parameters and 0.1 to 2π radians for φ and ε = 0.1. Parameters of MOGA were
also specified as in Table 3. The search is monitored interactively and if within the specified



Mathematical Problems in Engineering 13

0 10 20 30 40 50 60 70 80 90 100

Time (seconds)

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

A
m

pl
it

ud
e

y1
y2

Figure 7: Simulation results for MIMO Example 7.1.

Table 3: MOGA parameters for MIMO Example 7.1.

Number of
generation

Population
size

Selection
method

Representation
method

Multiobjective
method

Mutation
probability

Cross over
probability

50 50 Tournament
Binary 8 bit for
each
parameter

Pareto 0.02 0.7

Table 4: Results of limit cycle prediction with MOGA for Example 7.1.

Best ranked ω a1 a2 ϕ Obj 1 Obj 2
1 0.86396 0.617785 1.42203 2.17477 0.0317952 0.0150623
2 0.863865 0.617787 1.41485 2.15623 0.0336897 0.00619064
3 0.845835 0.619658 1.44005 2.48668 0.00917439 0.0861531
Simulation (actual) 0.863 0.620 1.406 2.168

range of the parameters feasible solutions exist, MOGA converges to solutions which are
ranked according to their fitness values measured by the concept of non dominance, that
is, Pareto optimal. For a population size of 50, it was observed that initially a large number
of solutions exist. However, as the search progressed most members of the population tend
to be concentrated around a narrow range of parameters. After 25 generations the algorithm
converged and the results for the first three solutions are given in Table 4 and the convergence
curve is shown in Figure 6. In Figure 6 the cost axis is a measure of fitness and the doted
curve represent the sum of the average of the two objectives (average (Obj1) + Average
(Obj2)) and the solid curve represent the sum of the best values of the two objectives (best
(Obj1) + best (Obj2)). With the parameters given in Table 3 and the above specified ranges for
parameters, the MOGA algorithm converged within 25 generations, consuming 5.2 seconds
of CUP time on a Toshiba Centrino 1.6 with 512 M Ram and 2 M cashe. For the purpose of
having an appropriate axes for the convergence curve the program was allowed to execute
all 50 generations which took 11 seconds on the same machine.
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Figure 8: Two dimensional nonlinear systems for Example 7.2.

Table 5: Results of limit-cycle prediction with MOGA for MIMO Example 7.2.

ω a1 a2 ϕ Obj 1 Obj 2
1 0.517728 1.18528 1.73296 3.6772 0.0229142 0.0611446
2 0.517638 1.18025 1.73396 3.67718 0.0181093 0.0655828
3 0.530139 1.16228 1.68292 3.67689 0.0410611 0.0383831
Simulation (actual) 0.5400 1.073 1.543 3.500

In order to validate the results given by Table 4, the nonlinear system was simulated.
The results of simulation (actual LC) compare well with the results obtained by MOGA. This
is also shown in bold in Table 4 and in Figure 7. The reason for the very accurate limit cycle
prediction in this example is two folds, one is that all nonlinear elements have the same
characteristics and the other is that the linear system elements have a low pass frequency
characteristics.

Example 7.2. The nonlinear system for this example is of the same configuration as in Figure 2,
and is shown in Figure 8. In this case the nonlinear matrix consists of different nonlinear
behavior such as saturation, ideal relay, and dead zone.

The same MOGA parameters were chosen as in Table 3 and the following ranges were
specified for the parameters

0.1 ≤ ω ≤ 1.0, 0.5 ≤ a1 ≤ 1.5, 1.0 ≤ a2 ≤ 2.0, 0.1 ≤ φ ≤ 2π. (7.5)
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Figure 9: Convergence curve for MIMO Example 7.2.
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Figure 10: Simulation results for MIMO Example 7.2.

For this example, the algorithm converged within 30 generations, consuming 31.2 seconds
of CUP time on the same machine. For all 50 generations 52 seconds of the CPU time is
consumed on the same machine. The convergence curve is shown in Figure 9.

Contrary to Example 7.1 the results of simulation for this example, do not agree well
with the results predicted by MOGA. This is shown (bold) in Table 5 and in Figure 10. As seen
in Figure 10, the oscillation in loop 2 is distorted due to the higher harmonic components.
This is caused by the frequency characteristics of element g21 of the linear part, which do
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not strictly conform to the filter hypothesis, thus reducing the describing function accuracy
and hence the reason for the small discrepancy between simulation and MOGA results.
The development of similar analysis as for SISO systems will improve the SIDF accuracy
significantly.

8. Conclusion

The single sinusoidal input describing function is extended by means of describing function
matrix to account for higher harmonic signal components. In the analysis of single loop
nonlinear systems, the describing function matrix provides a rigorous method, enhances limit
cycle prediction and widens the scope of the valid application of the SIDF to those cases
for which the assumption of the filter hypothesis is not strictly met. It is shown how, by
formulating limit cycle prediction in the presence of higher harmonics as a multiobjective
problem and using the MOGA procedure, a solution to the DF matrix equation can be
obtained efficiently in numerical form. This is useful in illustrating both how a multiplicity
of possible solutions may arise, and for emphasizing the effects of higher harmonic signal
content.

Next, the single sinusoidal input describing function technique is extended to
multiloop nonlinear systems. For the class of separable nonlinear elements of any general
form, the linearized harmonic balance equations are derived. The search for limit cycle is
formulated as a multiobjective problem. The multiobjective genetic algorithm is employed
to obtain quantitative values for parameters of possible limit cycle operation. The MOGA
search space is the space of the limit cycle parameters such as amplitudes, frequency and
phase difference between the interacting loops. The algorithm is computationally efficient
and provides very accurate results when the conditions for the SIDF application are satisfied.

In both cases of SISO and MIMO systems, emphasis is placed on the formulation
of limit cycle parameters as a multiobjective problem and subsequent solution by the
evolutionary MOGA method. Finally, examples of use are given to demonstrate the
effectiveness of the proposed approach.
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