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The primary objective of engineering asset management is to optimize assets service delivery
potential and to minimize the related risks and costs over their entire life through the development
and application of asset health and usage management in which the health and reliability
prediction plays an important role. In real-life situations where an engineering asset operates
under dynamic operational and environmental conditions, the lifetime of an engineering asset
is generally described as monitored nonlinear time-series data and subject to high levels of
uncertainty and unpredictability. It has been proved that application of data mining techniques
is very useful for extracting relevant features which can be used as parameters for assets diagnosis
and prognosis. In this paper, a tutorial on nonlinear time-series data mining in engineering
asset health and reliability prediction is given. Besides that an overview on health and reliability
prediction techniques for engineering assets is covered, this tutorial will focus on concepts, models,
algorithms, and applications of hidden Markov models (HMMs) and hidden semi-Markov models
(HSMMs) in engineering asset health prognosis, which are representatives of recent engineering
asset health prediction techniques.

1. Introduction

Dynamic behavior of real world systems can be represented by measurements along temporal
dimension (time series). These time series are collected over long periods of time and such
time series is usually a source of large number of interesting behaviors that the system may
have undergone in past. Human beings will be overwhelmed by the high dimensionality
of the measurements and the complex dynamics of the system. The task of forecasting the
time series involves predicting the time series for next few steps, which can usually provide
the trends into near future. Usually, such time series patterns are inherently nonstationary
in nature. There will be nonlinear correlations between variables. The matching of such time
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series patterns calls for the feature extraction/modeling methods which can explicitly capture
the nonstationary behavior and nonlinear correlations among variables [1].

A fundamental problem encountered in many fields is to model data ot given a discrete
time-series data sequence y = (o1, . . . , oT ). The data ot can often be a multidimensional
variable exhibiting stochastic activity. This problem is found in diverse fields, such as
control systems, event detection, handwriting recognition, and engineering asset health and
reliability prediction. To analyze a time-series data sequence, it is of practical importance
to select an appropriate model for the data. Mathematical tools such as Fourier transform
and spectral analysis are employed frequently in the analysis of numerical data sequences.
For categorical data sequences, there are many situations that one would like to employ
Markov models as a mathematical tool. A number of applications such as inventory
control, bioinformatics, asset reliability prediction can be found in the literature [2]. In these
applications and many others, one would like to (i) characterize categorical data sequences
for the purpose of comparison and classification process or (ii) model categorical data
sequences, and, hence to make predictions in the control and planning processes. It has been
shown that Markov models can be a promising approach for these purposes. Frequently,
observations from systems are made sequentially over time. Values in the future depend,
usually in a stochastic and nonlinear manner, on the observations available at present.
Such dependency makes it worthwhile to predict the future from its past. The underlying
dynamics from which the observed data are generated will be depicted and therefore used
to forecast and possibly control future events [3]. Nonlinear time series analysis is becoming
a more and more reliable tool for the study of complicated dynamics from measurements.
In this paper, a tutorial on nonlinear time-series data mining in engineering asset health and
reliability prediction will be provided. In detail, the corresponding concepts, models, and
algorithms of HSMM-based reliability prediction will also be discussed.

Engineering asset breakdowns in industrial manufacturing systems can have signifi-
cant impact on the profitability of a business. Expensive production equipment is idled and
labor is no longer optimized. Condition-based maintenance (CBM) was introduced to try to
maintain the correct equipment at the right time. CBM is based on using real-time data to
prioritize and optimize maintenance resources. A CBM program consists of three key steps:
(1) time series data acquisition step (information collecting), to obtain data relevant to system
health; (2) data processing step (information handling), to handle and analyze the data or
signals collected in step (1) for better understanding and interpretation of the data; and (3)
maintenance decision-making step (decision-making), to recommend efficient maintenance
policies.

Observing the state of the system is known as condition monitoring (CM). Such a
system will determine the equipment’s health and act only when maintenance is actually
necessary. With condition monitoring techniques being adopted in different industrial
sectors, a large amount of observation data are typically collected from individual critical
assets during their operation. Such CM data are used for troubleshooting (e.g., fault
diagnosis) and short-term asset condition prediction (e.g., prognosis). Using condition data
for the estimation of asset health reliability however has not been well explored. The idea is
dependent on the belief that CM data are able to reflect the underlying degradation process
of an asset, and that the variation of condition data manifests the reliability change of an
asset. As a result, asset health reliability can be estimated from condition data [4]. Reliability
estimation based on condition data produces a time series of reliability evaluations with
respect to asset operation time. The time series of evaluations can then be projected into
the future for prognosis or prediction. Developments in recent years have allowed extensive
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instrumentation of equipment, and together with better tools for analyzing condition data,
the maintenance personnel of today are more than ever able to decide what is the right
time to perform maintenance on some piece of equipment. Engineering asset management
(EAM) is the process of organizing, planning, and controlling the acquisition, use, care,
refurbishment, and/or disposal of physical assets to optimize their service delivery potential
and to minimize the related risks and costs over their entire life through the development
and application of asset health and usage management in which the health and reliability
prediction plays an important role. Modern EAM requires the accurate assessment of current
and the prediction of future asset health condition. Diagnostics and prognostics are two
important aspects in a CBM program. Diagnostics deals with fault detection, isolation,
and identification when abnormity occurs. Prognostics deals with fault and degradation
prediction before they occur. Appropriate mathematical models that are capable of estimating
times to failures and the probability of failures in the future are essential in EAM. In
real-life situations where an engineering asset operates under dynamic operational and
environmental conditions, the lifetime of an engineering asset is generally governed by a
large number of variables. These systems are nonlinear and are subject to high levels of
uncertainty and unpredictability. Two major problems hamper the implementation of CBM in
industrial applications: first, the lack of knowledge about the right features to be monitored
and second, the required processing power for predicting the future evolution of features.
Time series data mining techniques proved to be useful for relevant features extraction. It has
been proved that application of data mining techniques is very useful for extracting relevant
features which can be used as parameters for machine diagnosis and prognosis [5]. There
are many studies and development on a variety of methods and technologies that can be
regarded as the steps towards prognostics maintenance that are needed in order to support
decision making and manage operational reliability. A CBM system usually comprises several
functional modules such as feature extraction, diagnostics, prognostics, and decision support.
Figure 1 illustrates the relationships between these modules.

In order to establish the nonlinear relationship between CM indices and actual asset
health, CM data are commonly taken to indicate the health of a monitored unit. However,
the measured condition indices do not always deterministically represent the actual health
of the monitored unit. The challenges and opportunities here lie in developing prognostics
models that recognize the nonlinear relationship between a unit’s actual survival condition
and the measured CM indices. CM indices are frequently used to represent the health of
the monitored unit in the existing prognostics techniques and then regression or time series
prediction is employed to estimate the unit’s future health. In these techniques, a threshold for
the CM data is predefined to represent a failure. In practice, it can be often seen that a system
fails even when its condition measurement is still below a predefined failure threshold.
Conversely a system may still be performing its required function when its condition
measurements already fall outside the tolerance range. Missed alarms and false alarms are
significant issues in practical applications of prognostics systems. Several methods have
been proposed for determining thresholds for fault detection based on mathematical models
instead of solely on maintenance personnel’s past experiences [6]. In the field of prognostics,
more attentions should be paid on developing prognostics models that can deduce the
nonlinear relationship between a unit’s actual survival condition and the measured CM
indices. Artificial intelligence (AI) models can be trained to learn from past examples. Hence,
there are research opportunities to use the past measured condition data as model training
input and the actual unit health as target output. By repetitively presenting various pairs
of training input and target to the intelligent models, the models may learn to recognize
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Figure 1: Functional modules and their relationships of a CBM program.

how unit degradation is veiled in the nondeterministic changes in CM measurements and
disregard fluctuations caused by nondeterioration factors.

2. Health and Reliability Prediction Techniques for Engineering Assets

Health and reliability prediction is a complex process because of the numerous factors
that affect the remaining useful life (RUL) levels such as the load, working condition,
pressure, vibration, and temperature. The relationship between these factors has not been
fully understood. Classical linear Gaussian time series (deterministic) models are inadequate
in analysis and prediction of complex engineering asset reliability. Linear methods such
as ARIMA (Autoregressive Integrated Moving Average) approach are unable to identify
complex characteristics due to the goal of characterizing all time series observations, the
necessity of time series stationarity, and the requirement of normality and independence of
residuals [7]. Nonlinear time series approaches such as HMMs, artificial neural networks
(ANNs), and nonlinear prediction (NLP) [8], applied to reliability forecasting, could produce
accurate predictions for asset health.

Literature on prognostic methods is extremely limited but the concept has been
gaining importance in recent years. Unlike numerous methods available for diagnostics,
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prognostics is still in its infancy, and literature is yet to present a working model for effective
prognostics [6]. Essentially, approaches for prognostics reasoning can be classified into four
categories: (1) rule-based or case-based systems, (2) data-driven statistical learning models,
and (3) model-driven statistical learning methods.

2.1. Rule-Based or Case-Based Systems

An example of rule-based or case-based systems is prognostic expert systems driven by
data mining [9]. The application of data mining to prognostics involves identifying evolving
patterns in historical data leading to failure, in order to predict and prevent imminent failures.
The exploratory analysis of rules was performed using a Rule Induction algorithm to obtain
rule sets along with cross-validation data to assess the strength and accuracy of the rules.
The predication in the context of diagnostics is of the “If-Then” type. Prognostics involves
predication of the “When” type. That is, prognosis necessitates consideration of time, or
at the very least, the chronological sequence of events. Thus, prognostics needs time series
and/or time sequence data prior to failure. Once sufficient amounts of such time-series data
are available, one could apply a combination of techniques for time-series and time-sequence
data mining to develop prognostic solutions. As indicated by Das et al. [10], extracting rules
directly from time-series data involves two coupled problems. First, one must transform the
low-level signal data into a more abstract symbolic alphabet. This can be achieved by data-
driven clustering of signal windows in a similar way to that used in vector quantization
data compression. The second problem is that of rule induction from symbolic sequences.
Parameters such as cluster window width clustering methodology, number of clusters may
affect the types of rules which are induced. Therefore, this technology is essentially intended
as an exploratory method, and thus, iterative and interactive application of the method
coupled with human interpretation of the rules is likely to lead to most useful results. A
simple rule format for prognostics is “If A occurs, then B occurs within time T” (or briefly

A
T⇒ B). Here, A and B are letters from the alphabet produced by the discretization of a time

series. The confidence of A T⇒ B, which is the fraction of occurrences of A that are followed
by a B within T units, can also be derived. However, this method produces lots of rules, with
varying confidences. An extension of the simple rule format is “If A1, A2, . . . , Ah occur within
V time units, then B occurs within time T”. Rules of this type have been studied under the
name sequential patterns [11]. The problem with this extension is that the number of potential
rules grows quickly.

2.2. Data-Driven Statistical Learning Models

Data-driven statistical learning models are developed from collected input/output data.
Data-driven statistical learning models can process a wide variety of data types and exploit
the nuances in the data that cannot be discovered by rule-based systems. Therefore, they
potentially have superior to the rule-based systems. An example of data-driven statistical
learning models is ANN. ANN is a data processing system that consists of three types
of layer: input, hidden, and output (see Figure 2). In Figure 2, r(k) and e(k) are original
input and error value, respectively, and y(k) and u(k) represent system’s output and
input, respectively. Each layer has a number of simple, neuron-like processing elements
called “nodes” or “neurons” that interact with each other by using numerically weighted
connections. ANN can be used to establish a complex regression function between a set of
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Figure 2: Structure of nonlinear prognosis model based on ANNs.

network inputs and outputs, which is achieved through a network training procedure. There
are two main types of training methodologies: (1) supervised training where the network
is trained using a specified sequence of inputs and outputs, and (2) unsupervised training
where the primary function of the network is to classify network inputs. It is usually a tough
problem for system designers to fit domain knowledge to ANN in practical applications.
Besides, prognostic process itself is a “black box” for developers, which means that it is very
difficult or even impossible to have physical explanations of the networks’ outputs. And as
ANN grows in size, training can become a complicated issue. For example, how many hidden
layers should be included and what is the number of processing nodes that should be used
for each of the layers are confused questions for model developers. Usually, there are five
forms of ANNs: (1) multisteps prognosis model, (2) multiple back-propagation (BP) neural
network model, (3) radial basis function neural network, (4) ANN Hopfield model, and (5)
self-organizing maps neural network.

ANNs can be used to recognize the nonlinear relationship between actual asset
health and measured condition data. A variant of the conventional neural network model,
called the stochastic neural network, is used to approximate complex nonlinear stochastic
systems. Lai and Wong [12] show that the expectation-maximization algorithm can be used
to develop efficient estimation schemes that have much lower computational complexity
than those for conventional neural networks. This enables users to carry out model selection
procedures, such as the Bayesian information criterion, to choose the number of hidden
units and the input variables for each hidden unit. And model-based multistep-ahead
forecasts are provided. Results show that the fitted models improve postsample forecasts
over conventional neural networks and other nonlinear and nonparametric models.

While ANN is being widely used to predict and forecast highly nonlinear systems,
wavelet networks (WNs) have been shown to be a promising alternative to traditional neural
networks. A family of wavelets can be constructed by translating and dilating the mother
wavelet. Hence, in WNs, along with weights and bias, the translation and dilation factors
need to be optimized. Most of the WN models make use of back-propagation algorithm
to optimize their parameters. In Parasuraman and Elshorbagy’s work [13], performance
of ANNs and WNs in modeling two distinct time-series is investigated. The first time-
series represents a chaotic system (Henon map) and the second time-series represents a
geophysical time-series (streamflows). While the first time-series can be considered to be
a high-frequency signal, the later time-series can be considered as a low-frequency signal.
Results from the study indicate that, in modeling Henon map, WNs perform better than
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ANNs. WNs are also shown to have better generalization property than ANNs. However,
in modeling streamflows, ANNs are found to perform slightly better than WNs. In general,
WNs are more appropriate for modeling high-frequency signals like Henon map. Moreover,
WNs are computationally faster than ANNs. The performance of the models can further be
improved by combining a local search technique with genetic algorithm (GA).

Li [14] gives a tutorial review about fractal time series that are substantially differs
from conventional one in its statistic properties such as heavy-tailed probability distribution
function and slowly decayed autocorrelation function. The concepts such as the statistical
dependence, power law, and global or local self-similarity are explained. The long-range
dependence (LRD) series considerably differ from the conventional series. M. Li and J. Li
[15] address the particularity of the predictability of LRD series. Currently, suitable mean-
square error (MSE) used for predicting LRD series may be overlooked, leaving a pitfall in this
respect. Therefore, they present a generalized MSE in the domain of generalized functions for
the purpose of proving the existence of LRD series prediction.

Vachtsevanos and Wang [16] attempt to address the prognosis with dynamic wavelet
neural networks (DWNNs). DWNNs incorporate temporal information and storage capacity
into their functionality so that they can predict into the future, carrying out fault prognostic
tasks. The prognostic architecture in [16] is based on two constructs: a static “virtual sensor”
that relates known measurements to fault data and a predictor which attempts to project the
current state of the faulted component into the future thus revealing the time evolution of
the failure mode and allowing the estimation of the component’s remaining useful lifetime.
A virtual sensor takes as inputs measurable quantities or features and outputs the time
evolution of the fault pattern. Both constructs rely upon a wavelet neural network (WNN)
model acting as the mapping tool. The WNN belongs to a new class of neural networks
with unique capabilities in addressing identification and classification problems. Wavelets
are a class of basic elements with oscillations of effectively finite-duration that makes them
look like “little waves”. The self-similar, multiple resolution nature of wavelets offers a
natural framework for the analysis of physical signals and images. DWNNs have recently
been proposed to address the prediction/classification issues. The DWNNs can be trained
in a time-dependent way, using either a gradient-descent technique like the Levenberg-
Marquardt algorithm or an evolutionary one such as the genetic algorithm. Vachtsevanos
and Wang [16] point out that the notion of Time-To-Failure (TTF) is the most important
measure in prognosis. The data used to train the predictor must be recorded with time
information, which is the basis for the prognosis-oriented prediction task. The features are
extracted in temporal series and are dynamic in the sense that the DWNN processes them
in a dynamic fashion. Then, the obtained features are fused into the time-dependent feature
vector that characterizes the process at the designated time instants. In the case of a bearing
fault, the predictor could take the fault dimensions, failure rates, trending information,
temperature, component ID, and so forth as its inputs and generate the fault growth as
the output. The DWNN must be trained and validated before any online implementation
and use. Such algorithms as the BP or GA can be used to train the network. Once trained,
the DWNN, along with the TTF calculation mechanism, can act as an online prognostic
operator. A drawback of this fault prognosis architecture consisting of a virtual sensor and a
dynamic wavelet neural network is that a substantially large database is required for feature
extraction, training, validation, and optimization. Since neural networks work like a black
box, users do not know what features in the input data have led to the net’s performance
[17]. Particle filters, also known as sequential Monte Carlo (SMC) methods, are sophisticated
model estimation techniques based on simulation. Particle filtering has also been employed
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to provide nonlinear projection in forecasting the growth of a crack on a turbine engine
blade [18]. The current fault dimension was estimated based on the knowledge of the
previous state of the process model. The a priori state estimate was then updated using
new CM data. To extend this state estimation to multistep-ahead prediction, a recursive
integration process based on both importance sampling and kernel probability density
function approximation was applied to generate state predictions to the desired prediction
horizon.

2.3. Model-Driven Statistical Learning Methods

The model-driven statistical learning methods assume that both operational data and a
mathematical model are available. Bayesian technique is a model-driven statistical method.
A recursive Bayesian technique is proposed to calculate failure probability based on the joint
density function of different CM data features [19]. This method enabled reliability analysis
and prediction based on the degradation process of historical units, rather than on failure
event data. The prediction accuracy of this model relied strongly on the correct determination
of thresholds for the various trending features. Another widely used technique is regression,
which is a generic term for all methods attempting to fit a model to observed data in order
to quantify the relationship between two groups of variables. In statistics, regression analysis
refers to techniques for the modeling and analysis of numerical data consisting of values
of a dependent variable (also called a response variable) and of one or more independent
variables (also known as explanatory variables or predictors). The fitted model may then be
used either to merely describe the relationship between the two groups of variables or to
predict new values. Machine learning methods have been shown to be successful for several
pattern classification, regression, and data-based latent variable modeling tasks. It should be
noted that the i.i.d. assumption is implicit in developing these methods. Hence, temporal
aspect in the data is ignored. The state-of-the-art kernel methods proposed in [20] are no
different. These methods include the kernel formulation of the latent variable models such
as Kernel Principal Component Analysis (KPCA) and Kernel Partial Least Squares (KPLS).
However, an important advantage of the kernel methods is that they are capable of solving
nonlinear problems mainly due to implicit nonlinear mapping of data from the input space to
a higher-dimensional feature space efficiently. Wavelets are mathematical tools for analyzing
time series. They have two advantages when applied to analyze time series: the wavelets are
shown to approximately decorrelate the time series temporally for quite general classes of
time series [21]. Usually, the interesting events in time series will happen at different scales.
There may be abrupt changes and steady portions. These kinds of patterns can be easily
localized using multiresolution analysis capability of wavelets [1].

HMM and its varieties also belong to this category. Since the changes in feature
vector are closely related to model parameters, a mathematical functional mapping between
the drifting parameters and the selected prognostic features can be established. Moreover,
if understanding of the system degradation improves, the model can be adapted to
increase its accuracy and to address subtle performance problems. Consequently, model-
driven methods can significantly outperform data-driven approaches. Being able to perform
reliable prognostics is the key to CBM since prognostics are critical for improving safety,
planning missions, scheduling maintenance, and reducing maintenance costs and down
time. Prognostics and health management (PHM) system architectures must allow for the
integration of anomaly, diagnostic, and prognostic technologies from the component level all
the way up through the system level [22]. Therefore, a framework that is able to integrate
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diagnostics and prognostics is desired. As indicated above, a number of approaches to
the problem have been reported in the technical literature. However, these methods have
yet to produce a systematic, efficient, and integrated approach to the prognostic problem.
Damle and Yalcin [23] propose a novel approach to river flood prediction using time series
data mining which combines chaos theory and data mining to characterize and predict
events in complex, nonperiodic, and chaotic time series. Geophysical phenomena, including
earthquakes, floods, and rainfall, represent a class of nonlinear systems termed chaotic, in
which the relationships between variables in a system are dynamic and disproportionate,
however completely deterministic. Chaos theory provides a structured explanation for
irregular behavior and anomalies in systems that are not inherently stochastic. On the other
hand, nonlinear approaches such as ANN, HMM, and NLP are useful in forecasting of daily
discharge values in a river. The drawbacks of HMM approach are that the initial structure
of the Markov model may not be certain at the time of model construction and it is very
difficult to change the transition probabilities as the model itself changes with time. It was
also observed that the HMMs have a higher error for longer prediction periods as well as for
prediction of events with sudden occurrences.

Bunks et al. [24] and Baruah and Chinnam [6] first point out that HMM-based
models could be applied in the area of prognostics in machining processes. However, only
standard HMM-based approaches are proposed in their studies. The principle of HMM-based
prognostics in [6] is as follows: first, build and trainN HMMs for all component health states.
Between N-trained HMMs, the authors assume that the estimated vectors of state transition
times follow some multivariate distribution. Once the distribution is assessed, the conditional
probability distribution of a distinct state transition given the previous state transition points
can be estimated. In diagnostics of machining processes, tool wear is a time-related process.
In prognostics of components, the objective is to predict the progression of a fault condition
to component failure and estimate the remaining-useful-life of the component. Component
aging process is the critical point in this issue. Therefore, it is natural to use explicit state
duration models. In the new HSMM-based framework, for each health state of components, a
HSMM is built and trained. Here, each health state of a component corresponds to a segment
of the HSMM. These trained HSMMs can be used in the classification of a component failure
mechanism given an observation sequence in diagnostics. For prognostics, another HSMM
is used to model a component’s life cycle. After training, the duration time in each health
state can be estimated. From the estimated duration time, the proposed macrostate-based
prognostic approach can be used to predict the remaining useful time for a component.
Compared to the approach given in [6], the new approach provides a unified HSMM-based
framework for both diagnostics and prognostics. In [6], the coordinates of the points of
intersection of the log-likelihood trajectories for different HMMs along the life/usage axis
represent the estimated “state transition time instants”. That is, the probability distribution
for state transition times in [6] is estimated from the estimation of “state transition time
instants” while in HSMM, the macrostate durations are estimated directly from the training
data. Also as indicated in [6], the overall shapes of actual log-likelihood plots do not resemble
the ideal plots on which the “state transition time instants” are estimated. This makes
the estimations of “state transition time instants” more difficult. And, the duration-based
approach is more flexible than the method suggested by Baruah and Chinnam [6] and could
be used in the multiple failure mode situations more efficiently. The major drawback of
HSMMs is that the computational complexity may increase for the inference procedures and
parameter estimations. In this regard, some approaches could be adopted to alleviate the
computational burden. For example, parametric probability distributions have been used in
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the variable duration HMMs. In [25], to overcome this problem, Gamma distributions are
used to model state durations. In summary, the advantage of segment models is that there are
many alternatives for representing a family of distributions, allowing for explicit trajectory
and correlation modeling. As recent representative techniques for engineering asset reliability
prediction, this tutorial will focus on models, algorithms, and applications of HMMs, and
HSMMs-based approaches.

3. Concepts and Theoretical Background

3.1. Remaining Useful Life

RUL, also called remaining service life, residual life, or remnant life, refers to the time left
before observing a failure given the current machine age and condition and the past operation
profile [4]. It is defined as the conditional random variable:

T − t | T > t, Z(t), (3.1)

where T denotes the random variable of time to failure, t is the current age, and Z(t) is the
past condition profile up to the current time. Since RUL is a random variable, the distribution
of RUL would be of interest for full understanding of the RUL. In the literature, a term
“remaining useful life estimate (RULE)” is used with double meanings. In some cases, it
means finding the distribution of RUL. In some other cases, however, it just means the
expectation of RUL, that is,

E[T − t | T > t, Z(t)]. (3.2)

3.2. Description of Fault Diagnostic Process Using HMMs

The failure mechanisms of mechanical systems usually involve several degraded health
states. For example, a small change in a bearing’s alignment could cause a small nick in the
bearing, which over time could cause scratches in the bearing race, which could then cause
additional nicks, which could lead to complete bearing failure. This process can be ideally
described by a mathematical model known as hidden Markov model since it can be used to
estimate the unobservable health states using observable sensor signals. The word “hidden”
means that the HMM states are hidden from direct observations. In other words, the HMM
states manifest themselves via some probabilistic behavior. HMM can exactly capture the
characteristics of each stage of the failure process, which is the basis of using HMM for failure
diagnosis and prognosis [26, 27].

3.3. Elements of a Hidden Markov Model

A Markov chain is a sequence of events, usually called states, the probability of each of which
is dependent only on the event immediately preceding it. An HMM represents stochastic
sequences as Markov chains where the states are not directly observed but are associated
with a probability function.
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In the HMM framework, the time-series data sequence (observation data sequence)
y = (o1, . . . , oT ) and the hidden variable sequence z = (s1, . . . , sT ) must be considered. The
terms ot and st represent the time-series data and the hidden variable at time t, and T is
the sequence length. The hidden variable st is a variable that takes finite values among the
available N states (i.e., st ∈ {1, . . . ,N}), whereas the data ot are a discrete variable. An HMM
has the following elements [28]:

(1) The first is N, the number of states in the model. Although the states are hidden,
there is often some physical signal attached to the states of the model. We denote
the individual states by {1, 2, . . . ,N} and the state at time t by st.

(2) The second isM, the number of distinct observations for each state. The observation
symbols correspond to the physical output of the system being modeled. The
individual observation symbols are denoted by V = {v1, v2, . . . , vM}.

(3) The third is the state transition probability distribution A = {aij}, where

aij = P
[
st+1 = j | st = i

]
, 1 ≤ i, j ≤N. (3.3)

(4) The fourth is the observation probability distribution in state i, B = {bi(k)}, where

bi(k) = P[vk | st = i], 1 ≤ i ≤N, 1 ≤ k ≤M. (3.4)

(5) The fifth is the initial state distribution π = {πi}where

πi = P[s1 = i], 1 ≤ i ≤N. (3.5)

It can be seen that a complete HMM requires the specifications of N,M,A, B, and π . For
convenience, a compact notation is often used in the literature to indicate the complete
parameter set of the model: λ = (π,A, B).

The durational behavior of an HMM is usually characterized by a durational pdf P(d).
For a single state i, the value P(d) is the probability of the event of staying in i for exactly
d time units. This event is in fact the joint event of taking the self-loop for (d − 1) times
and taking the out-going transition (with probability 1 − aii) just once. Given the Markovian
assumption, and from probability theory, P(d) is simply the product of all the d probabilities:

Pi(d) = ad−1
ii (1 − aii). (3.6)

Here, Pi(d) denotes the probability of staying in state i for exactly d time steps, and aii is the
self-loop probability of state i. It can be seen that this is a geometrically decaying function of
d. It has been argued that this is a source of inaccurate duration modeling with the HMMs
since most real-life applications will not obey this function [29].
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3.4. The Three Basic Problems for HMMs

In real applications, there are three basic problems associated with HMMs.

(1) Evaluation (also called Classification). Given the observation sequence O =
o1o2 · · · oT , and an HMM λ, what is the probability of the observation sequence
given the model, that is, P(O | λ).

(2) Decoding (also called Recognition). Given the observation sequence O = o1o2 · · · oT ,
and an HMM λ, what sequence of hidden states S = s1s2 · · · sT most probably
generates the given sequence of observations.

(3) Learning (also called Training). How do we adjust the model parameters λ =
(A,B, π) to maximize P(O | λ)?

Different algorithms have been developed for the above three problems. The most
straightforward way of solving the evaluation problem is through enumerating every
possible state sequence of length T (the number of observations). However, the computation
burden for this exhaustive enumeration is prohibitively high. Fortunately, a more efficient
algorithm that is based on dynamic programming exists. This algorithm is called forward-
backward procedure [30]. The goal for decoding problem is to find the optimal state sequence
associated with the given observation sequence. The most widely used optimality criterion is
to find the single best state sequence (path), that is, to maximize P(S | O, λ) that is equivalent
to maximizing P(S | O, λ). A formal technique for finding this single best state sequence
exists, based on dynamic programming methods, and is called Viterbi algorithm [31]. For
learning problem, there is no known way to obtain analytical solution. However, the model
parameters λ = (A,B, π) can be adjusted such that P(O | λ) is locally maximized using
an iterative procedure such as the Baum-Welch method (or equivalently the Expectation-
Maximization algorithm) [32].

4. HSMM-Based Modeling Framework for Reliability Diagnostics
and Prognostics

4.1. Macrostates and Microstates

For a component, it usually evolves through several distinct health-statuses prior to reaching
failure. For example, mechanics of drilling processes suggest that a typical drill-bit may go
through four health-states: good, medium, bad, and worst. In general, for a component, we
can identify N distinct sequential states for a failure mechanism, that is, determination of
health status of a component: no-defect (i.e., health state 1, denoted by h1), level-1 defect
(denoted by h2), level-2 defect (denoted by h3),. . ., level-(N − 1) defect (denoted by hN).
Here, the level-(N − 1) defect means failure. Let di be the duration staying at a health state hi
and T be the life time of a component. Then, T =

∑N
i=1 di.

Unlike a state in a standard HMM, a state in a segmental semi-Markov model
generates a segment of observations, as opposed to a single observation in the HMM. In this
study, the states in a segmental semi-Markov model are called macrostates (i.e., segments).
Each macrostate consists of several single states, which are called microstates. Suppose that a
macro-state sequence S has N segments, and let qn be the time index of the end-point of the
nth segment (1 ≤ n ≤N). The segments are as follows (see Figure 3):
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o1, . . . , oq1 oq1 + 1, . . . , oq2 oqN−1 + 1, . . . , oqN

1, . . . , q1 q1 + 1, . . . , q2 qN−1 + 1, . . . , qN

d1 = q1 d2 = q2 − q1 dN = qN − qN−1

s1, . . . , sq1 sq1 + 1, . . . , sq2 sqN−1 + 1, . . . , sqN

T

· · ·

· · ·

· · ·

· · ·

Observations

Time

Durations

Micro-state

Figure 3: Segments of an HSMM.

h1

s1 s2 sq1

h2

sq1+1 sq1+2 sq1+3 sq2

hN

s(N−1) + 1 sqN

Macro-states

Micro-states

Time

· · · · · · · · ·

· · ·

d1 = q1 (time units)
s1 = s2 = . . . sq1 = h1

d2 = q2 − q1 (time units)
sq1 + 1 = sq1 + 2 = · · · sq2 = h2

DN = qN − qN−1 (time units)
s(N−1) + 1 = s(N−1) + 2 = · · · sqN = hN

Figure 4: Segmental HSMM-based modeling framework for component diagnostics and prognostics.

For the nth macro-state, the observations are oqn−1+1, . . . , oqn , and they have the same
microstate label:

sqn−1+1 = sqn−1+2 = · · · = sqn ≡ hn. (4.1)

The segmental HSMM-based modeling framework for component diagnostics and
prognostics is described in Figure 4.

4.2. Model Structure

Let st be the hidden state at time t and let O be the observation sequence. Characterization
of an HSMM is through its parameters. The parameters for an HSMM are the initial state
distribution (denoted by π), the transition model (denoted by A), state duration distribution
(denoted by D), and the observation model (denoted by B). Thus, an HSMM can be written
as λ = (π,A,D, B).

In the segmental HSMM, there are N states, and the transitions between the states are
according to the transition matrix A, that is, P(i → j) = aij . Similar to standard HMMs, we
assume that the state s0 at time t = 0 is a special state “START”. This initial state distribution
is denoted by π .

Although the macro-state transition sqn−1 → sqn is Markov

P
(
sqn = jsqn−1 = i

)
= aij , (4.2)
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the microstate transition st−1 → st is usually not Markov. This is the reason why the model
is called “semi-Markov” [27]. That is, in the HSMM case, the conditional independence
between the past and the future is only ensured when the process moves from one state
to another distinct state.

Another extension in segmental HSMM from the HMM is the segmental observation
distribution. The observations o(t1,t2] in a segment with state i and duration d are produced
by

P
(
o(t1,t2] | i, d

)
, (4.3)

where d = t2 − t1.

5. Inference and Leaning Mechanisms for
HSMM-Based Reliability Prediction

5.1. Inference Procedures

Similar to HMMs, HSMMs also have three basic problems to deal with, that is, evaluation,
recognition, and training problems. To facilitate the computation in the HSMM-based
diagnostics and prognostics framework, in the following, forward-backward variables are
defined and modified forward-backward algorithm is developed [33].

A dynamic programming scheme is employed for the efficient computation of the
inference procedures. To implement the inference procedures, a forward variable αt(i) is
defined as the probability of generating o1o2 · · · ot and ending in state i:

αt(i) = P(o1o2 · · · ot, i ends at t | λ) =
N∑

i=1

min(D,t)∑

d=1

αt−d(i)aijP
(
d | j

)
bj
(
Ot
t−d+1

)
, (5.1)

where D is the maximum duration within any state. bj(Ot
t−d+1) is the joint density of d

consecutive observations (ot−d+1ot−d+2 · · · ot).
It can be seen that the probability of O given the model λ can be written as

P(Oλ) =
N∑

i=1

αT (i). (5.2)

5.2. Forward-Backward Algorithm for HSMMs

Similar to forward variable, the backward variable can be written as

βt(i) =
N∑

j=1

min(D,t)∑

d=1

aijP
(
dj
)
bj
(
Ot+d
t+1

)
βt+d

(
j
)
. (5.3)
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In order to give reestimation formulas for all variables of the HSMM, three more
segment-featured forward-backward variables are defined:

αt,t′
(
i, j

)
= P

(
o1o2 · · · ot′ , t = qn, st = i, t′ = qn+1, st′ = j | λ

)
,

φt,t′
(
i, j

)
=

D∑

d=1

[
P
(
d = t′ − t | j

)
· P

(
Ot′

t+1 | t = qn, st = i, t
′ = qn+1, st′ = j, λ

)]
,

ξt,t′
(
i, j

)
= P

(
t = qn, st = i, t′ = qn+1, st′ = j | OT

1 , λ
)
,

(5.4)

Here, Ot′

t+1 = ot+1ot+2 · · · ot ′ and OT
1 = o1o2 · · · oT .

φt,t′(i, j) is the probability of the system being in state i for d time units and then
moving to the next state j. αt,t′(i, j) can be described, in terms of φt,t′(i, j), as follows:

αt,t′
(
i, j

)
= P

(
o1o2 · · · otot+1 · · · ot′ , t = qn, st = i, t′ = qn+1, st′ = jλ

)
= αt(i)aijφt,t′

(
i, j

)
. (5.5)

The relationship between αt(i) and αt,t′(i, j) is given in the following:

αt′
(
j
)
= P

(
o1o2 · · · ot′ , t′ = qn+1, st′ = jλ

)
=

N∑

i=1

D∑

d=1

P
(
d = t′ − tj

)
αt,t′

(
i, j

)
. (5.6)

From the definitions of the forward-backward variables, ξt,t′(i, j) can be obtained as
follows:

ξt,t′
(
i, j

)
= P

(
t = qn, st = i, t′ = qn+1, st′ = jOT

1 , λ
)
=

∑D
d=1 αt(i)aijφt,t′

(
i, j

)
βt′
(
j
)

β0
(
i = “START′′

) . (5.7)

The Forward-Backward algorithm computes the following probabilities.

Forward Pass

The forward pass of the algorithm computes αt(i), αt,t′(i, j), and φt,t′(i, j).

Step 1. Initialization (t = 0):

αt=0(i) =

{
1, if i = “START′′,
0, otherwise.

(5.8)



16 Mathematical Problems in Engineering

Step 2. Forward recursion (t > 0). For t = 1, 2, . . . , T, 1 ≤ i, j ≤N, and 1 ≤ d ≤ D:

φt,t′
(
i, j

)
=

D∑

d=1

[
P
(
d = t′ − t | j

)
· P

(
Ot′

t+1t = qn, st = i, t
′ = qn+1, st′ = j, λ

)
,
]
,

αt,t′
(
i, j

)
= αt(i)aijφt,t′

(
i, j

)
,

αt′
(
j
)
=

N∑

i=1

D∑

d=1

P
(
d = t′ − tj

)
αt,t′

(
i, j

)
.

(5.9)

Backward Pass

The backward pass computes βt(i) and ξt,t′(i, j).

Step 1. Initialization (t = T and 1 ≤ i, j ≤N):

βT (i) = 1. (5.10)

Step 2. Backward recursion (t < T). For t = 1, 2, . . . , T , 1 ≤ i, j ≤N, and 1 ≤ d ≤ D:

βt(i) =
N∑

j=1

min(D,t)∑

d=1

aijP
(
dj
)
bj
(
Ot+d
t+1

)
βt+d

(
j
)
=

N∑

j=1

aijφt,t′
(
i, j

)
βt′
(
j
)
,

ξt,t′
(
i, j

)
=

∑D
d=1 αt(i)aijφt,t′

(
i, j

)
βt′
(
j
)

β0(i = “START”)
.

(5.11)

Let Di be the maximum duration for state i. The total computational complexity for
the forward-backward algorithm is O(N2DT), where D =

∑N
i=1 Di.

5.3. Parameter Reestimation for HSMM-Based Reliability Prediction

The reestimation formula for initial state distribution is the probability that state i was the
first state, given O:

πi =
πi
[∑D

d=1 βd(i)P(d | i)bj
(
Od

1

)]

P(O | λ) . (5.12)

The reestimation formula of state transition probabilities is the ratio of the expected
number of transitions from state i to state j, to the expected number of transitions from state
i:

aij =
∑T

t=1 ξt,t′
(
i, j

)

∑T
t=1

∑N
i=1

∑N
j=1 ξt,t′

(
i, j

) . (5.13)
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The formula of state duration distributions is the ratio of the expected number of times
state i occurred with duration d to the expected number of times state i occurred with any
duration:

pi(d) =

∑T
t=1 αt,t′

(
i, j

)
P
(
d = t′ − tj

)
bj
(
Ot′

t+1

)

∑D
d=1

∑T
t=1 αt,t′

(
i, j

)
P
(
d = t′ − tj

)
bj
(
Ot′

t+1

) . (5.14)

The reestimation formula for segmental observation distributions is the expected
number of times that observation ot = vk occurred in state i, normalized by the expected
number of times that any observation occurred in state i. Since αt(i) accounts for the partial
observation sequence o1o2 · · · ot and state i at t, βt(i) accounts for the partial observation
sequence ot′ot′+1 · · · oT , given state i at t. The remainder of the observation sequence
otot+1 · · · ot′ given state i at t and state j at t′ is accounted by P(Ot′

t+1 | t = qn, st = i, t′ = qn+1, st′ =
j). Therefore, the reestimation of segmental observation distributions can be calculated as
follows:

bi(k) =

∑T
t=1 s.t. Ot=vk αt(i)

[
φt,t′

(
i, j

)
/
∑D

d=1 P(d = t′ − ti)
]
βt(i)

∑T
t=1 αt(i)

[
φt,t′

(
i, j

)
/
∑D

d=1 P(d = t′ − ti)
]
βt(i)

. (5.15)

5.4. Training of Macrostate Duration Models Using
Parametric Probability Distributions

State duration densities could be modeled by single Gaussian distribution estimated from
training data. The existing state duration estimation method is through the simultaneous
training HSMMs and their state duration densities. However, these techniques are inefficient
because it requires huge storage and computational load. Therefore, a new approach for
training state duration models is adopted. In this approach, state duration probabilities are
estimated on the lattice (or trellis) of observations and states which is obtained in the HSMM
training stage.

Although the vector quantization (VQ) can be used to quantize signals via codebook,
there might be serious degradation associated with such quantization [28]. Hence it would
be advantageous to use the HSMMs with continuous observation densities. In this research,
mixture Gaussian distribution is used. The most general representation of the pdf is a finite
mixture of the following form:

bj(O) =
Mj∑

m=1

cjm · η
[
O,μjm,Ujm

]
=

Mj∑

m=1

P
(
Mm = m | st = j

)
· η

[
O,μjm,Ujm

]
, 1 ≤ j ≤N,

(5.16)

where η represents a Gaussian distribution with mean vector μjm and covariance matrix Ujm

for themth mixture component in the state j,O is the vector being modeled,Mj is the number
of Gaussian component η in state j, and cjm = P(Mm = m | st = j) is the conditional weight



18 Mathematical Problems in Engineering

for the mth mixture component in the state j. The mixture gains cjm satisfy the stochastic
constraint:

Mj∑

m=1

cjm = 1, 1 ≤ j ≤N, (5.17)

where cjm ≥ 0, 1 ≤ j ≤N, 1 ≤ m ≤Mj , so that the pdf is properly normalized, that is,

∫∞

−∞
bj(x)dx = 1, 1 ≤ j ≤N. (5.18)

As pointed out in [28], the pdf of (5.18) can be used to approximate, arbitrarily closely, any
finite continuous density function of practical importance. Hence, it can be applied to a wide
range of problems.

6. HSMM-Based Engineering Asset Prognosis

6.1. Macrostate Duration Model-Based Prognostics

The objective of prognostics is to predict the progression of a fault condition to component
failure and estimate the RUL of the component. In the following, the procedure using a
macro-state duration model-based approach is provided [34].

Since each macro-state duration density P(dn | hi) is modeled by a single Gaussian
distribution, state durations, which maximize logP(S | λ, T) =

∑N
i=1 logP(dn | hi) under the

constraint T =
∑N

i=1 D(hi), are given by

D(hi) = μ(hi) + ρ · σ2(hi),

ρ =

(
T −

∑N
i=1 μ(hi)

)

∑N
i=1 σ

2(hi)
.

(6.1)

6.2. Prognostics Procedure

The macro-state duration model-based component prognostics procedure is given as follows.

Step 1. From the HSMM training procedure (i.e., parameter estimation), we can obtain the
state transition probability for HSMM.

Step 2. Through the HSMM parameter estimation, the duration pdf for each macro-state can
be obtained. Therefore, the duration mean and variance can be calculated.

Step 3. By classification, identify the current health status of the component.

Step 5. The RUL of the system can be computed by the following backward recursive
equations (suppose that the system currently stays at health state i; RULi indicates the
remaining useful life starting from state i).



Mathematical Problems in Engineering 19

At state N − 1,

RULN−1 = aN−1,N−1[D(hN−1) +D(hN)] + aN−1,N[D(hN)]. (6.2)

At state N − 2,

RULN−2 = aN−2,N−2[D(hN−2) + RULN−1] + aN−2,N−1[RULN−1]. (6.3)

At state i,

RULi = t̂ic + ai,I+1[RULi + 1]. (6.4)

7. Demonstration of Engineering Asset Diagnostic and
Prognostic Processes

7.1. Diagnostics for Pumps

In this demonstration, a real hydraulic pump health monitoring application is provided
by using HSMM-based reliability prediction. In the test experiments, three pumps (pump
6, pump 24, and pump 82) were worn to various percent decreases in flow by running
them using oil containing dust. Each pump experienced four states: baseline (normal state),
contamination 1 (5 mg of 20-micron dust injected into the oil reservoir), contamination 2
(10 mg of 20-micron dust injected into the oil reservoir), and contamination 3 (15 mg of 20-
micron dust injected into the oil reservoir). The contamination stages in this hydraulic pump
wear test case study correspond to different stages of flow loss in the pumps. As flow rate
of a pump clearly indicates the heath state of a pump, therefore, the contamination stages
corresponding to different degrees of flow loss in a pump were defined as the health states
of the pump in the pump wear test. The data collected were processed using wavelet packet
with Daubechies wavelet 10 (db10) and five decomposition levels as the db10 wavelet with
five decomposition levels provides the most effective way to capture the fault information
in the pump vibration data [35–37]. The wavelet coefficients obtained by the wavelet packet
decomposition were used as the inputs to the HMMs and HSMMs. In this test, we wanted
to see how the HSMMs could classify the health conditions of the pumps in comparison
with the HMMs. From the diagnosis results, it can be seen that the classification rates for all
three pumps reach 100%. For individual pump’s diagnostics, it can be seen that the correct
recognition rate is increased by 29.3%, which shows that the HSMM is superior to currently
used HMM-based approach. In addition, experiments show that both HMM-based diagnosis
and HSMM-based diagnosis have almost the same computational time. This means that
HSMM-based method is efficient and could be used in the real applications with large data
sets.

7.2. Prognostics for Pumps

For prognostics, the life time training data from pump 6, pump 24, and pump 82 are used.
By training, an HSMM with four health states can be obtained. And, the mean and variance
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of the duration time in each state are also available through the training process. Then, the
mean value of the remaining useful life of a pump can be calculated as follows (in terms of
(6.4) and suppose that the component currently stays at state “Contamination1”):

RULmean = 28.0829 (time units). (7.1)

Similarly, the variance of the remaining useful life of a pump can be obtained as
follows:

RULvariance = 1.7846 (time units). (7.2)

That is, if the component is currently at state “Contamination1”, then its expected
remaining useful life is 28.0829 time units with confidence interval 1.7846 time units.

8. Conclusions

The concepts, models, algorithms, and applications of nonlinear time-series data mining in
engineering asset health and reliability prediction are discussed. Various techniques and
algorithms for engineering asset reliability prediction have been reviewed and categorized
depending on what models are usually adopted. In order to obtain the insights of the
engineering asset health and reliability prediction, the detailed models, algorithms-and
applications of HSMM-based asset health prognosis are given. The health states of assets
are modeled by state transition probability matrix and observation probability. The duration
of each health segment is described by the state duration probability. As a whole, they are
modeled as a hidden semi-Markov chain.

Although prognostics is still in its infancy and literature is yet to present a
working model for effective prognostics, a new trend is that more combination models are
designed to deal with data extraction, data processing, and modeling for prognostics. From
simple heuristic-based models to complex HSMM models that impose artificial intelligence
knowledge, these methodologies have their own advantages and disadvantages. Since
single-approach models have some difficulties in achieving satisfied results, it is a very
challenging work to develop prognostics applications that can provide precise prediction.
A well designed combination model usually combines two or more theories and algorithms
to model the system in order to eliminate the disadvantages of each individual theory and
utilize the advantages of all combined methods. On the other hand, it is also a challenging
work to choose appropriate methods and combine them together for engineering asset health
and reliability prediction modeling.
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