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One of the key issues in a reentry risk analysis is the calculation of the aerodynamic coefficients.
This paper presents a methodology to obtain these coefficients and couple it to a code that
computes re-entry trajectories considering six degrees of freedom. To evaluate the different flight
conditions encountered during the natural re-entry of conical objects, the Euler Equations for
gasdynamics flows are used. A new scheme TVD (Total Variation Diminishing) is incorporated to
a finite volume unstructured cell-centred formulation, for application to three-dimensional Euler
flows. Finally, numerical results are obtained for a conical body at different attack angles and Mach.
With these results, the calculation of the trajectories during atmospheric re-entry is completed.
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1. Introduction

In the case of natural reentries (non-controlled), the orbital evolution of an object can only
be monitored, with no or limited ability to control risks. The time window for reentry of a
satellite is usually provided with a standard error of ±10% to ±20% of the remaining orbital
lifetime. For the controlled reentries, it is required to simulate the different scenarios until the
right window for the mission is found, being that the total or partial disintegration, or the
landing on a safe place.

In this paper, the main objective is to conduct numerical simulations of the supersonic
flow regime on a conical body, thereby using a code developed at the Department of
Aeronautics of the National University of Córdoba, Argentina [1, 2]. This code uses the
technique of finite volumes for solving Euler equations. The spatial discretization of the
domain is done through a mesh of unstructured tetrahedral volumes. It has implemented
a new technique for choosing the limiter functions that can reduce the artificial viscosity
without the loss of strength robustness of the Total Variation Diminishing scheme—TVD [3–
6].
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The drag and lift coefficients, CD and CL, obtained by the numerical simulation of
compressible flows are used in a code that allows to evaluate the trajectories considering six
degrees of freedom [7]. As a result of this research, the trajectories of reentry into the Earth’s
atmosphere for conical objects having different initial flight conditions are presented.

2. Methodology

2.1. Description of the Numerical Scheme for Compressible Flow

The three-dimensional Euler equations can be written as

∂U
∂t

+∇ · F = 0, (2.1)

where U is the vector of conservative variables, and F is the 3D vectorial flow.
The temporal change of the conservative variables can be expressed as

Un+1 = Un − Δt
V ol

lfaces∑

l=1

F∗l · nlAl, (2.2)

where the flux of the conservative variables F has been replaced by the numerical flux tensor
F∗. Vol indicates the volume where the integration is performed, nl is the outward normal to
the control surface (Al).

Equation (2.2) allows the use of a locally aligned system of coordinates whose unit
vector i coincides with the normal to the face l of the cell, and the unit vectors j and k are
tangential directions. To achieve second-order accuracy, the numerical flux at the interface
between cells l and l+1 in the direction normal to the face l is calculated by [8]
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fi + fi+1
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where fi and fi+1 are the physical fluxes normal to the face in each cells, K
m

i+1/2 is the m-th right
eigenvector, and Φm

i+1/2 is, in the original Harten-Yee scheme [9–11], defined as
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where αmi+1/2 is the jump of the conserved variables across the interfaces between cells i and
i+1, λm

i−1/2 is the m-th eigenvalue of the Jacobian matrix, gmi is the limiter function, and S is
the sign function of the corresponding eigenvalue [8–11]. Since the local Riemann problem
is solved with rotated data, the eigensystem is calculated in the locally aligned coordinate
frame.

The limiter function given in (2.5) is known as minmod [3–6]. The minmod selects the
minimum possible value, so that the scheme is TVD. The other end is the limiter function
superbee that ponders the contribution of the high-order flux [3]. The only implementation of
the superbee function leads to an excessively compressive scheme which it is not very robust
for general practical aerospace applications [6].

In the numerical solution of the three-dimensional Euler equations, five wave families
appear. If the five wave families are enumerated in correspondence with their speed, being
one the slowest and five the fastest, it can be demonstrated that for waves of the families two
to four, the characteristic velocities at both sides of the discontinuity are the same and equal
to the velocity discontinuity [3, 5]. This property makes it very difficult to solve theses waves
accurately. Generally they are solved diffusely because the numerical methods incorporate a
large amount of artificial viscosity to track the contact discontinuity.

In this work, the possibility of implementing different limiter functions for different
wave families is explored. The objective is to improve the numerical resolution of the
discontinuities associated with the families two to four using compressive limiter functions
(superbee), and without losing robustness mainly due to the use of diffusive limiter functions
(minmod) for the wave families one and five. This technique implements the utilization of
the superbee limiter function only in linear degenerate waves and the minmod function in
nondegenerated nonlinear waves [1, 2].

To introduce in the numerical fluxes calculations the limiter function superbee, (2.5) is
replaced by the following expression:

gmi =

⎧
⎪⎨
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0 if αm
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(2.8)

being

k =

∣∣∣λmi+1/2

∣∣∣αmi+1/2∣∣∣λmi−1/2

∣∣∣αmi−1/2

. (2.9)

To improve the overall scheme robustness, the implementation of different limiter
functions is carried out only in those cells interfaces where the greater relative intensities
of the discontinuities in central waves are registered, and using the conventional Harten-Yee
TVD scheme in all other cases. Notice that the comparison among the intensity of the waves
cannot be made using directly the coefficients of the spectral decomposition (αmi+1/2) since
these coefficients depend on the module assigned to each eigenvector.
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In the local coordinate system adopted for computing the numerical fluxes across each
face, the corresponding eigenvectors are given by [5]
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(2.10)

where H is the stagnation enthalpy; u, v and w are the velocity vector components, and c is
the sound velocity. It can be deduced from (2.10) that α1

i+1/2, α2
i+1/2 and α5

i+1/2 measure the
density jump in the waves 1, 2, and 5, respectively, and that α3

i+1/2 and α4
i+1/2 measure the

momentum jump in waves three and four. To compare these jumps it became necessary to
select reference values for the density and velocity. Thus,
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In this investigation, ρref = 0.5 (ρi + ρi+1) is taken as density reference, and as the
velocity reference of the average of the sound velocities at the cells uref = 0.5 (ci + ci+1),
where ci is the sound velocity. The parameters Ii permit to measure the wave intensities.

Finally, if the maximum of I1, I5 is higher than the maximum of I2, I3, I4, the
conventional Harten-Yee TVD scheme is used; otherwise, the values of g2

i , g3
i , g4

i , are
calculated with the limiter function superbee and g1

i , g5
i , with the limiter function minmod.

For the evaluation of gmi and gmi+1 in (2.4), it is necessary to calculate the spectral
decompositions of the conservative variables increments at the interfaces i − 1/2, i + 1/2,
and i + 3/2. In the context of three-dimensional not structured meshes of tetrahedrons, the
identification of the cells i and i + 1 is intuitive (they are two cells that share a face) but
the determination of the points i − 1 and i + 2 is not direct. If two tetrahedrons that share a
face are analyzed, the nodes not belonging to the common face can be used as representative
points for i − 1 and i + 2. Then, these points can be used as imaginary cells. In this work these
ideas have been implemented, being the nodal values calculated as a pondered average of
the conservative variables between all cells that are in contact with the nodes i − 1 and i + 2.
Such pondered average is given by

Unode k =
∑n

i=1(Ucell i/(dGCcell i−node k))∑n
i=1(1/(dGCcell i−node k))

, (2.12)

where dGCcell i−node k is the distance that separates the gravity center of the cell i from the node
k, and n is the cell number in contact with the node k.
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The treatment of the boundary conditions is carried out through the imaginary cells
technique [2–4]. Five different types of boundaries are considered (1) subsonic inlet; (2)
supersonic inlet, (3) subsonic exit, (4) supersonic exit, (5) nonpenetration (solid boundary
and symmetry).

2.2. Reentry Equations of Motion

The choice of a suitable set of coordinates and parameters of the trajectory to describe the
movement of an object in atmospheric reentry is inherent to any investigation of guided
spacecraft. To analyze a reentry trajectory it is appropriated to describe the motion of the
center of mass using a set of elements known as Flight Coordinates [12].

Thus, the flight coordinates are described by the six orbital elements: magnitude of
the position vector, r, longitude, θ, latitude, ϕ, magnitude of the velocity vector, v, flight-path
angle, γ , and heading angle, ψ (azimuth of the velocity). At every moment this object is under
the influence of a total force,

−→
F , composed by the gravitational force,

−→
FG, the aerodynamic

force,
−→
A, and the force of propulsion,

−→
T :

−→
F =

−→
T +
−→
A +
−→
FG. (2.13)

The gravitational force is always present. For nonpowered flight, the propulsion force
is zero, while for flights outside the atmosphere, the aerodynamic force vanishes.

To derive the equations of motion, we must use an Earth-fixed reference system. The
kinematics equations of motion are [12]

dr

dt
= v sin γ,

dθ

dt
=
v cos γ cosψ
r cosφ

dφ

dt
=
v cos γ sinψ

r
.

, (2.14)

It is desirable to separate the aerodynamic force into two components and define the
tangential component of the nongravitational force,

−→
FT , along the velocity vector, and the

normal component,
−→
FN , orthogonal to the velocity at the aerodynamic plane. When we have

in plane flights, the normal vector
−→
FN is in the plane (−→r ,−→v), the vertical plane, and there is

no lateral force. However, it is possible to create a lateral component of this force, which has
the effect of changing the orbital plane. The non-gravitational force is then decomposed into
a component on the vertical plane and orthogonal to the velocity vector, and a component
orthogonal to this plane using the bank angle, σ.
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The force equations are [12]:

dv

dt
=

1
m
FT −

1
m
FG sin γ +ω2r cosφ

(
sin γ cosφ − cos γ sinψ sinφ

)
,

v
dγ

dt
=

1
m
FN cosσ − 1

m
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v2

r
cos γ + 2ωv cosψ cosφ

+ω2r cosφ
(
cos γ cosφ + sin γ sinψ sinφ

)
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v
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m

FN sinσ
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− v
2

r
cos γ cosψ tanφ + 2ωv

(
tan γ sinψ cosφ − sinφ

)

− ω2r

cos γ
cosψ sinφ cosφ.

(2.15)

Here ω is the rotation of the Earth that appears because we have to consider a reference
system fixed on the planet.

2.3. Attitude Equations

Knowing the attitude of a space object means knowing the orientation of an axis system
connected to the vehicle related to a vertical reference system. To specify the orientation
of a rigid body in space, three independent parameters are needed. These parameters are
commonly known as roll, pitch and yaw, the Euler angles.

However, the use of the Euler angles to compute the attitude evolution of a spacecraft
is limited: the equations of motion in attitude have singularities for certain values of the pitch
angle, namely ±π/2. This limitation was solved with the substitution of the Euler angles with
a set of variables known as quaternions [13].

The quaternions are denoted as q = (q1, q2, q3, q4). The components of q are defined
in terms of the Euler angles using the convention xyz (or sequence 321) which is found in
Goldstein [14].

Kinematics equations of motion have the following form [14]:

q̇1 =
1
2
(
ω3q2 −ω2q3 +ω1q4

)
,

q̇2 =
1
2
(
−ω3q1 +ω1q3 +ω2q4

)
,

q̇3 =
1
2
(
ω2q1 −ω1q2 +ω3q4

)
,

q̇4 =
1
2
(
−ω1q1 −ω2q2 −ω3q3

)
.

(2.16)
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The attitude dynamic equations of motion express the temporal dependence of the
angular velocity related to the applied torques:

I
d−→ω
dt

=
−→
N − −→ω × I−→ω, (2.17)

where I is the inertia matrix, and
−→
N the aerodynamic torque. Thus, with I1, I2, I3

corresponding to the moments of inertia about the main axes of the vehicle, the dynamic
equations of attitude are [13]:

ω̇1 =
N1 + (I2 − I3)ω2ω3

I1
,

ω̇2 =
N2 + (I3 − I1)ω3ω1

I2
,

ω̇3 =
N3 + (I1 − I2)ω1ω2

I3
.

(2.18)

2.4. Aerodynamic Forces

If the vehicle under consideration operates on a symmetry condition, the velocity vector
defines this plane of symmetry. So the attitude of the object is properly described by the
attack angle, α, which is the angle between the velocity vector relative to the atmosphere and
a vehicle’s baseline, normally the longitudinal axis.

The aerodynamic force is decomposed into two components: the force opposite to the
direction of motion, called Drag -and part of the non-gravitational force

−→
FT in (2.15), and the

orthogonal component, called Lift (part of
−→
FN):

D =
1
2
CDρatmSsatV

2,

L =
1
2
CLρatmSsatV

2.

(2.19)

Here, CD and CL are called drag and lift coefficients, respectively, ρatm is the atmosphere’s
density, Ssat is the satellite’s area and V is the relative velocity between the space object
and the atmosphere. For each object it is necessary to calculate specific coefficients at every
moment of the trajectory. The code developed in the Department of Aeronautics of the UNC
[1] evaluates these parameters for the conical object into consideration.

The first phase of the calculation is to identify the object’s surface areas. So, the nodes
of the tetrahedrons, whose faces form the surface of the object, are identified in the code input
file.

The forces acting on each face have a magnitude equal to the pressure divided by
the area. The direction is the incoming normal to the surface, and the point of application
corresponds to the geometric center of the face. In this way, the resultant force on the body
is calculated as the vector sum of all forces acting on the discretized surface. Finally, the
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resulting force components in directions parallel and perpendicular to the flow velocity
vector are projected, in order to obtain the drag and lift coefficients, respectively.

3. Results

The numerical simulations were performed using as a core calculation code the one
developed at UNC [1]. For delineation of the geometric bodies and meshing, we used the
application GID 8.0 with temporary license issued by the manufacturer.

GID has been developed as an interface for geometric modelling, meshing, income
data, and display results of all types of numerical simulation programs. The different menus
can be modified according to specific user needs. The graphical interface adapted to the code
is designed to allow the entrance of initial conditions, to mark the object’s surface for the
calculation of forces, to define the number of iterations, and other parameters inherent to the
code. The ultimate objective of the use of GID is writing the data file that enters the UNC’s
code and the subsequent display of results, from reading the output file written by the code.

The limit of iterations in the code can be determined by the number of steps, or
the limit time independently. When it comes to any of these, the program completes its
implementation.

The motivation of the simulations performed is to obtain the main aerodynamic
characteristics (drag and lift coefficients) of a conical body. They are used in the calculation
of the trajectory during reentry into the atmosphere [15]. Due to the fact that the original
code did not have the calculation of the pressure forces on a body, the necessary sentences
to perform a simple summation of forces on the faces of the tetrahedrons lying on the object
were written. For the identification of these faces, the graphical interface developed in GID is
used, which has an option to mark the surface of the body.

The angle of the cone (10◦) was chosen arbitrarily, in order to guarantee that this value
is small. The cone’s length (1 m) was chosen to facilitate the calculations.

It is known that the aerodynamic characteristics of a body with the given geometry
depend, in the case of nonviscous flow, only on the Mach number and the incidence angle of
the free flow, without considering heat transfer or changes in the properties of air. That’s the
reason why these variables are used as independent ones.

Two sets of simulations were performed. The first case is for a cone-shaped object
that enters in the atmosphere by sharp (narrow) side forward, while the second one was
calculated in the assumption that the vehicle moves by wide (obtuse) side forward. Both
calculations were made for several attack angles and Mach numbers.

It is important to note that the pressure distribution around the body depends only
on the free flow Mach number. Then to obtain the CD and CL coefficients, it is necessary to
modify only the free flow Mach number. For this reason the velocity is modified by keeping
pressure and density constant and equal to those used in the remaining cases. The speed in
the z direction is maintained equal to zero so there is flow symmetry around the xy plane.

3.1. Sharp Side Forward Case

The dimensions of the volume meshing are length in direction x = 2.2 m, length in direction y
= 3 m, distance to surface point of impact in the axis x = 0.2 m, angle of revolution = 180◦. The
characteristics of the mesh are number of tetrahedrons around 130,000 and number of nodes
around 29,000.
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Figure 1: Pressure distribution on the object: (a) Mach = 1, attack angle = 0◦; (b) Mach = 4, a.a. = 15◦.

The interface with GID requested that a new mesh was drawn every time a new
calculation was made, because it needed a new data file for every case considered. For this
reason, and because a nonstructured mesh was used, every case had a slightly different
number of elements, due to arbitraries processes during meshing.

The criterion used for the meshing is based on

(i) using the symmetry of the flow on a plan to reduce the volume of mesh, and on
two planes in the case of zero attack angle,

(ii) concentration of all elements near the surface of the cone, in particular areas
considered critical for the calculation: impact point and base,

(iii) significant reduction of elements in remote areas of the body, to reduce computa-
tional cost.

Figures 1(a) and 1(b) display some examples of results obtained for the pressure field
over a conical object considering two combinations of Mach number and attack angle.

The implemented numerical scheme has the capacity to simulate compressible flows
in subsonic, transonic, and supersonic regimens. From Figure 1(a), it is possible to note, for
Mach number equal 1, the concentration of sonic waves near of the body edge; however, the
shock wave has not yet been formed. The shock wave can be seen clearly in Figure 1(b) when
the free Mach flow is 4. Furthermore Figure 1 shows that the pressure distribution, including
at the cone base, is different for transonic from that of supersonic flows , this explains the
different behaviors of the CD and CL coefficients for different regimes.

Figure 2 shows the drag coefficients for the simulated cases, while Figure 3 shows the
lift coefficients. In all cases it is considered the cone angle equal to 10◦. The reference area used
is the front section of the cone. It is important to note that the viscous effects are neglected to
obtain theses figures.

Note from Figure 2 that drag coefficient is increasing accordingly as the attack angle
of the cone is increasing too, this phenomenon occurs until 75◦. From Figures 2 and 3, it is
possible to observe that both coefficients, drag and lift, have lower variations for height Mach
numbers and the greater variations occur at subsonic and transonic flows. For an attack angle
of 45◦, it is produced that the highest lift and the lower occur for an angle of 90◦, for this test
the lift is negative except for very reduced Mach number.

Figure 4 show some of the results of the reentry simulations. Figure 4(a) plots the
variation of attack angle during the reentry trajectory for initial values of this angle
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Figure 2: Sharp Side Forward: Drag coefficient as a function Mach for different angles of attack.
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Figure 3: Sharp Side Forward: Lift coefficient as a function Mach for different angles of attack.

corresponding to 0◦, 15◦, and 30◦, while Figure 4(b) presents the trajectory, meaning the
altitude as a function of the time, for these angles.

We can notice the moment when the objects sense the presence of the atmosphere
(around 1500 seconds) and begin to experience high variation of the attack angle during
their descent. The first trend is to decrease the initial attack angle. However, although the
atmosphere promotes an oscillatory movement around the zero attack angle condition, this
is very unstable for objects reentering sharp side forward, and it is possible that for certain
initial conditions, the atmosphere turns the object and reverses its attitude.

In what concerns the time evolution of the altitude, it could be seen that it is not
affected until the height of 150 km. This is a limitation of the atmospheric model that has
information on the atmospheric density just until this height. Since the aerodynamic forces
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Figure 4: Sharp Side Forward: (a) Attack angles depending on the time; (b) Altitude. Initial attack angles:
0◦ (blue), 15◦ (red) and 30◦ (green).

depend directly on this parameter, it is assumed that the atmosphere is so faint over 150 km
that it does not affect the trajectory. Anyway, under this limit, all trajectories show bouncing
movements, indicating that the attitude variation affects the objects dynamics.

3.2. Wide Side Forward Case

In this case the characteristics of the mesh are number of tetrahedrons around 160,000 and
number of nodes around 32,000. An additional criterion used for the meshing is based on the
concentration of all elements over the cone’s surface, in particular areas considered critical
for the calculation: impact point and base. Also smaller elements were used in the zones
nearby the cone base and along the axis of the cone in order to determine more precisely
detached shock waves. Apart from that, the mesh was made thinner over the sides of the cone
compared to the aerodynamic shadow in order to more accurately determine the expansion
waves.

To simulate the atmospheric reentry of a cone shaped object by wide side forward, it is
takes into account that this object has an attack angle around 180o. Some of the results found
for this condition can be seeing on Figures 5 and 6.

Figure 5 shows the drag coefficients as a function of the Mach number for attack angles
105◦, 120◦, 135◦, 150◦, 165◦, and 180◦. It can be seen that this parameter presents higher values
on the condition wide side forward compared with the same attitude angles on a sharp
side forward situation for attack angles around the stability condition (180◦ in this case and
0◦ in the sharp side forward) as expected. For attack angles equal to or bigger than 135◦

(corresponding to 45◦ in the other case), the drag coefficient is very similar. On the other side,
the lift coefficients tend to be smaller or maintain the same values (Figure 6).

The result of these differences can be noticed in Figures 7(a) and 7(b). For a conic
object that reenters the terrestrial atmosphere wide side forward, small angles of attack (here
around 180◦) tend to preserve their magnitude during the reentry trajectory as corresponding
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Figure 5: Wide Side Forward: Drag coefficient as a function Mach for different angles of attack.
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Figure 6: Wide Side Forward: Lift coefficient as a function Mach for different angles of attack.

to an equilibrium configuration. However, when the initial attitude is as far from 180◦ as 30◦,
equilibrium is lost during reentry and we found again the oscillations around the stability
condition.

The most important consequence of the wide side forward reentry is over the altitude
evolution. It can be seen in Figure 7(b) that all the cases present nearly ballistic paths.
Although the far from the 180◦ initial attack angle condition, the less ballistic is the trajectory
inside the dense part of the atmosphere, as can be seen by the dark green line that corresponds
to an initial attack angle of 150◦, the trajectories of initial attack angles equal to 180◦ and 175◦

are superimposed.
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Figure 7: Wide Side Forward: (a) Attack angles depending on the time; (b) Altitude. Initial attack angles:
180◦ (dark blue), 175◦ (dark red) and 150◦ (dark green).

4. Conclusions

In this paper, a series of numerical simulations have been conducted using a code
developed at UNC [1, 2], which solves the Euler equations by the method of finite volume,
using unstructured 3D tetrahedral meshes. The code implements a new technique on the
introduction of limiting functions, which aims to decrease the numerical viscosity, that is,
increasing the contact discontinuities capture accuracy without loss of robustness regarding
other TVD methods.

The goal was the calculation of aerodynamic characteristics of a cone under the effects
of different flight conditions, to attach the results to other code that calculates the dynamic of
atmospheric reentry [7].

It was possible to perform simulations of reentry trajectories for a specific cone under
the influence of various aerodynamic effects for a variety of initial attack angles. Simulations
show, as expected, that the trajectories are more affected when the object has initially a sharp
side forward configuration.

From the obtained results, was compared the numerical slope of the normal force
coefficient with analytical results. In none of the cases the errors exceed 6%. This good
accuracy of the numerical results permits to induce that the error by not considering viscous
effects in the calculation of the aerodynamic coefficients is low, and the obtained trajectories
and attack angles evolution during the reentry are reliable.

Although the methodology implemented has been shown to be suitable for calculating
the reentry trajectories inside the terrestrial atmosphere, it will be improved with the
inclusion of viscous effects in the simulation of the aerodynamic flow in future works.
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