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The paper considers parametric uncertain systems of the form ẋ(t) = Mx(t),M ∈ M,M ⊂ R
n×n,

where M is either a convex hull, or a positive cone of matrices, generated by the set of vertices
V = {M1,M2, . . . ,MK} ⊂ R

n×n. Denote by μ‖ ‖ the matrix measure corresponding to a vector
norm ‖ ‖. When M is a convex hull, the condition μ‖ ‖(Mk) ≤ r < 0, 1 ≤ k ≤ K, is necessary
and sufficient for the existence of common strong Lyapunov functions and exponentially contractive
invariant sets with respect to the trajectories of the uncertain system. When M is a positive cone,
the condition μ‖ ‖(Mk) ≤ 0, 1 ≤ k ≤ K, is necessary and sufficient for the existence of common
weak Lyapunov functions and constant invariant sets with respect to the trajectories of the uncertain
system. Both Lyapunov functions and invariant sets are described in terms of the vector norm ‖ ‖
used for defining the matrix measure μ‖ ‖. Numerical examples illustrate the applicability of our
results.
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1. Introduction

First let us present the notations and nomenclature used in our paper.
For a square matrix M ∈ R

n×n, the matrix norm induced by a generic vector norm ‖ ‖ is
defined by ‖M‖ = supy∈Rn,y/= 0‖My‖/‖y‖ = maxy∈Rn,‖y‖= 1‖My‖, and the corresponding matrix
measure (also known as logarithmic norm) is given by μ‖ ‖(M) = limθ↓0(‖I + θM‖ − 1)/θ ([1,
page 41]). The spectrum of M is denoted by σ(M) = {z ∈ C | det(sI −M) = 0} and λi(M) ∈
σ(M), i = 1, . . . , n, represent its eigenvalues. If M ∈ R

n×n is a symmetrical matrix, M ≺ 0
(M � 0) means that matrix M is negative (positive) definite. If X ∈ R

n×m, then |X| represents
the nonnegative matrix (for m ≥ 2) or vector (for m = 1) defined by taking the absolute
values of the entries of X. If X,Y ∈ R

n×m, then “X ≤ Y”, “X < Y” mean componentwise
inequalities.
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Matrix measures were used in the qualitative analysis of various types of differential
systems, as briefly pointed out below, besides their applications in numerical analysis.
Monograph ([1, pages 58-59]) derived upper and lower bounds for the norms of the solution
vector and proposed stability criteria for time-variant linear systems. Further properties
of matrix measures were revealed in [2]. Paper [3] provided bounds for the computer
solution and the accumulated truncation error corresponding to the backward Euler method.
The work in [4] gave a characterization of vector norms as Lyapunov functions for time-
invariant linear systems. The work in [5] developed sufficient conditions for the stability of
neural networks. The work in [6] explored contractive invariant sets of time-invariant linear
systems. The work in [7] formulated sufficient conditions for the stability of interval systems.
The work in [8] presented a necessary and sufficient condition for componentwise stability
of time-invariant linear systems.

A compact survey on the history of matrix measures and the modern developments
originating from this notion can be found in [9].

The current paper considers parametric uncertain systems of the form

ẋ(t) =Mx(t), M ∈ M, M ⊂ R
n×n, (1.1)

whereM is either a convex hull of matrices,

Mh =

{
M ∈ R

n×n |M =
K∑
k=1

γkMk, γk ≥ 0,
K∑
k=1

γk = 1

}
, (1.2)

or a positive cone of matrices,

Mc =

{
M ∈ R

n×n |M =
K∑
k=1

γkMk, γk ≥ 0,M/= 0

}
, (1.3)

generated by the set of vertex matrices V = {M1,M2, . . . ,MK} ⊂ R
n×n.

In investigating the evolution of system (1.1) we assume that matrix M is fixed, but
arbitrarily taken from the matrix set M defined by (1.2) or (1.3). Thus, the parameters of
system (1.1) are not time-varying. Consequently, once M is arbitrarily selected fromM, the
trajectory initialized in x(t0) = x0, namely, x(t) = x(t; t0, x0) = eM(t−t0) x0, is defined for all
t ∈ R+.

The literature of control engineering contains many papers that explore the stability
robustness by considering systems of form (1.1), a great interest focusing on the case when
the convex hullMh is an interval matrix [7, 10–13].

For system (1.1) we define the following properties, in accordance with the definitions
presented in [14–16] for a dynamical system.

Definition 1.1. (a) The uncertain system (1.1) is called stable if the equilibrium {0} is stable,
that is,

∀ε > 0, ∀t0 ∈ R+, ∃δ = δ(ε) > 0 : ‖x0‖ ≤ δ =⇒ ‖x(t; t0, x0)‖ ≤ ε, ∀t ≥ t0 (1.4)

for any solution of (1.1) corresponding to an M ∈ M.
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(b) The uncertain system (1.1) is called exponentially stable if the equilibrium {0} is
exponentially stable, that is,

∃r < 0 : ∀ε > 0, ∀t0 ∈ R+, ∃δ = δ(ε) > 0 : ‖x0‖ ≤ δ =⇒ ‖x(t; t0, x0)‖ ≤ εer(t−t0), t ≥ t0 (1.5)

for any solution of (1.1) corresponding to an M ∈ M.

Remark 1.2. Using the connection between linear system stability and matrix eigenvalue
location (e.g. [15]), we have the following characterizations.

(a) The uncertain system (1.1) is stable if and only if

∀M∈M : σ(M)⊂{s ∈ C | Re s ≤ 0} and if Reλi0(M)=0 then λi0(M) is simple. (1.6)

In this case, the matrix setM is said to be quasistable.

(b) The uncertain system (1.1) is exponentially stable if and only if

∃r < 0 : ∀M ∈ M : σ(M) ⊂ {s ∈ C | Re s ≤ r}. (1.7)

In this case, the matrix setM is said to be Hurwitz stable.

Definition 1.3. Consider the function

V : R
n −→ R+, V (x) = ‖x‖, (1.8)

and its right Dini derivative, calculated along a solution x(t) of (1.1):

D+V (x(t)) = lim
θ↓0

V (x(t + θ)) − V (x(t))
θ

, t ∈ R+. (1.9)

(a) V is called a common strong Lyapunov function for the uncertain system (1.1), with the
decreasing rate r < 0, if for any solution x(t) of (1.1) corresponding to an M ∈ M, we
have

∀t ∈ R+ : D+V (x(t)) ≤ rV (x(t)). (1.10)

(b) V is called a common weak Lyapunov function for the uncertain system (1.1), if for any
solution x(t) of (1.1) corresponding to an M ∈ M, we have

∀t ∈ R+ : D+V (x(t)) ≤ 0. (1.11)
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Definition 1.4. The time-dependent set

Xε
r (t; t0) =

{
x ∈ R

n | ‖x‖ ≤ εer(t−t0)
}
, t, t0 ∈ R+, t ≥ t0, ε > 0, r ≤ 0 (1.12)

is called invariant with respect to the uncertain system (1.1) if for any solution x(t) of (1.1)
corresponding to an M ∈ M, we have

∀t0 ∈ R+, ∀x0 ∈ R
n, ‖x0‖ ≤ ε =⇒ ‖x(t; t0, x0)‖ ≤ εer(t−t0), ∀t ≥ t0, (1.13)

meaning that any trajectory initiated inside the set Xε
r (t0; t0) will never leave Xε

r (t; t0).

(a) A set of the form (1.12) with r < 0 is said to be exponentially contractive.

(b) A set of the form (1.12) with r = 0 is said to be constant.

This paper proves that matrix-measure-based inequalities applied to the verticesMk ∈
V, 1 ≤ k ≤ K, provide necessary and sufficient conditions for the properties of the uncertain
system (1.1) formulated by Definitions 1.3 and 1.4. The cases when the matrix setM is defined
by the convex hull (1.2) and by the positive cone (1.3) are separately addressed. When ‖ ‖
is a symmetric gauge function or an absolute vector norm and the vertices Mk ∈ V, 1 ≤
k ≤ K, satisfy some supplementary hypotheses, a unique test matrix M∗ can be found such
that a single inequality using μ‖ ‖(M∗) implies or is equivalent to the group of inequalities
written for all vertices. Some numerical examples illustrate the applicability of the proposed
theoretical framework.

Our results are extremely useful for refining the dynamics analysis of many classes of
engineering processes modeled by linear differential systems with parametric uncertainties.
Relying on necessary and sufficient conditions formulated in terms of matrix measures, we
get more detailed information about the system trajectories than offered by the standard
investigation of equilibrium stability.

2. Main Results

2.1. Uncertain System Defined by a Convex Hull of Matrices

Theorem 2.1. Consider the uncertain system (1.1) withM =Mh, the convex hull defined by (1.2),
which, in the sequel, is referred to as the uncertain system (1.1) and (1.2). Let μ‖ ‖ be the matrix
measure corresponding to the vector norm ‖ ‖, and r < 0 a constant. The following statements are
equivalent.

(i) The vertices of the convex hullMh fulfill the inequalities

∀Mk ∈ V : μ‖ ‖(Mk) ≤ r. (2.1)

(ii) The function V defined by (1.8) is a common strong Lyapunov function for the uncertain
system (1.1) and (1.2) with the decreasing rate r.

(iii) For any ε > 0, the exponentially contractive setXε
r (t; t0) defined by (1.12) is invariant with

respect to the uncertain system (1.1) and (1.2).
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Proof. We organize the proof in two parts. Part I proves the following results.

(R1) Inequalities (2.1) are equivalent to

∀M ∈ M : μ‖ ‖(M) ≤ r. (2.2)

(R2) Inequality (1.10) is equivalent to

∀t0 ∈ R+, ∀x0 ∈ R
n, ‖x(t; t0, x0)‖ ≤ er(t−t0)‖x0‖, ∀t ≥ t0. (2.3)

(R3) The matrix measure μ‖ ‖ fulfills the equality

∀M ∈ R
n×n : μ‖ ‖(M) = lim

θ↓0

∥∥eMθ
∥∥ − 1
θ

. (2.4)

Part II uses (R1), (R2), and (R3) to show that (i), (ii), and (iii) are equivalent.
Proof of Part I. (R1) If (2.2) is true, then (2.1) is true, since Mk ∈ Mh, for k = 1, . . . , K.

Conversely, if (2.1) is true, then, from the convexity of the matrix measure, we get

∀M ∈ Mh, M =
K∑
k=1

γkMk : μ‖ ‖(M) ≤
K∑
k=1

γkμ‖ ‖(Mk) ≤
K∑
k=1

(
γkr

)
=

(
K∑
k=1

γk

)
r = r. (2.5)

(R2) If inequality (2.3) is true, then, for any solution x(s) of (1.1) and (1.2) with initial
condition set at s0 = t ≥ 0 as x(s0) = x0, we have

D+V (x(s0)) = lim
θ↓0

‖x(s0 + θ; s0, x0)‖ − ‖x0‖
θ

≤
(

lim
θ↓0

erθ − 1
θ

)
‖x0‖ = rV (x(s0)). (2.6)

Conversely, let t0 ≥ 0 and x0 ∈ R
n. If inequality (1.10) holds for x(t) = x(t; t0, x0), consider

the differential equation ẏ(t) = ry(t) with the initial condition y(t0) = V (x(t0)) = V (x0).
Then, according to [14, Theorem 4.2.11], V (x(t)) ≤ y(t) = er(t−t0)y(t0) = er(t−t0)V (x0), for all
t ≥ t0.

(R3) For M ∈ Mh and θ > 0, we have eMθ = I + θM + θO(θ), with limθ↓0O(θ) = 0. The
triangle inequality ‖I + θM‖ − θ‖O(θ)‖ ≤ ‖I + θM + θO(θ)‖ ≤ ‖I + θM‖ + θ‖O(θ)‖ leads to
(‖I + θM‖ − 1)/θ − ‖O(θ)‖ ≤ (‖eMθ‖ − 1)/θ ≤ (‖I + θM‖ − 1)/θ + ‖O(θ)‖. By taking limθ↓0,
we finally obtain the equality (2.4).
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Proof of Part II. (i)⇒(ii) For any solution x(t) to (1.1) and (1.2) corresponding to an
M ∈ Mh, we get

∀t ∈ R+ : D+V (x(t)) = D+‖ x(t)‖ = lim
θ↓0

‖ x(t + θ)‖ − ‖x(t)‖
θ

= lim
θ↓0

∥∥eMθx(t)
∥∥ − ‖x(t)‖
θ

≤
[

lim
θ↓0

∥∥eMθ
∥∥ − 1
θ

]
‖x(t)‖ (R3)

= μ‖ ‖(M)‖x(t)‖
(R1)
≤ r‖x(t)‖.

(2.7)

(ii)⇒(i) For all t0, θ ∈R+, ‖eMθ‖ = supx0 /= 0‖eMθx0‖/‖x0‖ = supx0 /= 0‖x(t0+θ; t0, x0)‖/x0
(R2)
≤ erθ. Hence, we have μ‖ ‖(M)

(R3)
= limθ↓0(‖eMθ‖ − 1)/θ ≤ limθ↓0(erθ − 1)/θ = r.

(ii)⇒(iii) By contradiction, assume that there exists ε∗ > 0 such that the exponentially
contractive set Xε∗

r (t; t0) is not invariant with respect to the uncertain system (1.1) and (1.2).
Then there exists a trajectory x̃(t) of (1.1) and (1.2) for which condition (1.13) is violated,
meaning that we can find t∗, t∗∗ ∈ R+, t∗∗ > t∗ ≥ t0, so that ‖x̃(t∗)‖ ≤ ε∗er(t

∗−t0) and
‖x̃(t∗∗)‖ > ε∗er(t

∗∗−t0). This leads to er(t
∗∗−t∗)‖x̃(t∗)‖ < ‖x̃(t∗∗)‖, which contradicts (2.3). As a

result, according to (R2), we contradict (ii).
(iii)⇒(ii) For arbitrary t ≥ t0, by taking ε = ‖x0‖ in (1.13), we get (2.3) that is equivalent

to (1.10), via (R2).

Remark 2.2. The equivalent conditions (i)–(iii) of Theorem 2.1 imply the exponential stability
of the uncertain system (1.1) and (1.2). Indeed, if the flow invariance condition (1.13) from
Definition 1.4 is satisfied, then condition (1.5) from Definition 1.1, for exponential stability, is
satisfied with δ(ε) = ε. Conversely, if (1.5) is true for a certain δ(ε) > ε, but not for δ(ε) = ε,
then condition (1.13) is not met. In other words the uncertain system (1.1) and (1.2) may be
exponentially stable without satisfying the equivalent conditions (i)–(iii) of Theorem 2.1.

Remark 2.3. Theorem 2.2 in [7] shows that condition (i) in Theorem 2.1 is sufficient for the
Hurwitz stability of the convex hull of matrices defined by (1.2). According to Remark 2.2,
the uncertain system (1.1) and (1.2) is exponentially stable. The fact that condition (i) in
Theorem 2.1 is necessary and sufficient for stronger properties of the uncertain system (1.1)
and (1.2) remained hidden for the investigations developed by [7].

Remark 2.4. Theorem 2.1 offers a high degree of generality for the qualitative analysis of
uncertain system (1.1) and (1.2). Thus, from Theorem 2.1 particularized to the vector norm
‖x‖H2 = ‖Hx‖2 = (xTHTHx)1/2, x ∈ R

n, (where H is a nonsingular matrix) and the
corresponding matrix measure μ‖ ‖H2 , we get the following well-known characterization of
the quadratic stability of uncertain system (1.1) and (1.2), ∃ Q � 0 : for all Mk ∈ V :
QMk +MT

kQ ≺ 0 (e.g., [16, page 213]). Indeed, according to ([1, page 41]) inequality (2.1) in

Theorem 2.1 means λmax((1/2)HMkH
−1 + (1/2)(HMkH

−1)T ) = μ‖ ‖H2 (Mk) ≤ r < 0, which is
equivalent to the condition QMk +MT

kQ ≺ 0, with Q = HTH, for all Mk ∈ V. In other words,
Theorem 2.1 provides a comprehensive scenario that naturally accommodates results already
available in particular forms for uncertain system (1.1) and (1.2).
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2.2. Uncertain System Defined by a Positive Cone of Matrices

Theorem 2.5. Consider the uncertain system (1.1) withM =Mc, the positive cone defined by (1.3),
which, in the sequel, is referred to as the uncertain system (1.1) and (1.3). Let μ‖ ‖ be the matrix
measure corresponding to the vector norm ‖ ‖. The following statements are equivalent.

(i) The vertices of the positive coneMc fulfill the inequalities

∀Mk ∈ V : μ‖ ‖(Mk) ≤ 0. (2.8)

(ii) The function V defined by (1.8) is a common weak Lyapunov function for the uncertain
system (1.1) and (1.3).

(iii) For any ε > 0, the constant set Xε
0(t; t0) defined by (1.12) is invariant with respect to the

uncertain system (1.1) and (1.3).

Proof. It is similar to the proof of Theorem 2.1 where we take r = 0.

Remark 2.6. The equivalent conditions (i)–(iii) of Theorem 2.5 imply the stability of the
uncertain system (1.1) and (1.3). Indeed, if the flow invariance condition (1.13) from
Definition 1.4 is satisfied, then condition (1.4) for stability from Definition 1.1 is satisfied with
δ(ε) = ε. Conversely, if (1.4) is true for a certain δ(ε) > ε, but not for δ(ε) = ε, then condition
(1.13) is not met. In other words the uncertain system (1.1) and (1.3) may be stable without
satisfying the equivalent conditions (i)–(iii) of Theorem 2.5.

Remark 2.7. Theorem 2.3 in [7] claims that μ‖ ‖(Mk) < 0 for k = 1, . . . , K (i.e., condition (i) in
Theorem 2.5 with strict inequalities) is sufficient for the Hurwitz stability of the positive cone
of matricesMc (1.3). However this is not true. Inequalities μ‖ ‖(Mk) < 0, k = 1, . . . , K, imply
supM∈Mc

μ(M) = 0, which, together with for all M ∈ Mc : maxi = 1,...,n{Re{λi(M)} ≤ μ‖ ‖(M),
for example, [1], yield supM∈Mc

maxi=1,...,n{Reλi(M)} ≤ 0. Thus, condition (1.7) for the
Hurwitz stability of the positive cone of matrices Mc defined by (1.3) may be not satisfied.
Although the hypothesis of [7, Theorem 2.3] is stronger than condition (i) in our Theorem 2.5,
this hypothesis can guarantee only the stability (but not the exponential stability) of the
uncertain system (1.1) and (1.3). Moreover, as already mentioned in Remark 2.3 for the matrix
setMh defined by (1.2), [7] does not discuss the necessity parts of the results.

3. Usage of a Single Test Matrix for Checking Condition (i) of
Theorems 2.1 and 2.5

Condition (i) of both Theorems 2.1 and 2.5 represents inequalities of the form

μ‖ ‖(Mk) ≤ r, k = 1, . . . , K, (3.1)

which involve all the vertices V = {M1,M2, . . . ,MK} ⊂ R
n×n of the matrix sets defined by

(1.2) or (1.3), respectively. We are going to show that, in some particular cases, one can find a
single test matrix M∗ ∈ R

n×n such that the satisfaction of inequality

μ‖ ‖(M∗) ≤ r (3.2)

guarantees the fulfillment of (3.1).
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Given a real matrix A = (aij) ∈ R
n×n, let us define its comparison matrixA = (aij) ∈ R

n×n

by

aii = aii, i = 1, . . . , n; aij =
∣∣aij∣∣, i, j = 1, . . . , n, i /= j. (3.3)

Proposition 3.1. (a) If the following hypotheses (H1), (H2) are satisfied, then inequality (3.2) is a
sufficient condition for inequalities (3.1).

(H1) The vector norm ‖ ‖ is a symmetric gauge function ([17, page 438]) (i.e., it is an absolute
vector norm that is a permutation invariant function of the entries of its argument) and
μ‖ ‖ is the corresponding matrix measure.

(H2) MatrixM∗ ∈ R
n×n satisfies the componentwise inequalities

Pk
TMkPk ≤M∗, k = 1, . . . , K, (3.4)

for some permutation matrices Pk ∈ R
n×n, k = 1, . . . ,K.

(b) If the above hypotheses (H1), (H2) are satisfied and there exists M∗∗ ∈ V such that μ‖ ‖(M∗) =
μ‖ ‖(M∗∗), then inequality (3.2) is a necessary and sufficient condition for inequalities (3.1).

Proof. (a) We organize the proof in two parts. Part I proves the following results.

(R1) If P ∈ R
n×n is a permutation matrix, then

∀A ∈ R
n×n : μ‖ ‖

(
PTAP

)
= μ‖ ‖(A). (3.5)

(R2) Given A ∈ R
n×n, if the componentwise inequality

PTAP ≤M∗ (3.6)

is fulfilled for a permutation matrix P ∈ R
n×n, then

μ‖ ‖(A) ≤ μ‖ ‖(M∗). (3.7)

Part II uses (R2) to show that (3.2) implies (3.1).

Proof of Part I. (R1) From the definition of the matrix norm, there exists x∗ ∈ R
n×n,

‖x∗‖ = 1, such that ‖A‖ = ‖Ax∗‖. Since the considered vector norm ‖ ‖ is permutation
invariant, we have ‖x∗‖ = ‖PTx∗‖ = 1 for a permutation matrix P ∈ R

n×n. This leads to
‖A‖ = ‖Ax∗‖ = ‖(AP)(PTx∗)‖ ≤ ‖AP‖‖PTx∗‖ = ‖AP‖. Let us prove that the strict inequality
‖A‖ < ‖AP‖ does not hold. Assume, by contradiction, that ‖A‖ < ‖AP‖. Then, there exists
y∗ ∈ R

n×n, ‖y∗‖ = 1, such that ‖APy∗‖ = ‖AP‖ > ‖A‖. Hence, x∗∗ = Py∗ ∈ R
n×n with

‖x∗∗‖ = ‖Py∗‖ = y∗ = 1 satisfies ‖A‖ < ‖Ax∗∗‖ that contradicts the definition of ‖A‖.
Consequently, ‖A‖ = ‖AP‖.

Similarly we prove that ‖AP‖ = ‖PTAP‖, yielding ‖A‖ = ‖PTAP‖. Thus, we get ‖I +
θA‖ = ‖PT (I+θA)P‖ = ‖I+θPTAP‖ and, consequently, (‖I+θA‖−1)/θ = (‖I+θPTAP‖−1)/θ.
By taking limθ↓0 we obtain equality (3.5).
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(R2) First, we exploit the componentwise matrix inequality (3.6). For small θ > 0, we
get 0 ≤ I + θPTAP ≤ I + θM∗ that leads to the following componentwise vector inequality
|(I + θPTAP)y| ≤ |(I + θPTAP)|y‖ ≤ |(I + θM∗)|y‖, with y ∈ R

n.
Since ‖ ‖ is a symmetric gauge function, it is also an absolute vector norm, and,

equivalently, a monotonic vector norm [17, Theorem 5.5.10]. Consequently, ‖(I+θPTAP)y‖ ≤
‖(I + θPTAP)|y|‖ ≤ ‖(I + θM∗)|y|‖, that implies ‖(I + θPTAP)y‖ ≤ ‖I + θM∗‖ ‖|y|‖ =
‖I + θM∗‖‖y‖. Thus, we get ‖(I + θPTAP)‖ = max‖y‖=1‖(I + θPTAP)y‖ ≤ ‖I + θM∗‖ and

(‖(I + θPTAP)‖ − 1)/θ ≤ (‖I + θM∗‖ − 1)/θ. By taking limθ↓0 we obtain the inequality

μ‖ ‖(PTAP) ≤ μ‖ ‖(M∗).
Similarly, the componentwise matrix inequality A ≤ A leads to μ‖ ‖(PTAP) ≤

μ‖ ‖(PTAP). Finally, we have μ‖ ‖(A) = μ‖ ‖(PTAP) ≤ μ‖ ‖(PTAP) ≤ μ‖ ‖(M∗).
Proof of Part II. From (3.4), according to (R2) we get μ‖ ‖(Mk) ≤ μ‖ ‖(M∗), k = 1, . . . , K,

which together with (3.2) lead to (3.1).
(b) The sufficiency is proved by (a). The necessity is ensured by the equality

μ‖ ‖(M∗) = μ‖ ‖(M∗∗) and the inequality μ‖ ‖(M∗∗) ≤ r (resulting from M∗∗ ∈ V).

Proposition 3.2. (a) If the following hypotheses (H1), (H2) are satisfied, then inequality (3.2) is a
sufficient condition for inequalities (3.1).

(H1) The vector norm ‖ ‖ is an absolute vector norm and μ‖ ‖ denotes the corresponding matrix
measure.

(H2) MatrixM∗ ∈ R
n×n satisfies the componentwise inequalities

Mk ≤M∗, k = 1, . . . , K. (3.8)

(b) If the above hypotheses (H1), (H2) are satisfied and there exists M∗∗ ∈ V such that μ‖ ‖(M∗) =
μ‖ ‖(M∗∗), then inequality (3.2) is a necessary and sufficient condition for inequalities (3.1).

Proof. (a) We use the same technique as in the proof of Proposition 3.1 to show that, for a
given A ∈ R

n×n satisfying the componentwise inequality A ≤ A ≤ M∗, the monotonicity of
‖ ‖ implies μ‖ ‖(A) ≤ μ‖ ‖(A) ≤ μ‖ ‖(M∗).

(b) The proof of necessity is identical to Theorem 2.1.

Remark 3.3. Proposition 3.2 allows one to show that the characterization of the component-
wise exponential asymptotic stability (abbreviated CWEAS) of interval systems given by our
previous work [12] represents a particular case of Theorem 2.1 applied for an absolute vector
norm.

Indeed, assume that parametric uncertain system (1.1) and (1.2) is an interval system;
that is, the convex hull of matrices has the particular formMI = {M ∈ R

n×n |M− ≤M ≤M+}.
This system is said to be CWEAS if there exist di > 0, i = 1, . . . , n, and r < 0 such that
for all t, t0 ∈ R+, t ≥ t0: −di ≤ xi(t0) ≤ di ⇒ −dier(t−t0) ≤ xi(t) ≤ dier(t−t0), i = 1, . . . , n, where
xi(t0), xi(t) denote the components of the initial condition x(t0) and of the corresponding
solution x(t), respectively. According to [12] the interval system is CWEAS if and only if
M̃d ≤ rd, where d = [d1 · · ·dn]T ∈ R

n and the matrix M̃ = (m̃ij) is built from the entries of
the matrices M− = (m−ij) and M+ = (m+

ij) by m̃ii = m+
ii, i = 1, . . . , n, and m̃ij = max{|m−ij |, |m

+
ij |},

i /= j, i, j = 1, . . . , n. On the other hand, Theorem 2.1 characterizes CWEAS if applied for the
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vector norm ‖x‖D∞ = ‖D x‖∞ = maxi=1,...,n{xi/di}, with D = diag{1/d1, . . . , 1/dn}. At the
same time, we can use Proposition 3.2(b), since (3.8) is satisfied with M∗ = M̃, ‖ ‖D∞ is an
absolute vector norm, and there exist M∗∗ = (m∗∗ij ) belonging to the set of vertices of MI

such that m∗∗ii = m̃ii, i = 1, . . . , n, |m∗∗ij | = m̃ij , i /= j, i, j = 1, . . . , n, which implies μ‖ ‖D∞(M̃) =
maxi=1,...,n{m̃ii +

∑n
j=1,j /= i m̃ij(dj/di)} = maxi=1,...,n{m∗∗ii +

∑n
j=1,j /= i |m

∗∗
ij |(dj/di)} = μ‖ ‖D∞(M

∗∗).

Thus μ‖ ‖D∞(M̃) ≤ r is a necessary and sufficient condition for the CWEAS of the interval

system. Finally we notice that μ‖ ‖D∞(M̃) ≤ r is equivalent to m̃ii(di/di) +
∑n

j=1,j /= i m̃ij(dj/di) ≤
r, i = 1, . . . , n, showing that the CWEAS characterization M̃d ≤ rd derived in [12] for interval
systems is incorporated into the current approach to parametric uncertain systems.

Remark 3.4. Propositions 3.1 and 3.2 can be stated in a more general form, by using, instead
of a single test matrix M∗, several test matrices M∗

1,M
∗
2, . . . ,M

∗
L, with L being significantly

smaller than K. Each M∗
�, � = 1, . . . , L, will have to satisfy inequality (3.4) in Proposition 3.1

or inequality (3.8) in Proposition 3.2, for some vertex matrices inV� ⊆V, such that
⋃L
�=1V� =V.

4. Illustrative Examples

This section illustrates the applicability of our results to three examples. Examples 4.1 and 4.2
refer to case studies presented by literature of control engineering, in [18, 19], respectively.
Example 4.3 aims to develop a relevant intuitive support for invariant sets with respect to the
dynamics of a mechanical system with two uncertain parameters.

Example 4.1. Let us consider the set of matrices [18]:

V = {M1,M2,M3} ⊂ R
3×3, M1 =

⎡
⎢⎢⎣
−3.461 0.951 −0.410

−0.480 −2.725 −0.17225

2.903 −2.504 −1.014

⎤
⎥⎥⎦,

M2 =

⎡
⎢⎢⎣
−3.690 0.136 −1.144

−0.648 −2.437 −0.273

2.314 −0.282 −0.0734

⎤
⎥⎥⎦, M3 =

⎡
⎢⎢⎣
−4.800 −4.574 −0.324

−0.386 −6.355 −0.189

3.866 3.611 −2.046

⎤
⎥⎥⎦.

(4.1)

Paper [18] shows that matrices M1, M2, and M3 have the following common quadratic
Lyapunov function:

VCQLF(x) = xTQx, Q =

⎡
⎢⎢⎣

12.6 −5.70 5.70

−5.70 7.50 −2.40

5.70 −2.40 3.12

⎤
⎥⎥⎦, Q � 0, (4.2)

since QMk +MT
k
Q ≺ 0, k = 1, 3.
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We define the convex hull of matricesMh having the set of vertices V (4.1), that is,

Mh =

{
M ∈ R

3×3 |M =
3∑
k=1

γkMk, γk ≥ 0,
3∑
k=1

γk = 1

}
, Mk ∈ V, (4.3)

and the positive cone of matricesMc having the set of vertices V (4.1), that is,

Mc =

{
M ∈ R

3×3 |M =
3∑
k=1

γkMk, γk ≥ 0,M/= 0

}
, Mk ∈ V. (4.4)

In R
3 we define the vector norm

‖x‖H2 = ‖Hx‖2, with H =

⎡
⎢⎢⎣

3.2079 −0.9173 1.2116

−0.9173 2.5580 −0.3393

1.2116 −0.3393 1.2397

⎤
⎥⎥⎦, (4.5)

where H2 = HTH = Q, in accordance with Remark 2.4, and consider the corresponding
matrix measure μ‖ ‖H2 (M) = μ‖ ‖2

(HMH−1). For the vertex-matrices in V (4.1) simple
computations give μ‖ ‖H2 (M1) = −1.5915, μ‖ ‖H2 (M2) = −0.5271, and μ‖ ‖H2 (M3) = −0.1999.

(i) Theorem 2.1 applied to the qualitative analysis of uncertain system (1.1) and (4.3)
reveals the following properties.

(a) The function

V : R
3 −→ R+, V (x) = ‖x‖H2 (4.6)

is a common strong Lyapunov function for the uncertain system (1.1) and (4.3) with
the decreasing rate r = −0.1999.

(b) Any exponentially contractive set Xε
−0.1999(t; t0) of the form

Xε
−0.1999(t; t0) =

{
x ∈ R

3 | ‖x‖H2 ≤ εe−0.1999 (t−t0)
}
, t, t0 ∈ R+, t ≥ t0, ε > 0 (4.7)

is invariant with respect to the uncertain system (1.1) and (4.3).

(ii) Theorem 2.5 applied to the qualitative analysis of uncertain system (1.1) and
(4.4) reveals the following properties.

(a) The function V defined by (4.5) is a common weak Lyapunov function for
the uncertain system (1.1) and (4.4).

(b) Any constant set of the form

Xε
0(t; t0) =

{
x ∈ R

3 | ‖x‖H2 ≤ ε
}
, t, t0 ∈ R+, t ≥ t0, ε > 0 (4.8)

is invariant with respect to the uncertain system (1.1) and (4.4).
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Example 4.2. Let us consider the interval matrix [19]:

MI =
{
M ∈ R

2×2 |M =M0+ �, |�| ≤ R
}
, M0 =

[
−3.8 1.6

0.6 −4.2

]
, R = 0.17

[
1 1

1 1

]
. (4.9)

Obviously, the setMI can be regarded as a convex hull with K = 24 vertices

V = {Mk =M0 + �k, k = 1, . . . , 16}, where �k = 0.17

[
±1 ±1

±1 ±1

]
. (4.10)

The comparison matrices Mk, k = 1, . . . , 16, of the vertices of V (4.10) are built in accordance
with (3.3) yielding Mk = Mk, k = 1, . . . , 16 (since all Mk are essentially nonnegative
matrices). The dominant vertex M∗ = M0 + R =

[ −3.63 1.77

0.77 −4.03

]
∈ V satisfies inequalities (3.8),

meaning that M∗ also satisfies inequalities (3.4) with all the permutation matrices equal to
the unity matrix, Pk = I. Therefore we can apply both Propositions 3.1 and 3.2.

First, we apply Proposition 3.1 for the usual Hölder norms ‖ ‖p, with p ∈ {1, 2,∞},
which are symmetric gauge functions. We calculate the matrix measures rp = μ‖ ‖p(M

∗) for
p ∈ {1, 2,∞} and obtain the values r1 = −2.26, r2 = −2.5443, r∞ = −1.86. Consequently all the
vertex matrices in V (4.10) satisfy the inequalities

μ‖ ‖p(Mk) ≤ rp, k = 1, . . . , 16, p ∈ {1, 2,∞}. (4.11)

Thus, for the qualitative analysis of uncertain system (1.1) and (4.9) we can employ
Theorem 2.1 that reveals the following properties.

(a) The function

V : R
2 −→ R+, V (x) = ‖x‖p, p ∈ {1, 2,∞} (4.12)

is a common strong Lyapunov function for the uncertain system (1.1) and (4.9) with
the decreasing rate rp, p ∈ {1, 2,∞}.

(b) Any exponentially contractive set of the form

Xε
rp(t; t0) =

{
x ∈ R

2 | ‖x‖p ≤ εerp(t−t0)
}
, t, t0 ∈ R+, t ≥ t0, ε > 0, p ∈ {1, 2,∞} (4.13)

is invariant with respect to the uncertain system (1.1) and (4.9).

Next, we show that Proposition 3.2 allows refining the properties discussed above of the
uncertain system (1.1) and (4.9). The refinement will consist in finding common strong
Lyapunov functions and exponentially contractive sets with faster decreasing rates than
presented above for p ∈ {1, 2,∞}.
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The dominant vertex M∗ is an essentially positive matrix (all off-diagonal entries
are positive) and we can use the Perron Theorem, in accordance with [20]. Denote by
λmax(M∗) = −2.6456 the Perron eigenvalue. From the left and right Perron eigenvectors of
M∗ we can construct the diagonal matrices D1 = diag{0.7882, 1}, and D2 = diag{0.6596, 1},
D∞ = diag{0.5562, 1}, such that, for the vector norms defined in R

2 by ‖x‖Dp

p = ‖Dpx‖p we
have μ‖ ‖Dpp (M∗) = λmax(M∗), p ∈ {1, 2,∞}. These vector norms are absolute without being

permutation invariant; hence they are not symmetric gauge functions. Nonetheless, for these
norms we may apply Proposition 3.2 with r = λmax(M∗) = −2.6456 proving that the vertex
matrices in V (4.10) satisfy the inequalities

μ‖ ‖Dpp
(Mk) ≤ r, k = 1, . . . , 16, p ∈ {1, 2,∞}. (4.14)

Thus, for the qualitative analysis of uncertain system (1.1) and (4.9) we can employ
Theorem 2.1 that reveals the following properties.

(a) The function

V : R
2 −→ R+, V (x) =

∥∥Dpx
∥∥
p
, p ∈ {1, 2,∞} (4.15)

is a common strong Lyapunov function for the uncertain system (1.1) and (4.9) with
the decreasing rate r = −2.6456.

(b) Any exponentially contractive set of the form

Xε
−2.6456(t; t0) =

{
x ∈ R

2 |
∥∥Dpx

∥∥
p
≤ εe−2.6456(t−t0)

}
, t, t0 ∈ R+, t ≥ t0, ε > 0, p ∈ {1, 2,∞}

(4.16)

is invariant with respect to the uncertain system (1.1) and (4.9).
Note that all the conclusions regarding the qualitative analysis of the uncertain system

(1.1) and (4.9) remain valid in the case when we consider the modified interval matrix

M′
I =

{
M ∈ R

2×2 |M− ≤M ≤M+
}
, M+ =

[
−3.63 1.77

0.77 −4.03

]
, M− =

[
a b

c d

]
,

a ≤ −3.63, |b| ≤ 1.77, |c| ≤ 0.77, d ≤ −4.03,

(4.17)

which has the same dominant vertex M∗ as the original interval matrixMI (4.9).

Example 4.3. Let us consider the translation of the mechanical system in Figure 1. A coupling
device CD (with negligible mass) connects, in parallel, the following components: a cart (with
mass m) in series with a damper (with viscous friction coefficient γ1) and a spring (with
spring constant k) in series with a damper (with viscous friction coefficient γ2).
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(γ2) (k)

(m) (γ1)CD

v > 0

Figure 1: The mechanical system used in Example 4.3.

The system dynamics in form (1.1) is described by

[
Ḟ(t)

v̇(t)

]
=

⎡
⎢⎢⎣
− k
γ2

k

− 1
m
−
γ1

m

⎤
⎥⎥⎦
[
F(t)

v(t)

]
, (4.18)

where the state variables are the spring force F(t) and the cart velocity v(t). We consider F > 0
when the spring is elongated and F < 0 when it is compressed as well as v > 0 when the cart
moves to the left and v < 0 when it moves to the right.

The viscous friction coefficients have unique values, namely, γ1 = 2 Ns/mm, γ2 =
0.5 Ns/mm, whereas the cart mass and the spring constant have uncertain values belonging
to the intervals 1.5 kg ≤ m ≤ 2 kg, 3 N/mm ≤ k ≤ 4 N/mm. Therefore we introduce the

notation M(m; k) =
[ −2k k

−1/m −2/m

]
that allows describing the set of system matrices M =

{M(m; k) | 1.5 ≤ m ≤ 2, 3 ≤ k ≤ 4} as the convex hull of form (1.2) defined by the vertices

V = {M1,M2,M3,M4}, where M1 =M(1.5; 3),

M2 =M(1.5; 4), M3 =M(2; 3), M4 =M(2; 4).
(4.19)

For the initial conditions F(t0) = F0, v(t0) = v0, we analyze the free response of the
system. We want to see if there exists r < 0 such that

∀F0, |F0| ≤ 3 N, ∀v0, |v0| ≤ 4 mm/s =⇒ |F(t)| ≤ 3er(t−t0), |v(t)| ≤ 4er(t−t0), ∀t ≥ t0. (4.20)

The problem can be approached in terms of Theorem 2.1, by considering in R
2 the

vector norm ‖x‖D∞ = ‖Dx‖∞, with D = diag{1/3, 1/4}, and the exponentially contractive set

X1
r (t; t0) =

{
x ∈ R

2 | ‖x‖D∞ ≤ er(t−t0)
}
, t, t0 ∈ R+, t ≥ t0. (4.21)

Obviously, condition (4.20) is equivalent with the invariance of the set (4.21) with
respect to the uncertain system (4.18). By calculating the matrix measures μ‖ ‖D∞(Mk) =
μ‖ ‖∞(DMkD

−1) for the vertices Mk, k = 1, . . . , 4, in V (4.19), we show that condition (2.1) in
Theorem 2.1 is satisfied for r = −0.625 s−1. Hence, the set (4.21) is invariant with respect to
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Figure 2: Time-evolution of the state-space trajectories corresponding to four initial conditions.

the uncertain system, and condition (4.20) is fulfilled regardless of the concrete values of m,
k, 1.5 kg ≤ m ≤ 2 kg, 3 N/mm ≤ k ≤ 4 N/mm.

The graphical plots in Figures 2 and 3 present the simulation results for a system
belonging to the considered family, that corresponds to the concrete values m = 1.75 kg,
k = 3.5 N/mm. We take four distinct initial conditions given by the combinations of F0 = ±3,
v0 = ±4 at t0 = 0. Figure 2 exhibits the evolution of F(t) and v(t), as 2D plots (function values
versus time). The dotted lines mark the bounds ±3ert, ±4ert as used in condition (4.20), with
t0 = 0. Figure 3 offers a 3D representation of the exponentially contractive set X1

r (t; 0) defined
by (4.21), with t0 = 0, as well as a state-space portrait, presenting the same four trajectories as
in Figure 2.

As a general remark, it is worth mentioning that the problem considered above is far
from triviality. If, instead of condition (4.20), we use the more general form

∀F0, |F0| ≤ F∗, ∀v0, |v0| ≤ v∗ =⇒ |F(t)| ≤ F∗er
∗(t−t0), |v(t)| ≤ v∗er∗(t−t0), ∀t ≥ t0, (4.22)

then Theorem 2.1 shows that (4.22) can be satisfied if and only if γ2 = 0.5 < (F∗/v∗) < γ1 = 2;
if this condition is fulfilled, then (4.22) is satisfied for

r∗ = max
[

3
(
v∗

F∗
− 2

)
k1, 0.5

(
F∗

v∗
− 2

)]
. (4.23)

The request γ2 < γ1 has a simple motivation even from the operation of the system.
Assume that γ1 < γ2 and F0 = F∗, v0 > 0. Immediately after t0 > 0, the elongation of the spring
will increase (since the damper with γ2 moves slower than the damper with γ1). Thus, at the
first moments after t0 > 0, we will have F(t) > F∗ and condition (4.22) is violated.
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Figure 3: (a) 3D representation of the exponentially contractive set X1
r (t; 0). (b) State-space portrait. The

same four trajectories as in Figure 2.

5. Conclusions

Many engineering processes can be modeled by linear differential systems with uncertain
parameters. Our paper considers two important classes of such models, namely, those defined
by convex hulls of matrices and by positive cones of matrices. We provide new results for the
qualitative analysis which are able to characterize, by necessary and sufficient conditions,
the existence of common Lyapunov functions and of invariant sets. These conditions are
formulated in terms of matrix measures that are evaluated for the vertices of the convex hull
or positive cone describing the system uncertainties. Although matrix measures are stronger
instruments than the eigenvalue location, their usage as necessary and sufficient conditions is
explained by the fact that set invariance is a stronger property than stability. We also discuss
some particular cases when the matrix-measure-based test can be applied to a single matrix,
instead of all vertices. The usage of the theoretical concepts and results is illustrated by three
examples that outline both computational and physical aspects.
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