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We used a Hierarchical Neuro-Fuzzy Class Method based on binary space partitioning (NFHB-
Class Method) for macroscopic rock texture classification. The relevance of this study is in helping
Geologists in the diagnosis and planning of oil reservoir exploration. The proposed method is
capable of generating its own decision structure, with automatic extraction of fuzzy rules. These
rules are linguistically interpretable, thus explaining the obtained data structure. The presented
image classification for macroscopic rocks is based on texture descriptors, such as spatial variation
coefficient, Hurst coefficient, entropy, and cooccurrence matrix. Four rock classes have been
evaluated by the NFHB-Class Method: gneiss (two subclasses), basalt (four subclasses), diabase
(five subclasses), and rhyolite (five subclasses). These four rock classes are of great interest in
the evaluation of oil boreholes, which is considered a complex task by geologists. We present a
computer method to solve this problem. In order to evaluate system performance, we used 50 RGB
images for each rock classes and subclasses, thus producing a total of 800 images. For all rock
classes, the NFHB-Class Method achieved a percentage of correct hits over 73%. The proposed
method converged for all tests presented in the case study.

1. Introduction

Oil is an essential energy resource for industrial production. It can be found in a variety
of geological environments. The exploitation of oil is a large-scale activity, in which the
acquisition, distribution and use of expert knowledge are critical to decision making. Two
sets of data are of fundamental importance in the exploitation of a new oilfield: the oil
reservoir geometry and the description of the type of porous rock that holds the oil. When
analyzing the oil reservoir geometry, it is possible to identify the amount of oil in the
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reservoir. The second set of data consists in describing the porous rock that holds the
oil, that is, the reservoir rock. The quality of a reservoir is determined by the particular
characteristics of its rocks, such as the minerals that form it, the volume and shape of
pores (spaces that store fluids within the rock), the connections between the pores and
the physical-chemical processes that may have modified these characteristics. The study
of reservoir rocks is based on a systematic description of rock samples collected from
oil exploration boreholes. Petrography is an activity performed in the laboratory, which
incorporates the results of macroscopic and microscopic rock analyses. In macroscopic
analysis, rock samples consist of cylindrical pieces cleaved by drill bit, extracting “witness”
samples. Using these samples, slices are withdrawn and prepared in thin sections (0.03 mm),
which are then, in turn, analyzed with the use of optical microscopes of polarized light. In
macroscopic analyses, several physical characteristics, such as color, structure, texture, grain
size, mineral orientation and fossil content, when available, are described. The existence
of a large number of classes and subclasses makes the task of rock classification difficult,
requiring extensive training, since it depends on the identification of features based on
images.

This paper introduces a Neuro-Fuzzy Hierarchical Class model based on binary space
partitioning for rock texture image automatic classification, called NFHB-Class method. The
system uses the following features: spatial variation coefficient, Hurst coefficient, entropy
and cooccurrence matrix. Four rock types have been evaluated by the NFHB-Class method,
namely: gneiss (two subclasses), basalt (four subclasses), diabase (five subclasses), and
rhyolite (five subclasses). These four rock types are of great interest to evaluate oil boreholes,
which is considered by geologists to be a complex task. In the present study, a computer
method to solve this problem is presented.

2. NFHB-Class Method

The NFHB-Class [1] method is an extension of the NFHB Inverted method [2, 3] used in
data classification. The main difference between the NFHB Inverted method and NFHB-
Class method is the construction of system structure. In NFHB Inverted method, the neuro-
fuzzy structure is created by NFHB method [4] and the pattern classification system is then
formed. On the other hand, the NFHB-Class Method is capable of generating its own pattern
classification structure, without the use of NFHB method.

2.1. Basic NFHB-Class Cell

A basic NFHB-Class cell is a mini neuro-fuzzy system that performs a fuzzy binary
partitioning in a given area, according to the relevance of functions described by (2.1) and
Figure 1(a). The NFHB-Class cell generates two precise outputs (crisp) after a defuzzification
process. Figure 1(b) shows the basic NFHB-Class cell representation and Figure 1(c)
illustrates it in detail

μ = sig[a(xi − b)],

ρ = 1 − μ.
(2.1)
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Figure 1: (a) Example of the pertinence functions of the NFHB-Class cell. (b) NFHB-Class cell schematic
symbol. (c) NFHB-Class cell.

The outputs (crisp) in an NFHB-Class cell are given by (2.2)

y1 =
β ∗ ρ(x)

ρ(x) + μ(x)
,

y2 =
β ∗ μ(x)

ρ(x) + μ(x)
,

(2.2)

where β can be defined by one of the two scenarios below.

(i) The first cell input: in this case β = 1. The value “1” in the first cell input represents
the entire input space, that is, the entire discussion universe of the variable xi that
is being used as an input cell.

(ii) The output of a previous level: in this case β = yi, where yi represents one of two
outputs of a generic cell “j”, whose value is also calculated by (2.2).

In NFHB-Class basic cell, the high-pertinence function (μ) is implemented by a
sigmoid function and the low-pertinence function (ρ) is implemented as its complement
[1 − μ(x)]. The complement used leads to a simplification of the defuzzification procedure
performed by (2.2), because the sum given by (2.3) (below) is equal to 1 for any “x” value

ρ(x) + μ(x) = 1. (2.3)
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Figure 2: (a) NFHB-Class Architecture. (b) Input space partitioning of NFHB-Class Model.

Therefore, the output equations, given by (2.2), are simplified to:

y1 = β ∗ ρ(x),

y2 = β ∗ μ(x),
(2.4)

or

yi = β ∗ αi(x), (2.5)

where αi’s are the firing levels of each rule (partition) and are given by α1 = ρ and α2 = μ.

2.2. NFHB-Class Architecture

Figure 2(a) shows an example of NFHB-Class architecture, obtained in the training system
and applied to a database that has three distinct classes; while its corresponding partition is
illustrated in Figure 2(b). The structure has been created automatically without the need of
using NFHB method in the training stage.

In NFHB-Class architecture, the system has several outputs which are connected to T-
conorm cells that define the classes (Figure 2(a)). The system output (class 1, class 2 or class
3) with the highest value defines the class to which the pattern belongs.



Mathematical Problems in Engineering 5

The outputs of the leaf-cells are listed below:

y1 = ρ0 · ρ1,

y2 = ρ0 · μ1 · ρ12,

y3 = ρ0 · μ1 · μ12,

y4 = μ0 · ρ2,

y5 = μ0 · μ2.

(2.6)

After calculating the output of each leaf cell, the connection between these cells to the
T-conorm neurons is performed, and then the final output of the pattern classifier is obtained.
Each T-conorm neuron is associated with a specific class, as can be seen in the example in
Figure 2(a), where there are three distinct classes, and consequently, three T-conorm neurons.

The connections between the leaf-cells with the T-conorm neurons are made, initially,
by connecting all the leaf-cells with all the T-conorm neurons, according to the number of
classes in which the database is structured. After this connection, it is necessary to establish
weights for these connections (arcs). For determining the weight allocation, we used the least
squares method, applying Gauss-Seidel iterative method [5].

Once we defined the strategy of how the leaf-cells were connected to T-conorm
neurons and their corresponding weight links, it was necessary to define which T-conorm
operators would be used to obtain the final output of the NFHB-Class. All the outputs of
the leaf-cells were connected to all T-conorm neurons, as shown in Figure 2(a). Each of these
outputs is multiplied by the weight of its corresponding connection with T-conorm neurons.
The next step is then to define how all of these T-conorm neurons input data derived from
the leaf-cells should be treated.

In the example of Figure 2(a), the outputs of three T-conorm neurons are calculated
according to (2.7)

y1 ∗w11 ⊕ y2 ∗w21 ⊕ y3 ∗w31 ⊕ y4 ∗w41 ⊕ y5 ∗w51,

y1 ∗w12 ⊕ y2 ∗w22 ⊕ y3 ∗w32 ⊕ y4 ∗w42 ⊕ y5 ∗w52,

y1 ∗w13 ⊕ y2 ∗w23 ⊕ y3 ∗w33 ⊕ y4 ∗w43 ⊕ y5 ∗w53,

(2.7)

where:

(i) y1, y2, y3, y4, and y5 are the outputs of the leaf-cells;

(ii) W11, W12,W13,W21, W22,W23,W31, W32,W33,W41, W42,W43,W51, W52, and W53 are
the weights of the link between the leaf cell and the T-conorm neuron;

(iii) ⊕ is the T-conorm operator used for processing the neuron output.

In this paper, the limited-sum T-conorm operator [6] has been used. This operator is
the most appropriate in this case, since it considers all inputs in the output calculation. It
is worth noting that another T-conorm operator that is very popular in the literature, the
max operator, only considers the maximum membership value, thus ignoring the membership
values of the input data.
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Figure 3: Learning algorithm of NFHB-Class Model.

The final output obtained in the NFHB-Class Method is determined by the highest
output obtained among all the T-conorm neurons, thus indicating the class to which the input
pattern belongs.

2.3. Learning Algorithm

In neuro-fuzzy literature, the learning process is generally divided in two spheres: (1)
structure identification and (2) parameter adjustments. The NFHB-Class method follows
the same process. However, the NFHB-Class method performs both learning tasks
simultaneously. The learning algorithm of this method follows nine steps, as illustrated in
Figure 3.

Learning steps.

(1) An initial bipartition is created, dividing the input space into two fuzzy sets—high
and low—for the input variable x. In this step, the first NFHB-Class cell is created,
which is called a root cell.

(2) The b parameter (the sigmoid inflexion point, Figure 1(a)) is initialized. The
other sigmoid parameter a is heuristically initialized. Equation (2.8) illustrate the
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initialization process:

a =
2

(LimS − Lim I)
,

b =
(LimS + Lim I)

2
,

(2.8)

where Lim I and LimS are the lower and upper limits of the cell’s input variable.

(3) In this step, the weights of the arcs that connect the cells to T-conorm neurons
are adjusted by ordinary least squares method (as described in Section 2.2). After
calculating the weights, the value of each T-conorm output neuron of the NFHB-
Class is computed.

(4) The total system error is then calculated for the entire training set, according to the
following root-mean-square (rms) error expression, (2.9):

ERMS =

√√√√ 1
L

L∑
n=1

#classes∑
c=1

(
ync − ydnc

)2
, (2.9)

where L = number of patterns in the training set; ync is the T-conorm neuron output,
which represents the “c” class of the index “n” pattern; ydnc is the desired T-conorm
neuron output which represents the “c” class of the index “n” pattern.
For example, we can consider a database with 3 different classes (Class 1, Class 2
and Class 3). There are also “j” and “ k” database index belonging to Class 2 and 3,
respectively. Thus, we have the following desired outputs to the pattern “j” given
by: ydj1 = 0, ydj2 = 1, ydj3 = 0, for the pattern k, they are given by: ydk1 = 0; ydk2 = 0,

yd
k3 = 1. Thus, the system error considering these two patterns (index “j” and “ k”)

is given by (2.10):

ERMS

=

√
1
2

[(
yj1−ydj1

)2
+
(
yj2−ydj2

)2
+
(
yj3−ydj3

)2
+
(
yk1−ydk1

)2
+
(
yk2−ydk2

)2
+
(
yk3−ydk3

)2
].

(2.10)

In order to calculate the total system error, we generalize the error for all patterns
in the database, according to (2.9). If the error is below the minimum desired, then
the learning process is finished. Otherwise, the learning process continues in step 5.

(5) In this step, the fuzzy weight adjustments can be computed with two different
algorithms.

(a) Maintaining the parameters “a” and “b” from the previous pertinence
functions without any change. In this case, fixed partitioning is used.

(b) Using a “Descending Gradient” method to adjust the parameters “a” and “b”,
which corresponds to the pertinence functions of the antecedent. In this case,
an adaptive partitioning is conducted.
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(6) Each bipartition is evaluated regarding its contribution to the total rms error,
and also in terms of the acceptable minimum error. Each bipartition with an
unacceptable error is separated. The evaluation of the error generated for the data
set that falls on the partitioning ij, for example, is calculated by (2.11)

E
ij
rms =

√√√√ 1
L

L∑
n=1

αni α
n
ij

#classes∑
c=1

(
ync − ydnc

)2
, (2.11)

where αni and αnij are the rules’ firing levels for pattern “n”.

(7) In order to prevent the system’s structure from growing indefinitely, a dimension-
less parameter is created and named decomposition rate (δ). During the learning
process, the decomposition rate is constantly compared with the population density
of patterns that fall in a specific bipartition. When the population density of patterns
(the rate between the number of patterns in a bipartition and the total number
of patterns) falls below the decomposition rate, this bipartition cannot be further
partitioned, thus limiting the structure. Therefore, a very low value for δ can result
in a very big structure, thus compromising the generalization capability. On the
other hand, if a large value is chosen, the structure might be too small to learn the
patterns with the desired accuracy.

(8) This step performs the decomposition of the separate partitions. For each
bipartition a detached decomposition process is performed, consisting of the
following process: it allocates a new node (new cell) in the BSP structure for
the separate BSP bipartition (it is divided into two). Thus, two new pertinence
functions are generated; which will constitute the two newly created partitions.
Figure 4 presents a graphic representation of this process.

(9) Go back to step “3” to continue the learning process.

2.4. Strategies for Attributes Selection

In the area of pattern classification, it is important to define the goals and to select, from
the available database, which characteristics will be used. These features are the attributes
considered relevant in the pursuit of significant goals.

In the case of rock classification, there is a large number of relevant variables
available, such as the Hurst coefficient for grayscale and RGB channels, grayscale and RGB
channels spatial variation coefficient, in addition to the descriptors used to define texture
characteristics obtained in image cooccurrence matrices. In general, we choose the most
representative collection of variables, the so-called features.

The correct attribute selection strategy is that which avoids unnecessary partitioning,
resulting in more compact BSP tree structures, consequently resulting in better generalization,
fewer rules and greater interpretation degrees [2]. In this study, two methods for attribute
selection have been tested: the Jang algorithm [7] which showed better performance, and
the entropy method [8]. In addition to those methods, there are several studies using other
techniques for feature selection, such as principal components analysis [9–12], machine
learning [13, 14]; hierarchical clustering [15, 16] and genetic algorithms [17–19].



Mathematical Problems in Engineering 9

1

2

Decompose

1 2

1
2

21

11 12

12

Figure 4: BSP decomposition.

Considering the Jang algorithm, two strategies for selection—fixed and adaptive—
have been proposed to deal with the selection problem, that is, which input variables should
be applied to partitioning inputs of each NFHB-Class cell.

In the fixed selection sets strategy, where the order of the attributes is determined
by Jang algorithm, during the NFHB-Class Method learning process and architecture
construction, each of these features is chosen and used as input for each level of the BSP tree.
The same input (attribute) is used for all nodes in the same level. This strategy generates
unnecessary partitioning due to the fact that all nodes at the same level are forced to use
the same fixed input, which is not always the best characteristic for this node. One of the
advantages of this strategy is that the computational cost is very small, since the feature
selection is performed only once, before the learning process. The result obtained is very
competitive. In many cases it results in an interesting alternative, considering time and
performance.

In contrast to the methodology described above, the adaptive selection strategy
chooses the best input feature (attribute) for each tree node, regardless of the level where
the node is. For each node the best input is chosen using only the subset associated with
this node. This strategy generates more compact neuro-fuzzy BSP structures according to
the specialization of each node, resulting in better generalization performance. However, the
computational cost is higher, since the selection algorithm must be run for each new node of
NFHB-Class Model.

2.5. Fuzzy Rules Extraction

The NFHB-Class Method is capable of generating interpretable rules with the purpose of
extracting information from a specific database. An example of the rules extracted in this
model is: “If x is high and y is small and w is hot, then class is k”.

Figure 6 shows an example of NFHB-Class method. In this approach, each partition of
the input space (leaf node) will have an associated rule. The elements of each partitioning are
associated to all existing k classes, with different membership levels.
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As demonstrated by Gonçalves et al. [3], the rule extracting process consists of the
following steps:

(i) routing on the NFHB-Class tree, calculating the firing level of each rule in each
partitioning.

(ii) evaluation of the rules with the use of fuzzy accuracy and coverage.

Fuzzy Accuracy

The accuracy of a rule is a measure of how well it applies to the data. In order to
determine how suitable a particular fuzzy rule describes a specific class k, the fuzzy accuracy
measurement is presented in (2.12)

Fuzzy Accuracyik =

∑Pk
j=1 α

i
k,j∑Pi

j=1 α
i
j

, (2.12)

where Fuzzy Accuracyik is the rule accuracy for class k in partition i; αik,j is the membership

level of pattern j for class k in partition i; αij is the membership level of pattern j in partition
i (regardless of the class); Pk is the total number of class k patterns; Pi is the total number of
patterns in partition i.

If the database has different numbers of patterns per class, the correction factor Wi
k

must be applied in order to balance the nonuniform pattern distribution. Hence, the correct
fuzzy accuracy Fuzzy∗ Accuracyik is calculated by (2.13)

Fuzzy∗ Accuracyik = Fuzzy Accuracyik ·W
i
k,

Wi
k =

1

Pk
∑Nc

j=1

(
Fuzzy Accuracyij/Pj

) , (2.13)

where is Wi
k

is correction factor for accuracy of class k in partition i; Nc is total number of
classes; Pj is number of patterns of class j; Pk is number of patterns of class k.

The accuracy sum related to all classes in a specific partition is always equal to 1, since
each node’s membership function is complementary. Besides, each pattern’s level of presence,
in each partition, is calculated by the intersection of all firing levels in each node, using the
product operator.

Fuzzy Coverage

Fuzzy coverage provides a measure of how comprehensive a rule is in relation to the total
number of patterns in the base rule, that is, it measures “how many” patterns are affected by
the available rule. The fuzzy coverage definition is given by (2.14)

Fuzzyi Coverage =

∑Pi
j=1 α

i
j

P
, (2.14)
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where Fuzzyi Coverage = partition i fuzzy coverage; P = total number of patterns in the
database; αij is the membership level of the j pattern in the i partition; and Pi is the number of
patterns in i partition.

Due to the aforementioned features (complementary membership functions and
product operator); all rule composition covers the total number of patterns. In other words,
the fuzzy coverage sum of all partitions is equal to 1.

3. Texture

According to Turceyan and Jain [20], image texture is a combination of similar patterns with
a regular frequency. It is an attribute that represents a spatial pixel arrangement in a region
[21]. Jain [22] defines texture as a basic pattern repetition in space. Conci et al. [23] refer
to the texture as a visual pattern that has some homogeneity properties that does not result
simply in a color or intensity; it can be defined as the visual appearance of a surface. Although
there is no precise definition for texture, it is easily perceived by human vision due to its
range of visual patterns composed by subpatterns, which have underlining properties, such
as uniformity, density, roughness, regularity, intensity [24].

3.1. Rock Texture—Related Works

Lepistö et al. [25] have shown a classification method based on structural and spectral
characteristics of rocks. In order to extract features that could identify the texture, a spectral
feature of a set of color parameters was used, and in order to define the structural aspect
they used cooccurrence matrices [26]. For rock classification, the nonhomogeneous textures
were divided into blocks. Lepistö et al. [27] applied Gabor filters in rock color images
for classification. Autio et al. [28] used cooccurrence matrices with Hough transform for
rock classification. Starkey and Samantary [29] used morphology and color parameters
to distinguish rock images. Genetic programming techniques with edge detectors were
also used by Ross et al. [30] and by Starkey and Samantary [29] in petrography. Genetic
programming with decision trees was used for grain segmentation by Ross et al. [31].
Thompson et al. [32] used neural networks for mineral classification. Fueten and Manson
[33] used neural networks for detecting edges in petrography color images in order to
discriminate the grains.

In this work, the following has been used as descriptors of texture: Spatial Variation
Coefficient—SVC—[23], Hurst coefficient [34], entropy [35] and cooccurrence matrices [24,
36].

4. Case Study

To evaluate the system performance we used 50 RGB images (401 × 401) for each rock
class and subclass, thus producing a total of 800 images. The rock classes and subclasses
which compose the image database are: gneiss (two subclasses), basalt (four subclasses),
diabase (five subclasses) and rhyolite (five subclasses). The images which have been analysed
were of natural rocks, without any kind of treatment (polishing). Figure 5 shows this
classification.
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porfiritic rhyolite

Porfiritic basalt

Figure 5: Rocks samples.

From each image we extracted the following: Hurst coefficient for gray and color
images (a coefficient for each RGB channel); spatial variation coefficient (gray and color);
entropy and cooccurrence matrix. From the 160 cooccurrence matrices, we calculated the
average matrices in the 0◦, 45◦, 90◦, and 135◦ directions for each distance, resulting in 40
matrices for the 40 distances. For the analysis of these 40 matrices, we used the following
descriptors: contrast, homogeneity, energy, entropy and correlation. We then generated five
curves for each image, and both the highest value and the area were used as attributes to
determine the texture of the images. Table 1 shows all the attributes.
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Table 1: Attributes used to determine the image texture.

Attribute
Number

Description

1

Hurst coefficient for

gray scale
2 Red channel
3 Green channel
4 Blue channel

5

SVC for

gray scale
6 Red channel
7 Green channel
8 Blue channel

9

Entropy of the image for

gray scale
10 Red Channel
11 Green Channel
12 Blue channel

13 Highest value of the contrast

Descriptor found in the cooccurrence matrix

14 Area of the contrast
15 Highest value of the correlation
16 Area of the correlation
17 Highest value of the energy
18 Area of the energy
19 Highest value of the entropy

20 Value of the distance where was found
the highest value of the entropy

21 Area of the entropy
22 Highest value of the homogeneity
23 Area of the homogeneity

The training models stage is performed in accordance with the following steps.

(1) Initially, only the subclass classification of gneiss, basalt, diabase, and rhyolite rocks
is made. With this, the following databases are created:

(a) a database with just 2 gneiss rock subclasses: granite gneiss and leucocratic
gneiss,

(b) a database with just 4 basalt rock subclasses: aphanitic aphyric basalt, oxidized
aphanitic aphyric basalt, porfiritic basalt and amygdaloid porfiritic basalt,

(c) a database with just 5 diabase rock subclasses: altered amygdaloid diabase,
equigranular diabase, porfiritic diabase, altered porfiritic diabase and amyg-
daloid porfiritic diabase,

(d) a database with just 5 rhyolite rock subclasses: altered rhyolite, amygdaloid
rhyolite, porfiritic rhyolite, amygdaloid porfiritic rhyolite and venulated
amygdaloid porfiritic rhyolite.

(2) Then the HNFB-Class Method is tested for the rock macro classification. In this
process, we create:
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(a) a database with just 2 rock macro classes: gneiss and basalt, without
considering subclasses,

(b) a database with just 2 rock macro classes: diabase and rhyolite, without
considering subclasses,

(c) a database with just 3 rock macro classes: basalt, diabase and rhyolite, without
considering subclasses,

(d) a database with just 3 rock macro classes: gneiss, basalt, diabase, and rhyolite,
without considering subclasses.

In all tests, we use 50% of the database to train the HNFB-Class Method and 50% to
validate it. Tables 2 and 6 summarize the performance of HNFB-Class Method with selection
strategies: fixed (NFHB-Class1) and adaptive (NFHB-Class2), for subclass classification and
macro classification, respectively.

For subclass classification, the databases are organized as follows:

(i) index 1 (Gneiss1, Basalt1, Diabase1, Rhyolite1): a database with only gray scale
coefficients,

(ii) index 2 (Gneiss2, Basalt2, Diabase2, Rhyolite2): a database with only RGB channels
coefficients,

(iii) index 3 (Gneiss3, Basalt3, Diabase3, Rhyolite3): a database including RGB and
grayscale coefficients,

(iv) index 4 (Gneiss4, Basalt4, Diabase4, Rhyolite4): a database with the attributes
extracted from cooccurrence matrices.

For macro classification, the databases are organized as follows:

(i) gneiss and basalt1; diabase and rhyolite1; basalt, diabase and rhyolite1; gneiss,
basalt, diabase, and rhyolite1: database containing only gray scale coefficients,

(ii) gneiss and basalt2; diabase and rhyolite2; basalt, diabase, and rhyolite2; gneiss,
basalt, diabase, and rhyolite2: database containing only RGB channels coefficients,

(iii) gneiss and basalt3: diabase and rhyolite3; basalt, diabase, and rhyolite3; gneiss,
basalt, diabase, and rhyolite3: database including RGB and grayscale coefficients.

When using the attributes extracted from the cooccurrence matrix, poorer results are
obtained than with the use of other attributes. Therefore, they have not been used in tests of
macro classification of rocks.

With the intent of comparing with NFHB-Class Method, some backpropagation
neural networks have been used. Tables 3 and 7 show the configurations used for subclass
classification and macro classification, respectively. Tables 4 and 8 present the performance of
neural networks for subclass classification and macro classification respectively.

Tables 5 and 9 summarize the performance of NFHB-Class Method with selection
strategies: fixed (NFHB-Class1) and adaptive (NFHB-Class2), for subclass classification and
macro classification, respectively. These tables are based on the largest percentage of the
overall set validation for each method.

As observed in Table 5, the best results in rock classification have been obtained with
the NFHB-Class Methods. It is also noted that NFHB-Class2 obtained a lower number of rules
than NFHB-Class1 models.
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Table 2: Classification results obtained with the NFHB-Class1 (fixed selection strategy) and NFHB-Class2

(adaptive selection strategy) methods, for subclass classification of gneiss, basalt, diabase, and rhyolite
rocks.

Model Database
test

Training set
correct

percentage

Validation
set correct
percentage

Rules
generated
(number)

Decomposition
Rate

Attributes
used order

NFHB-Class1
Gneiss1 98% 96% 32 0.03 5, 9, 1

NFHB-Class2 98% 96% 17 0.08

NFHB-Class1
Gneiss2 100% 98% 52 0.01 8, 12, 7, 6, 10,

11, 3, 2, 4
NFHB-Class2 96% 94% 12 0.1

NFHB-Class1
Gneiss3 94% 96% 52 0.01 8, 12, 7, 5, 6,

10, 9, 11, 3
NFHB-Class2 100% 98% 54 0.008

NFHB-Class1
Gneiss4 100% 98% 81 0.01 13, 23, 19, 22,

21, 14, 17, 18,
15, 20, 16NFHB-Class2 98% 96% 9 0.1

NFHB-Class1
Basalt1 79% 59% 73 0.006 1, 5, 9

NFHB-Class2 90% 65% 118 0.0009

NFHB-Class1
Basalt2 95% 87% 81 0.006 10, 12, 11, 2, 8,

4, 3, 7, 6
NFHB-Class2 88% 84% 25 0.003

NFHB-Class1
Basalt3 79% 83% 96 0.004 2, 8, 9, 12, 11,

6, 5, 3, 1, 10, 7,
4NFHB-Class2 98% 81% 61 0.009

NFHB-Class1
Basalt4 87% 74% 81 0.01 14, 15, 13, 16,

17, 18, 19, 20,
22, 21, 23NFHB-Class2 91% 75% 41 0.006

NFHB-Class1
Diabase1 65.6% 56% 26 0.03 1, 5, 9

NFHB-Class2 90.4% 56.8% 87 0.009

NFHB-Class1
Diabase2 81.6% 71.2% 110 0.006 4, 7, 6, 3, 8, 2,

12, 10, 11
NFHB-Class2 92% 73.6% 83 0.002

NFHB-Class1
Diabase3 89.6% 70.4% 62 0.003 4, 7, 6, 5, 3, 1,

8, 2, 9, 10, 11,
12NFHB-Class2 85.6% 69.6% 63 0.0003

NFHB-Class1
Diabase4 70.4% 67.2% 64 0.008 19, 21, 16, 17,

22, 14, 15, 23,
18, 20, 13NFHB-Class2 75.2% 67.2% 35 0.009

NFHB-Class1
Rhyolite1 68.8% 58.4% 97 0.008 5, 9, 1

NFHB-Class2 88% 60.8% 133 0.005

NFHB-Class1
Rhyolite2 88% 75.2% 68 0.008 7, 8, 6, 11, 10,

4, 12, 2, 3
NFHB-Class2 96% 78.4% 56 0.007

NFHB-Class1
Rhyolite3 93.6% 78.4% 225 0.002 7, 8, 5, 6, 11,

10, 4, 9, 12, 2,
3, 1NFHB-Class2 100% 76.8% 108 0.007

NFHB-Class1
Rhyolite4 76% 67.2% 85 0.009 7, 8, 5, 6, 11,

10, 4, 9, 12, 2,
3, 1NFHB-Class2 64.8% 69.6% 17 0.01
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Table 3: Neural network Configurations used to classify the following rock subclasses: gneiss, basalt,
diabase, and rhyolite.

Rock Database
test

Number of
layers

Number of
neurons in
input layer

Number of
neurons in first

hidden layer

Number of
neurons in

second hidden
layer

Number of
neurons in

output layer

Gneiss

Gneiss1

3

3 5

— 2Gneiss2 9 9
Gneiss3 12 9
Gneiss4 11 9

Basalt

Basalt1

4

3 10

10 4Basalt2 9 10
Basalt3 12 10
Basalt4 11 10

Diabase

Diabase1

4

3 20 15

5Diabase2 9 20 15
Diabase3 12 20 25
Diabase4 11 20 15

Rhyolite

Rhyolite1

4

3 20

15 5Rhyolite2 9 20
Rhyolite3 12 20
Rhyolite4 11 20

Table 4: Neural networks performance in the classification of the following rock subclassess: gneiss, basalt,
diabase, and rhyolite.

Rock Database test Correct percentage of
training set

Correct percentage of
validation set

Gneiss

Gneiss1 96% 92%
Gneiss2 100% 96%
Gneiss3 100% 96%
Gneiss4 100% 96%

Basalt

Basalt1 81% 55%
Basalt2 100% 86%
Basalt3 100% 85%
Basalt4 96% 67%

Diabase

Diabase1 73.6% 51.2%
Diabase2 93.6% 69.6%
Diabase3 97.6% 68%
Diabase4 92% 54.4%

Rhyolite

Rhyolite1 76% 49.6%
Rhyolite2 97.6% 75.2%
Rhyolite3 98.4% 64%
Rhyolite4 88% 59.2%



Mathematical Problems in Engineering 17

Table 5: Best performance obtained by methods: NFHB-Class1 (fixed selection strategy), NFHB-Class2

(adaptive selection strategy) and neural networks. Rock subclasses: gneiss, basalt, diabase, and rhyolite.

Rock Model Best performance
for the training set

Best performance
for the validation

set

Number of
generated rules

Gneiss
NFHB-Class1 100% 98% 52

NFHB-Class2 100% 98% 12

Neural network 100% 96% —

Basalt
NFHB-Class1 95% 87% 81

NFHB-Class2 88% 84% 25

Neural network 100% 86% —

Diabase
NFHB-Class1 81.6% 71.2% 110

NFHB-Class2 92% 73.6% 83

Neural network 93.6% 69.6% —

Rhyolite
NFHB-Class1 93.6% 78.4% 225

NFHB-Class2 96% 78.4% 56

Neural network 97.6% 75.2% —

As exposed in Table 9, the best results in macro rock classification have been observed
in the NFHB-Class Methods. The higher the number of patterns and classes, the higher
the size of the NFHB-Class become, that is, it is necessary that the model “learns” greater
diversities of patterns.

4.1. Fuzzy Rule Extractions

In order to illustrate the tree structure obtained by the NFHB-Class Method, we have selected
the test performed with gneiss rock class. We used the database containing only the RGB
channels’ coefficients as attributes (Gneiss2), using the adaptive feature selection strategy
and decomposition rate of δ = 0.1. In this case, the success in the training set was 96% and the
validation set was 94%. Figure 6 shows the complete structure presented by the HNFB-Class
Method for the gneiss rock. The illustrated Class1 and Class2 represent the subclasses granite
gneiss and leucocratic gneiss, respectively.

In Figure 6, the attributes are encoded by: X2—Hurst coefficient for Red channel, X3—
Hurst coefficient for Green channel, X4—Hurst coefficient for Blue channel, X6—SVC for
Red channel, X7—SVC for Green channel, X8—SVC for Blue channel, X10—Entropy for Red
Channel, X11—Entropy for Green Channel, X12—Entropy for Blue channel.

Following the path in the tree, it is possible to extract rules that describe the database
of gneiss rock. Table 10 lists the fuzzy rules extracted from the tree structure in Figure 6.

5. Conclusions

This paper presents an NFHB-Class Method for the classification of rocks, constituting an
approach which creates its own architecture. Two strategies for feature selection in the
database have been adopted; fixed and adaptive. Using the algorithm embedded in the



18 Mathematical Problems in Engineering

Table 6: Classification results obtained with NFHB-Class1 (fixed selection strategy) and NFHB-Class2

(adaptive selection strategy) methods, for macro rock classification of gneiss and basalt; diabase, and
rhyolite; basalt, diabase, and rhyolite; and gneiss, basalt, diabase, and rhyolite.

Model Database test

Correct
percentage
of training

set

Correct
percentage of
validation set

Number of
rules

generated

Decomposition
Rate

Order of the
attributes

used

NFHB-Class1 Gneiss and
basalt1

90.67% 88% 37 0.02 1, 5, 9
NFHB-Class2 92% 86% 46 0.01

NFHB-Class1 Gneiss and
basalt2

96% 96% 53 0.007 4, 7, 10, 3, 2,
11, 8, 6, 12

NFHB-Class2 92.67% 95.33% 22 0.02

NFHB-Class1 Gneiss and
basalt3

94.67% 90% 68 0.009 4, 7, 10, 2, 11,
5, 3, 1, 9, 8, 6,
12NFHB-Class2 98.67% 96.67% 68 0.008

NFHB-Class1 Diabase and
rhyolite1

70% 68.4% 29 0.02 5, 9, 1
NFHB-Class2 79.6% 70.4% 83 0.008

NFHB-Class1 Diabase and
rhyolite2

81.6% 86% 22 0.02 6, 7, 8, 10, 11,
12, 2, 3,4

NFHB-Class2 87.2% 86% 33 0.01

NFHB-Class1 Diabase and
rhyolite3

87.2% 85.2% 59 0.009 5, 7, 6, 8, 10, 9,
11, 12, 2, 1, 3,
4NFHB-Class2 86% 85.2% 25 0.03

NFHB-Class1 Basalt, diabase,
and rhyolite1

64.86% 61.43% 34 0.006 5, 9, 1
NFHB-Class2 70.29% 60.86% 67 0.009

NFHB-Class1 Basalt, diabase,
and rhyolite2

84% 80.57% 77 0.008 6, 10, 7, 8, 2,
11, 3, 12, 4

NFHB-Class2 84.29% 80.29% 33 0.005

NFHB-Class1 Basalt, diabase,
and rhyolite3

84.86% 80.57% 98 0.006 6, 10, 5, 7, 8, 9,
2, 11, 1, 3, 12,
4NFHB-Class2 83.14% 78.86% 50 0.006

NFHB-Class1 Gneiss, basalt,
diabase, and
rhyolite1

54% 52.25% 55 0.004 5, 9, 1
NFHB-Class2 57.25% 56.75% 51 0.003

NFHB-Class1 Gneiss, basalt,
diabase, and
rhyolite2

77% 75.75% 105 0.007 6, 10, 7, 11, 12,
8, 2, 3, 4

NFHB-Class2 83.75% 77.75% 79 0.006

NFHB-Class1 Gneiss, basalt,
diabase, and
rhyolite3

75.75% 74.25% 92 0.008 6, 10, 5, 7, 8, 9,
2, 11, 1, 3, 12,
4NFHB-Class2 79.5% 74.5% 80 0.006

model of Jang, it is not necessary to use principal component analysis to determine the best
combination of attributes which is more representative for the rock textures.

The results obtained with the NFHB-Class Method, in terms of the classification task,
achieved more than 73% accuracy in the validation set for all classes of rocks, which indicates
its great potential in performing this task.
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Table 7: Configurations of neural networks used in the macro classification of gneiss and basalt; diabase,
and rhyolite; basalt, diabase, and rhyolite; gneiss, basalt, diabase, and rhyolite

Rock Database test Number of
layers

Number of
neurons in
input layer

Number of
neurons in
first hidden

layer

Number of
neurons in

second
hidden layer

Number of
neurons in

output layer

Gneiss and
basalt

Gneiss and
basalt1 3 6

Gneiss and
basalt2 3 9 10 — 2

Gneiss and
basalt3 12 10

Diabase and
rhyolite

Diabase and
rhyolite1 3 20 25

Diabase and
rhyolite2 4 9 25 20 2

Diabase and
rhyolite3 12 20 25

Basalt, diabase
and rhyolite

Basalt, diabase,
and rhyolite1 3

Basalt, diabase,
and rhyolite2 4 9 40 30 3

Basalt, diabase,
and rhyolite3 12

Gneiss, basalt,
diabase, and
rhyolite

Gneiss, basalt,
diabase, and
rhyolite1

3

Gneiss, basalt,
diabase, and
rhyolite2

4 9 40 40 4

Gneiss, basalt,
diabase, and
rhyolite3

12

For the gneiss rock class, the best result in the four databases tested was 98% in the
validation set. For the basalt rock class, the result was 87%. For the diabase rock class, the
best result for all databases tested was 73.6% in the validation set. For the rhyolite rock class
we obtained 78.4%.

One of the advantages of NFHB-Class Method is the fact that it generates fuzzy rules
that explain the extraction of knowledge, that is, it is possible to have a very satisfactory
rating. Therefore, it presents a explanation for the classification, which does not happen if a
neural network or a committee of neural networks are employed in a classification task.

Moreover, another advantage of NFHB-Class Method is the fact that it avoids the task
of testing multiple structures in the search of a good performance to the problem. In the case
of neural networks, this means empirically determining the best number of hidden layers
and processing elements (neurons) for each layer. In the case of fuzzy systems, it means
finding the best number of partitions in the universe of discourse for each input variable.
In addition, it is important to consider the minimization of problems generated by over and
under dimensioning of these structures (overfitting and no-convergence).
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Table 8: Performance of neural networks for macro classes of gneiss and basalt; diabase, and rhyolite;
basalt, diabase, and rhyolite; gneiss, basalt, diabase, and rhyolite.

Rock Database test Correct percentage
of training set

Correct percentage
of validation set

Gneiss and basalt
Gneiss and basalt1 92.67% 80%

Gneiss and basalt2 100% 94%

Gneiss and basalt3 100% 94%

Dilbase and rhyolite
Diabase and rhyolite1 82.4% 72%

Diabase and rhyolite2 99.2% 85.2%

Diabase and rhyolite3 95.2% 84.4%

Basalt, diabase, and rhyolite

Basalt, diabase, and
rhyolite1 75.14% 60.85%

Basalt, diabase, and
rhyolite2 97.42% 77.42%

Basalt, diabase, and
rhyolite3 99.42% 77.14%

Gneiss, basalt, diabase, and
rhyolite

Gneiss, basalt, diabase,
and rhyolite1 65.5% 53.75%

Gneiss, basalt, diabase,
and rhyolite2 97% 77%

Gneiss, basalt, diabase,
and rhyolite3 99.75% 68.75%

Table 9: Best performance obtained by NFHB-Class1 (fixed selection strategy), NFHB-Class2 (adaptive
selection strategy) and neural networks, for rock classes: gneiss and basalt; diabase, and rhyolite; basalt,
diabase, and rhyolite; gneiss, basalt, diabase, and rhyolite.

Rock Model Correct percentage
of training set

Correct percentage
of validation set

Number of
generated rules

Gneiss and basalt
NFHB-Class1 96% 96% 53

NFHB-Class2 98.67% 96.67% 68

Neural
network 100% 94% —

Diabase and rhyolite
NFHB-Class1 81.6% 86% 22

NFHB-Class2 87.2% 86% 33

Neural
network 99.2% 85.2% —

Basalt, diabase, and
rhyolite

NFHB-Class1 84% 80.57% 77

NFHB-Class2 84.29% 80.29% 33

Neural
network 97.42% 77.42% —

Gneiss, basalt, diabase,
and rhyolite

NFHB-Class1 77% 75.75% 105

NFHB-Class2 83.75% 77.75% 79

Neural
network 97% 77% —
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Table 10: Fuzzy rules.

Rules Accuracy Coverage

Rule 1 If X8 is low and X12 is low and X6 is low then Class= 1 0.6813 0.1105

Rule 2 If X8 is low and X12 is low and X6 is high and X3 is low then Class= 1 0.548 0.06137

Rule 3 If X8 is low and X12 is low and X6 is high and X3 is high then Class= 1 0.5152 0.05707

Rule 4 If X8 is low and X12 is high and X10 is low and X2 is low then Class= 1 0.5013 0.03149

Rule 5 If X8 is low and X12 is high and X10 is low and X2 is high then Class= 2 0.5159 0.02537

Rule 6 If X8 is low and X12 is high and X10 is high and X4 is low then Class= 1 0.5801 0.01211

Rule 7 If X8 is low and X12 is high and X10 is high and X4 is high then Class= 2 0.5648 0.01475

Rule 8 If X8 is high and X7 is low then Class= 1 0.5601 0.09951

Rule 9 If X8 is high and X7 is high and X11 is low and X8 is low then Class= 1 0.5388 0.02845

Rule 10 If X8 is high and X7 is high and X11 is low and X8 is high then Class= 2 0.6614 0.03755

Rule 11 If X8 is high and X7 is high and X11 is low and X12 is low then Class= 2 0.5931 0.01464

Rule 12 If X8 is high and X7 is high and X11 is low and X12 is high then Class= 2 0.5676 0.01653

Class 1 Class 1

X3 X2 X4 X6 X12

X6 X10 X11

X7X12

X8

1

Figure 6: NFHB-Class complete tree structure with adaptive selection strategy for the test performed with
gneiss rock.

As a disadvantage, it is important to point to the fact that the learning algorithm of the
NFHB-Class Method requires more complex programming than the training algorithm of the
neural networks. This is due to the fact that there is no fixed structure or a constant number
of adjustable parameters.
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Tests with the NFHB-Class Method, converged to optimum solution for the
classification taking into account the fuzzy rules extraction, revealed good performance.

One of the proposals for future work is to hybridize the HNFB-Class Method so
that it is capable of performing the macro classification, with the subclassification done
automatically. Furthermore, executing applications of this model in other areas, such as in
the classification of metals, is also intended.
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