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A mathematical model for M/G/1-type queueing networks with multiple user applications
and limited resources is established. The goal is to develop a dynamic distributed algorithm
for this model, which supports all data traffic as efficiently as possible and makes optimally
fair decisions about how to minimize the network performance cost. An online policy gradient
optimization algorithm based on a single sample path is provided to avoid suffering from a
“curse of dimensionality”. The asymptotic convergence properties of this algorithm are proved.
Numerical examples provide valuable insights for bridging mathematical theory with engineering
practice.

1. Introduction

In the past decades, great efforts have been devoted to model and optimize the network-
based communication systems with the increasing transmitting demands and sophisticated
performance criteria. However, technical challenges abound in designing such systems due
to the limited network resources and the stochastic network characteristics. It is wellstudied
that queueing theory is one of the primary tools used to deal with traffic engineering
problems over both wired and wireless packet networks [1–3]. Factors affecting performance
of network systems, based on the models in queueing theory, include the arrival rates (or the
interarrival time distributions), the service rates (or the interservice time distributions), and
the queue discipline. In this paper, we will concentrate on how to optimally and efficiently
allocate the service rates to all concurrent user queues in each network element according to
the arrival rates, so that the the lowest possible performance cost is achieved.
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Suppose that the arrival rates parameter for each user is uncontrollable, and the
interarrival time parameter is exponentially distributed. Let queue discipline be first-come
first-served (FCFS). Based on this model, the decision parameter is the service time, namely,
the service rates allocated to each user. Without loss of generality, consider that the service
times of each user are independent and identically distributed with G. Thus, the user queues
are modeled as multiple concurrent M/G/1 queues, for which many techniques can be
found in the literature [4–7]. More importantly, the optimal resource allocation problem is
then translated into a resource-constrained Markov decision problem (MDP). The objective
of the MDP is to find a resource allocation policy that minimizes the overall performance
cost, by observing and analyzing the system behavior information. To achieve this goal
in such a mathematically tractable MDP model, some solving results were proposed in
[8, 9]. However, these methods may typically suffer from a “curse of dimensionality” [10].
In addition, if no structural information about the system is gained, we cannot explicitly
compare the performance cost by observing and analyzing the network system behavior
under different policies. Hence, a crucial question that comes to mind is how can we achieve
our goal of performance cost minimization using as little computation effort and system
structure information as possible? Thinking along this direction, we propose a sensitivity-based
optimization algorithm tailored for the bandwidth-constrained and backlog-constrained
M/G/1 queueing system.

Within the above issues addressed, we now confront a key question, namely, how to
quantify the network system cost in terms of performance metrics. Note that the performance
metrics may change not only as actual network scenarios vary but also as the influence
factors change, that is, different network environments will lead to different definitions of
performance metrics. For instance, a flexible cost function was proposed in [11], which takes
into account the power, interference, backlog, and other factors in the ultrawide band (UWB)
communication networks. In [12], a bandwidth related cost function was presented for
wide area overlay networks. Another type of performance metrics, considering the waiting
time and the energy consumption for serving jobs in an M/GI/1 processor sharing (PS)
queue, was provided in [13]. Therefore, throughout this paper, we use the word “cost”
to refer to both backlog and service rates-related performance cost criteria in a broad
sense.

In summary, the contributions of this paper are as follows. Firstly, we present a
distributed resource-constrained M/G/1-type queueing model for supporting multiple
user traffic over communication networks. By translating the multiple queues of each
relay network node into continuous-time semi-Markov processes, we further formulate
the network system performance cost minimization as a stochastic optimization problem
in the Markov system. Secondly, within the optimization framework, we explicitly define
the network system performance cost measure, based on which an online policy scheme
combining performance sensitivity analysis and MDP is proposed. This scheme is cost-benefit
since during the data transmission process, the performance cost is significantly reduced by
choosing the optimal policy while the computational complexity is greatly decreased in that
it is based on a single sample path, that is, a trajectory of each user queue. Thirdly, with the
estimation of the performance gradients, a resource allocation algorithm is developed. From
the performance comparison formula, we directly obtain the optimality condition. Moreover,
the asymptotic convergence properties of such algorithm are proved. Last but not least, the
established model can be easily extended to a more general situation when the states of the
M/G/1-type queueing system are partially observable, that is, partially observable Markov
decision problems (POMDPs).
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Figure 1: Simplified network structure.

The rest of paper is organized as follows. Section 2 starts by presenting the M/G/1-
type queueing system model. Next, Section 3 proposes the cost-benefit resource allocation
optimization algorithm. To evaluate the performance of the proposed algorithm, numerical
examples are provided in Section 4. Finally, the paper concludes with a short discussion in
Section 5.

2. System Model

In this section, we model the queueing system according to the dynamic transmission
procedure of each network user. With the formulation of M/G/1 user queues, firstly, we
derive the steady-state Markov transition probability matrix. We then define the performance
cost measure, based on which the objective function of the optimization algorithm is
presented. Before digging into details, we summarize the used notations in Table 1.

Consider a network modeled by a topology graph, that is, G = (V,E), where V denotes
the set of network elements (nodes), and E represents the set of links. Note that if a link ι ∈ E,
there exist a work-conserving server with time-invariant service capacity Cι, which serves
packets and transfers them from source element to end element of ι. More precisely, consider
that each element v ∈ V keeps a separate queue for every user traffic going through it, which
is illustrated in Figure 1. For the simplicity of exposition, let N(t) be the number of user
queues served at any given time t ≥ 0. Without loss of generality, consider that the capacity
of each user queue i ∈ {1, . . . ,N(t)} is upper bounded by a constant K, that is, M/G/1/K
queueing model with limited backlog capacity K.
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Table 1: Notations.

Symbol Definition
G = (V,E) Graph representation of the network
Cι Service capacity of link ι

N(t) Number of active user applications served within a network element
Co(t) Leftover service capacity
Gi General distribution of the ith user queue’s interservice time
λi The long-term average rate of ith user arrivals
μi Mean service rates of the ith user queue
K Each user queue’s backlog capacity
Xi Semi-Markov process of eachM/G/1-type user queue
Φ The state space of each user queue
Y i The embedded Markov chain of the semi-Markov process
Qμi(t) The semi-Markov kernel
Pμi The transition probability matrix
Aμi The infinitesimal generator
πμi The steady-state probability vector
fμi (fi) The performance cost function
η
μi

f
The performance cost measure

gμi The performance potential vector
D

μi

f
The realization matrix

Γi The feasible region of the service rates allocated to the ith user queue
Ω(t) The policy space for all user queues
ν(t) A feasible resource allocation policy
ε The stopping criterion of the policy algorithm
l The iteration index of the policy algorithm
sp The span seminorm

Denote the service time allocated to user queue i as a general distribution Gi(s, t)
for any given time t ≥ 0. Since the users arrive at and depart from each network element
randomly, we should allocate the service rates μi(t) dynamically for all t ≥ 0 so that the
performance cost at the element is minimized.

Then, we have

μi(t) ≡ 1
∫∞
0 sdGi(s, t)

∈ R+ � (0,∞), (2.1)

where μi(t) represents the mean service rates of user queue i at time t, satisfying ρi �
λi/μi(t) < 1, λi is the long-term average rate of the ith user arrivals, namely, the intensity
of the Poisson arrival process. For ease of presentation, hereafter, μi(t) and μi will be used
interchangeably. Let Γi(t) ⊂ R+ be the feasible region of the service rates allocated to user
queue i. To be more precise, we introduce some definitions to accurately modeling the ith
user queue.

Definition 2.1 (semi-Markov queueing process). A semi-Markov process Xi = {Xi
t, t ≥ 0}

characterizes the ith user queue’s behavior on the state space Φ = {0, 1, . . . , K}, where Xi
t
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represents the number of packets in the queue after the latest packet left a network element
at time t ≥ 0.

Remark 2.2. The semi-Markov kernel of Xi can be further represented as

Qμi(t)[(K+1)×(K+1)] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

pi0(t) pi1(t) pi2(t) · · · piK−1(t) piK(t)

qi0(t) qi1(t) qi2(t) · · · qiK−1(t) qiK(t)

0 qi0(t) qi1(t) · · · qiK−2(t) qiK−1(t)

...
...

...
. . .

...
...

0 0 0 · · · qi0(t) qi1(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2.2)

where

qik(t) =
∫ t

0

e−λ
is(λis)k

k!
dG(s, t), k ∈ Φ,

pik(t) =
∫ t

0
qik(t − s)λie−λ

isds, k ∈ Φ.

(2.3)

Let Y i = {Y i
m; m = 0, 1, 2, . . .} be the embedded Markov chain of Xi, where Y i

m is
interpreted as the number of packets in the ith user queue when the mth packet has been
served. It is essential to note that Y i is positive recurrent, irreducible, and aperiodic under
the condition of ρi < 1 since Xi is. Moreover, Y i has both the same steady-state probability
vector πμi = (πμi(0), . . . , πμi(K)), πμi(k) > 0, k ∈ Φ and the same steady-state performance
cost measure (discussed later) as Xi. According to [3], Xi has standard transfer probabilities
pkj(t), k, j ∈ Φ, and for any j with respect to k ∈ Φ, pkj(t)/t converges consistently to a
constant for k /= j as t → 0. In this state, the transition probability matrix Pμi of Y i can be
derived as follows

P
μi

[(K+1)×(K+1)] = lim
t→∞

Qμi(t)[(K+1)×(K+1)] =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

ai
0 ai

1 ai
2 · · · ai

K−1 ai
K

ai
0 ai

1 ai
2 · · · ai

K−1 ai
K

0 ai
0 ai

1 · · · ai
K−2 ai

K−1
...

...
...

. . .
...

...
0 0 0 · · · ai

0 ai
1

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

, (2.4)

where

lim
t→∞

pik(t) = lim
t→∞

qik(t) = ai
k, k ∈ Φ. (2.5)
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Remark 2.3. Note that the symbol ai
k represents the probability of k packets arriving at the

time interval when a packet of the ith user queue is being served. The balance equation of
each concurrent user queue i can be further expressed as

πμi(Pμi − I) = 0, πμie = 1, (2.6)

where e = (1, 1, . . . , 1)T is a (K + 1)-dimensional column vector whose all components are 1’s,
and the superscript “T” denotes transpose.

In principle, the performance cost measure is based on the definition of performance
cost function. Note that performance cost is a commonly used term that changes its meaning
with different network environments. Considering there is limited backlog space in each
network element, therefore, the more backlog is occupied, the higher cost is paid. In
this state, with the increasing of service rates, the backlog-related cost can be reduced
accordingly. However, in many practical networks, especially considering the various
wireless environments, transmission cost cannot be neglected. In general, the transmission
power is considered as a convex increasing function with respect to the service rates. Thus,
the design of performance cost function should trade off both the backlog related and the
service rates related costs. Conceptually, we associate to each user queue a performance cost
function defined as follows.

Definition 2.4 (performance cost function). Consider a general performance cost function fi :
Φ × Γi → R+ associated to the ith user queue, which is the sum of the backlog-related cost
ϕ1(k) and the service rates-related cost ϕ2(μi), that is,

fi
(
k, μi

)
= ϕ1(k) + ϕ2

(
μi

)
, ∀k ∈ Φ. (2.7)

Suppose that the performance cost function fi is differentiable with the service rates μi

on Γi. For ease of notation, hereafter, the terms fi and fμi are used interchangeably throughout
the paper. Now, it is imperative to define the performance cost measure as our objective
function for each user queue. Motivated by [3, 14], the definition is as follows.

Definition 2.5 (performance cost measure). The performance cost measure ημi

f
with respect to

the service rates μi for each user queue i is denoted as

η
μi

f
= Eπμi

(
fμi
)
=
∑

k∈Φ
πμi(k)fμi(k) = πμifμi , (2.8)

where fμi = (fμi(0), . . . , fμi(K))T is a (K + 1)-dimensional column vector, and Eπμi denotes
the expectation with respect to the steady-state probability πμi of the semi-Markov process
Xi in Definition 2.1.
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Since the state space of Xi is finite, we should note that for each nonnegative bounded
performance cost function, there is

η
μi

f
=
∑

k∈Φ
πμi(k)fμi(k) < ∞. (2.9)

Remark 2.6. Each user queue i has been modeled as a semi-Markov queueing process Xi,
based on which the transition probability matrix P

μi

[(K+1)×(K+1)] has been derived. Suppose

that it is differentiable with service rates μi ∈ Γi. Denote A
μi

[(K+1)×(K+1)] = P
μi

[(K+1)×(K+1)] − I

as an infinitesimal generator of Xi under the service rates μi, where akk and akj for k /= j
are elements of A

μi

[(K+1)×(K+1)] and satisfy akk < 0 and akj ≥ 0 for k /= j, k, j ∈ Φ. Thus,
the infinitesimal generator is differentiable with respect to μi. Note that the elements
of A

μi

[(K+1)×(K+1)] represent the transition rate of the packet number in each user queue.
More importantly, the cost-benefit optimization algorithm can be further developed for all
M/G/1-type user queues in Section 3 by changing the service rates μi allocated so that the
corresponding infinitesimal generator of each user queue is modified.

3. Resource Allocation Algorithm

In this section, we take a fresh look at the problem of resource allocation from the perspective
of system performance cost and explore a cost-benefit gradient algorithm that minimizes the
performance cost for all concurrentM/G/1-type queues, subject to the bandwidth constraint.

3.1. Problem Formulation and Optimality Criterion

Since we focus on the stochastic dynamic queueing system, the estimation of its statistical
properties is essential. In addition, such estimation needs not only to be accurate but more
importantly, to be efficient when taking into consideration the delay sensitiveness of the real-
time network applications. Consider that the main tenet of perturbation analysis (PA) is that
a great deal of information is contained in the sample paths of a dynamic system, beyond
the usual statistics collected such as the means and variances of various variables [15]. Thus,
in essence, we can estimate the performance gradient with respect to the service rates and
further minimize the user queue’s performance cost measure based on a single sample path
with PA.

In particular, several PA approaches have been introduced in solving network
problems (see, e.g., [16, 17]). However, a general approach that supports a wide range of
stochastic optimization problems awaits to be proposed. A new approach was proposed
in [18] to analyze a number of Markov systems based on a single sample path. Moreover,
the optimization formulations for Markov [14, 19, 20], semi-Markov [21], and partially
observable Markov [22] systems were proposed, and in [3], the theory has successfully been
extended to evaluate the M/G/1 queueing systems. The structure of PA-based queueing
system is shown in Figure 2. For each feasible resource allocation policy, a set of service
rates are allocated to each user queue. With each change of one user queue’s service rate,
a perturbation is generated on the queue’s sample path, which has effect on the system
performance cost.
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As illustrated in Figure 3, in an M/G/1-type user queue {Y i
m; m = 0, 1, 2, . . .}, such

a perturbation can be regarded as a “jump” among its states k ∈ Φ and has effect on the
performance cost ημi

f
. Thus, we need to measure all states’ effect on the performance cost ημi

f

before discussing the performance cost optimization. We briefly introduce a concept called
performance potential that is useful in this paper [18].
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Definition 3.1 (performance potential). Denote gμi(k) as the ith user queue’s performance
potential of state k ∈ Φ under service rates μi with respect to the performance cost function
fi. It measures the effect of state k to the performance cost ημi

f
and can be written as

gμi(k) = E

{ ∞∑

n=0

[
fi
(
Y i
m, μi

)
− η

μi

f

]
| Y i

0 = k

}

. (3.1)

Remark 3.2. The performance potential vector of theM/G/1/K user queue {Y i
m}with respect

to the performance cost function fμi is denoted as gμi = (gμi(0), . . . , gμi(K))T . In essence, the
performance potential vector is the solution of the Poisson equation, which has been studied
remarkably in the literature [23]:

Aμigμi = −fμi + η
μi

f e. (3.2)

Furthermore, if {Y i
m} is strongly ergodic, all of the performance potential vectors can be

calculated by gμi = −(Aμi)#fμi + ce, c ∈ R, where (Aμi)# is said to be the group inverse (for
details, see [18]) of the {Y i

m}’s infinitesimal generator Aμi under service rates μi.

Now, we need to assign the feasible service rates region to each active user queue. It is
well-studied from queueing theory that an M/G/1-type user queue {Y i

m; m = 0, 1, 2, . . .} is
called stable if ρi < 1, that is, λi < μi. Moreover, the network element is stable if and only if
all individual user queues are stable. Suppose that the lower bound service rates of each user
queue at epoch t ≥ 0 are set to μmin

i (t) = λi + 1, and
∑N(t)

i=1 μmin
i (t) < Cι. Thus, we denote the

leftover service capacity as Co(t) � Cι −
∑N(t)

i=1 μmin
i (t). In this state, we further assign the ith

user queue a parameter called sharing weight

φi(t) � λi
∑N(t)

i=1 λi
. (3.3)

Apparently, we have
∑N(t)

i=1 φi(t) = 1 for any given t. Thus, at epoch t, the service rates of user
queue i are upper bounded by,

μmax
i (t) = μmin

i (t) + φi(t)Co(t). (3.4)

Therefore, the service rates policy space in Figure 2 is defined as follows.

Definition 3.3 (feasible policy space). The policy space for all user queues at epoch t ≥ 0
can be denoted as a compact set Ω(t), where Ω(t) � Γ1(t) × · · · × ΓN(t)(t), and Γi(t) �
[μmin

i (t), μmax
i (t)], i ∈ {1 · · ·N(t)}.

Next, we analyze the optimal criterion for the performance cost optimization.
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Theorem 3.4 (optimality criterion). A cost-benefit resource allocation policy ν∗(t) �
(μ∗

1(t), . . . , μ
∗
N(t)(t)) ∈ Ω(t) is optimal with each given initial policy if and only if for each user queue

i, one has

χi � minimize
μi(t)∈Γi(t)

{
fμi(t) +Aμi(t)gμ∗

i (t) − eη
μ∗
i (t)

f

}
= 0, ∀i ∈ {1, . . . ,N(t)}. (3.5)

Proof. Note that Γi(t) is a compact set, and fμi(t) + Aμi(t)gμi(t) is component-wise continuous
on Γi(t). Thus, there must exist at least one cost optimal service rates in Γi(t).

According to [20], we have the fact that the service rates μ∗
i (t) for ith user queue is cost

optimal if and only if

fμ∗
i (t) +Aμ∗

i (t)gμ∗
i (t) 
 fμi(t) +Aμi(t)gμ∗

i (t), ∀μi(t) ∈ Γi(t), (3.6)

where the symbol 
 denotes vector inequality or component-wise inequality inR(K+1), and (K+1)
is the the states’ number of each user queue.

Note that a better cost-benefit service rates can be searched based on the comparison

of current service rate. Besides, from (3.2), we have eη
μ∗
i (t)

f
= fμ∗

i (t) +Aμ∗
i (t)gμ∗

i (t).
Thus, we can conclude that if the μ∗

i (t) is the cost optimal service rates, the following
equation:

χi = minimize
μi(t)∈Γi(t)

{
fμi(t) +Aμi(t)gμ∗

i (t) − eη
μ∗
i (t)

f

}
= 0 (3.7)

is established and vice versa.

3.2. Gradient-Based Policy Optimization

Now, the purpose is to develop an efficient and practical policy algorithm, which minimizes
all the user queues’ performance cost based on the corresponding sample paths. In
essence, the objective function for each user queue in Definition 2.5 represents the time-
average performance measure of the M/G/1 queue. Thus, developing a global optimization
algorithm for such a performance measure will greatly increase the complexity. More
importantly, to some extent, it is impractical to consider both the delay sensitiveness of user
applications and the dynamic changes of the network element. In this state, a fast gradient-
based optimization for the stochastic system is considered. It is well studied that a gradient
optimization algorithm is to find a local minimum of objective function; however, it can be
fairly efficient, especially when the interval Γi(t) for each user queue i is not very large. To
begin with, the performance gradient formula for each user queue is derived as follows.

Theorem 3.5 (performance gradient). For any given resource allocation policy ν(t) =
(μ1(t), . . . , μN(t)(t)) ∈ Ω(t) at each event time t ≥ 0, k = 1, 2, . . ., the gradient of the performance
cost ημi(t)

f generated by the ith user queue is obtained by

∇η
μi(t)
f = πμi(t)∇Pμi(t)g

μi(t)
f + πμi(t)∇fμi(t). (3.8)
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Proof. By taking the gradient of the performance measure (2.8), we have

∇η
μi(t)
f = ∇πμi(t)fμi(t) + πμi(t)∇fμi(t). (3.9)

From [14, 20], there must be particular solution to (3.2), such that ημi(t)
f = πμi(t)gμi(t); thus, we

obtain

(
−Aμi(t) + eπμi(t)

)
gμi(t) = fμi(t). (3.10)

With Pμi(t) = Aμi(t) + I, we further have

(
I − Pμi(t) + eπμi(t)

)
gμi(t) = fμi(t). (3.11)

Left-multiply by ∇πμi(t) on both sides of (3.11), it follows that

∇πμi(t)fμi(t) = ∇πμi(t)
(
I − Pμi(t) + eπμi(t)

)
gμi(t). (3.12)

Recall that πμi(t)e = 1, Pμi(t)e = e, andπμi(t)Pμi(t) = πμi(t), then we have

∇πμi(t)Pμi(t) + πμi(t)∇Pμi(t) = ∇πμi(t), ∇πμi(t)e = 0. (3.13)

Hence, using (3.12), it suffices to show that

∇πμi(t)fμi(t) = πμi(t)∇Pμi(t)gμi(t). (3.14)

Combining (3.9) with (3.14), the result then follows.

Then, we proceed to describe the process flow of the policy gradient algorithm shown
in Figure 4. The procedure of the algorithm is described in Algorithm 1. Note that in
Algorithm 1,

sp(h) � max
i

{h(i)} −min
i
{h(i)}, h ∈ Rn (3.15)

is defined as the span seminorm on Rn.
Moreover, the construction of the algorithm is presented as follows. The algorithm

begins by choosing an arbitrary feasible policy for all user queues at given time t. Then, with
current service rates, the corresponding performance gradient is calculated by analyzing the
sample path of each user queue. Based on the line search along the gradient, the right step
size is obtained. Thus, a better policy can be updated for each user queue. By iteration until
the stopping criterion is met, the optimal cost-benefit resource allocation policy can finally be
achieved.
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Begin
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Meet the stopping criterion?

Achieve the optimal cost-benefit policy

End

Yes

No
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Figure 4: Policy gradient algorithm procedure.

Without loss of generality, suppose that every gradient iteration of each user queue
leads to an improving performance cost, that is,

fμl+1
i (t) +Aμl+1

i (t)gμl
i(t) 
 fμl

i(t) +Aμl
i(t)gμl

i(t), ∀i ∈ {1, . . . ,N(t)}, (3.16)

where l ∈ Z+ represents the iteration index in Algorithm 1. The convergence property of the
policy gradient algorithm is evaluated as follows.

Theorem 3.6 (convergence property). Consider νl(t) = (μl
1(t), . . . , μ

l
N(t)(t)) ∈ Ω(t), l ∈ Z+ is a

performance improving resource allocation policy sequence at each given time t ≥ 0, then for all i ∈
{1, . . . ,N(t)}; one has:

(a)

lim
l→∞

sp
(
fμl+1

i (t) +Aμl+1
i (t)gμ

l
i(t)
)
= 0, (3.17)
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Input: An arbitrary initial policy ν(t) = (μ1(t), . . . , μN(t)(t)) ∈ Ω(t) at given t ≥ 0.
Output: The optimal policy for all user queues ν∗(t) = (μ∗

1(t), . . . , μ
∗
N(t)(t)) ∈ Ω(t).

Procedure:
(1) Choose 0 < ε � 1 as the stopping criterion for all user queues.
(2) for queue i = 1 to N(t) do
(3) repeat
(4) Set iteration index l = 0.
(5) Calculate πμl

i(t) and gμl
i(t) by solving (2.6) and (3.2), respectively.

(6) Determine the gradient such that:

∇η
μl
i(t)

f
= πμl

i(t)∇Pμl
i(t)gμl

i(t) + πμl
i(t)∇fμl

i(t).

(7) Do line search along the gradient, choose the right step size γ li .

(8) Update service rates μl+1
i (t) := μl

i(t) − γ li∇η
μl
i(t)

f
.

(9) Set l := l + 1.
(10) Until sp(fμl+1

i (t) +Aμl+1
i (t) gμl

i(t)) < ε or μl+1
i (t)/∈ Γi(t).

(11) end for

Algorithm 1: Policy gradient algorithm.

(b) That there must exist an optimal cost-benefit resource allocation policy, denoted as ν∗(t) =
(μ∗

1(t), . . . , μ
∗
N(t)(t)) ∈ Ω(t), such that

lim
l→∞

μl
i(t) = μ∗

i (t),

lim
l→∞

η
μl
i(t)

f = η
μ∗
i (t)

f .

(3.18)

Proof. For part (a) Since νl(t) = (μl
1(t), . . . , μ

l
N(t)(t)) ∈ Ω(t), l ∈ Z+, i ∈ {1, . . . ,N(t)} is a

performance improving resource allocation policy sequence, we can conclude that for each

user queue i, {ημl
i(t)

f
} is a monotonously decreasing and bounded performance cost sequence,

with lower bound η
μ∗
i (t)

f
.

By using the continuity of ημi(t)
f , we obtain a service rates μi(t) ∈ Γi(t) for each user

queue i, satisfying η
μi(t)
f

= c ∈ R+ and liml→∞μl
i(t) = μi(t).

Thus, it follows that

lim
l→∞

(
fμl+1

i (t) +Aμl+1
i (t)gμl

i(t)
)
= fμi(t) +Aμi(t)gμi(t) = eη

μi(t)
f , (3.19)

which is equivalent to

lim
l→∞

{(
fμl+1

i (t) +Aμl+1
i (t)gμl

i(t)
)
(k)
}
= η

μi(t)
f , ∀k ∈ Φ. (3.20)
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Recall that

sp
(
fμl+1

i (t) +Aμl+1
i (t)gμl

i(t)
)
= max

k∈Φ

{(
fμl+1

i (t) +Aμl+1
i (t)gμl

i(t)
)
(k)
}

−min
k∈Φ

{(
fμl+1

i (t) +Aμl+1
i (t)gμl

i(t)
)
(k)
}
;

(3.21)

by taking limit as l → ∞, we further have

lim
l→∞

sp
(
fμl+1

i (t) +Aμl+1
i (t)gμl

i(t)
)
= η

μi(t)
f − η

μi(t)
f = 0. (3.22)

For part (b)Note that for all ε > 0, ∃l0 ∈ Z+, such that sp(fμl+1
i (t)+Aμl+1

i (t)gμl
i(t)) < ε,holds

when l > l0.
To show the second relation of the theorem, considering l > l0; it follows that

η
μl+1
i (t)

f = πμl+1
i (t)fμl+1

i (t) = πμl+1
i (t)
(
fμl+1

i (t) +Aμl+1
i (t)gμl

i(t)
)

≤ max
k∈Φ

{(
fμl+1

i (t) +Aμl+1
i (t)gμl

i(t)
)
(k)
}
.

(3.23)

Since in Algorithm 1, μl+1
i (t) is the best choice for μl

i(t) along the gradient by the line
search, we therefore have

η
μ∗
i (t)

f
= πμ∗

i (t)
(
fμ∗

i (t) +Aμ∗
i (t)gμl

i(t)
)
≥ πμ∗

i (t)
(
fμl+1

i (t) +Aμl+1
i (t)gμl

i(t)
)

≥ min
k∈Φ

{(
fμl+1

i (t) +Aμl+1
i (t)gμl

i(t)
)
(k)
}
.

(3.24)

Subtracting (3.23) by (3.24), for ∀l > l0, it follows that

0 < η
μl+1
i (t)

f − η
μ∗
i (t)

f ≤ sp
(
fμl+1

i (t) +Aμl+1
i (t)gμl

i(t)
)
< ε. (3.25)

Thus, it can be regarded that μl+1
i (t) is an ε-optimal service rates, and we can write

liml→∞η
μl+1
i (t)

f
= η

μ∗
i (t)

f
by the arbitrariness of ε.

Finally, from the fundamental fact of the uniqueness principle of limitation theory, we

can conclude that η
μ∗
i (t)

f
= η

μi(t)
f

, which is equivalent to say that μi(t) is an optimal cost-benefit

service rates. This leads immediately to the results that liml→∞μl
i(t) = μ∗

i (t) and liml→∞η
μl
i(t)

f
=

η
μ∗
i (t)

f
.

Remark 3.7. By proving the convergence property of the policy gradient algorithm, the
cost-benefit resource allocation optimization approach for the M/G/1/K user queues has
been proposed. In a broad sense, the service time allocated to each user queue i has
been considered as a general distribution Gi. However, the mathematical expression of
performance gradient is not unique according to different application scenarios.
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3.3. Performance Gradient Analysis of Application Scenarios

To make the analysis more tractable, we now present two application scenarios for which the
performance gradient can be explicitly derived.

Deterministic inter-service time.

This is the simplest practical case where inter-service times for each user queue i are
deterministic, that is, M/D/1/K. Without loss of generality, we denote each inter-service
time as a constant 1/μi. Consider now that ρi = λi/μi < 1. Let Pμi be the transfer matrix of the
embedded Markov chain. In this scenario, hence, we have that for all k ∈ Φ, the element ai

k

of the transfer matrix is equal to,

ai
k = e−ρi

ρki
k!

, (3.26)

implying that the element of steady-state probability vector πμi(k), k ∈ Φ satisfies

πμi(k) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1 − ρi, if k = 0,
(
1 − ρi

)
(eρi − 1), if k = 1,

(
1 − ρi

) k∑

j=1

(−1)k−je−jρi
[(

jρi
)k−j

(
k − j

)
!
+

(
jρi
)k−j−1

(
k − j − 1

)
!

]

, otherwise.

(3.27)

According to (3.26), hence, we have

∂ai
k

∂μi
=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λi

μ2
i

e−ρi =
ρi
μi
ai
k
, if k = 0,

λie
−ρi

μ2
i

[
ρki
k!

− ρ
k−1
i

k − 1!

]

=
ρi
μi

(
ai
k
− ai

k−1
)
, otherwise.

(3.28)

Corollary 3.8. Considering the ith user queue in the steady state, from Theorem 3.5, the performance
gradient with respect to the service rates μi for the case of M/D/1/K is

∂η
μi

f

∂μi
=

ρi
μi

K∑

k=0

[πμi(k) − πμi(k − 1)]gμi(k) + πμi
∂f

∂μi
, (3.29)

where πμi = (πμi(0), . . . , πμi(K)), gμi = (gμi(0), . . . , gμi(K)), and πμi(−1) = 0.

Exponential inter-service time.

Having considered the straightforward scenario of deterministic service rates, we will
now investigate the M/M/1/K case where the inter-service times are independent and
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exponentially distributed, that is, memoryless. For ease of notation, we show results using
the same parameters as in the first scenario. Similarly, in this case, we derive the element
ai
k
, for all k ∈ Φ of the transfer matrix as follows:

ai
k =

ρki
(
1 + ρi

)k+1 ; (3.30)

it suffices to show that,

πμi(k) =
(
1 − ρi

)
ρki ,

∂ai
k

∂μi
=

ρi − k

μi

(
1 + ρi

)ai
k.

(3.31)

Corollary 3.9. Considering the ith user queue in the steadystate, from Theorem 3.5, the performance
gradient with respect to the service rates μi for the case of M/M/1/K is

∂η
μi

f

∂μi
= πμi

∂f

∂μi
−

K∑

k=0

bik gμi(k), (3.32)

where

bik = πi(0)
k − ρi
1 + ρi

ai
k +

k∑

j=0

πi(j + 1
)k − j − ρi

1 + ρi
ai
k−j . (3.33)

Remark 3.10. Note that the essential feature behind the cost-benefit resource allocation is the
performance gradient corresponding to the service rates. Based on this, the policy gradient
algorithm for each user queue is executed, until the performance cost of network system is
minimized.

4. Performance Evaluation

In this section, we investigate the performance of the M/G/1-type queueing system. Before
proceeding, we first present the simulation model, namely, the sample path-based simulation
scheme.

4.1. Simulation Model

To evaluate the performance of Algorithm 1 for each user queue i, it is imperative to calculate
both the steady-state probability vector πμl

i(t) and the performance potential gμl
i(t) with any

feasible service rates μl
i(t) in every iteration l = 0, 1, 2, . . . .
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According to the Borel property [24], the steady-state probability of state k in the
embedded Markov chain Y i

m has an unbiased estimate as follows:

π̂μi(k) =
1
ζ

ζ−1∑

n=0

Ik
(
Y i
m

)
∀k ∈ Φ, (4.1)

where

Ik
(
Y i
m

)
�

⎧
⎨

⎩

1, Y i
m = k,

0, Y i
m /= k,

(4.2)

and ζ denotes the transfer number of the queue states and is set to 10000 in this
simulation. Once the steady-state probability vector has been estimated, the estimation of

the performance cost η̂μi

f
for the user queue can be derived by η̂

μi

f
= π̂μifμi .

However, solving the Poisson equation in (3.2) for achieving gμl
i(t) leads to significant

computational complexity, which is impractical for the online cost-benefit optimization.
Therefore, a sample path-based estimation is very essential. Note that the performance
potential can be estimated as

ĝμi = −D̂μi

f
π̂μi

T
, (4.3)

where D̂μi

f
= [d̂μi

kj
][(K+1)×(K+1)], k, j ∈ Φ is called the realization matrix, and

d̂
μi

kj
� E

⎧
⎨

⎩

L{k|j}−1∑

n=0

[
fi
(
Y i
m, μi

)
− η̂

μi

f

]
| Y i

0 = j

⎫
⎬

⎭
, (4.4)

the first passage time L{k | j} from state j to state k, is expressed as L{k | j} � inf{n ≥ 0 :
Y i
m = k | Y i

0 = j}.
Thus by Theorem 3.5, the gradient corresponding to the service rates μl

i(t) allocated in
the lth iteration for the user queue i can be efficiently estimated by

∇η̂
μl
i(t)

f
= π̂μl

i(t)∇Pμl
i(t)ĝμl

i(t) + π̂μl
i(t)∇fμl

i(t). (4.5)

4.2. Numerical Results

The following describes numerical examples to illustrate the analytical results derived in the
previous sections. Consider a given time t0 > 0 and that there are four active user queues
in the network element. Here, we limit our experimental tests to the simulation parameters
values that are depicted in Table 2. Note that the value of λi(t0), μmin

i (t0), and μmax
i (t0) can be

considered as packet numbers transmitted per unit time.
Besides, the backlog capacity of every user queue is set to 100 packets. The

performance cost function of the sharing user queues is considered as fi(k, μi) = c1k+c2μi, i =
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Table 2: Simulation Parameters.

Parameters (i = 1, 2, 3, 4) λi(t0) μmin
i (t0) φi(t0) μmax

i (t0)

User queue 1 15 16 0.17 34.7
User queue 2 20 21 0.22 45.2
User queue 3 25 26 0.28 56.8
User queue 4 30 31 0.33 67.3

Table 3: Optimal resource allocation policy.

Index User queue 1 User queue 2 User queue 3 User queue 4
Optimal service rates 32.3571 37.8203 39.4246 40.6496
Optimal performance cost 45.3377 50.1015 55.8561 64.9322
Iterations 8 9 14 11

1, 2, 3, 4, k ∈ Φ, where c1, c2 > 0 are constants. In this experiment, they are set to 80 and
1, respectively. Moreover, the stopping criterion ε in Algorithm 1 is set to 0.001, and the
link service capacity Cι is set to 200 packets per unit time. By choosing the initial resource
allocation policy as the minimum service rates for all user queues, the simulation results are
described in Table 3. Finally, the iteration processes of the four user queues are shown in
Figure 5.

Based on the observation on Figure 5, we can conclude the following.

(i) Given the the stopping criterion ε = 0.001 and each feasible region Γi(t0), i ∈
{1, . . . ,N(t0)}, all iterations for user queues can converge within 15 steps.

(ii) During the algorithm iterative process, the corresponding performance cost has
been reduced by 56.3%, 55.7%, 52.3%, and 44.5%, respectively for each user queue.

(iii) The optimal service rates for each user queue (e.g., μ∗
1(t0)) may not be achieved on

the boundary (i.e., μmin
1 (t0) or μmax

1 (t0)) of the feasible region shown in Table 2.

Remark 4.1. Note that the convergence rate of the proposed algorithm is closely related with
the estimation of the performance gradients. The convergence rate of the algorithm will
grow faster with a more accurate estimation. More precisely, according to Theorem 3.5, the
performance gradient can be calculated via the steady-state probability vector πμl

i(t) and the
performance potential gμl

i(t) in every iteration l ∈ Z+. Thus, we can increase the number of
queue states’ transfers, thereby achieving the estimation accuracy of steady-state probability
vector and performance potential, or equivalently, performance gradient. In addition, the
reason for the location of the optimal service rates is that there exists a trade-off between
the backlog-related and service rate-related performance cost, which can be adjusted by the
definition of the performance cost function.

5. Conclusions

In this paper, performance optimization problems of communication networks with
stochastic characteristics are studied. To describe this complex dynamic process of system
behavior, all user queues in each network element are represented by multiple concurrent
M/G/1-type Markov processes such that system model is proposed. Furthermore, an
efficient algorithm is developed for the optimization of system performance cost by using
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Figure 5: The iteration processes of the four user queues.

sensitivity analysis approach. During every iteration, the proposed algorithm estimates the
derivative of the performance measure and the performance potential by analyzing a single
sample path of each user queue, which implies its computational efficiency. The asymptotical
convergence analysis, combined with the numerical examples, paves the way for designing
cost-aware computer communications systems.
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