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The embedding dimension and the number of nearest neighbors are very important parameters
in the prediction of a chaotic time series. In order to reduce the uncertainties in the determination
of the forgoing two parameters, a new adaptive local linear prediction method is proposed in this
study. In the new method, the embedding dimension and the number of nearest neighbors are
combined as a parameter set and change adaptively in the process of prediction. The generalized
degree of freedom is used to help select the optimal parameters. Real hydrological time series are
taken to examine the performance of the new method. The prediction results indicate that the new
method can choose the optimal parameters of embedding dimension and the nearest neighbor
number adaptively in the prediction process. And the nonlinear hydrological time series perhaps
could be modeled better by the new method.

1. Introduction

The global and regional climates have already begun changing [1], and meteorological-
driven processes have been studied by some researchers just as the study in the signal
analysis and other fields [2–8]. Many hydrological processes, such as runoff, are usually
nonlinear, complex, dynamic processes because of the involved physical process and
the considerable spatial and temporal variability [9]. The simulation of the nonlinear
hydrological time series was turned out to be very difficult with the traditional deterministic
mathematic models. However, the emergence of chaos theory provides a new way to study
this kind of highly complex system and makes it possible to extract deterministic regulation
from the seemingly disordered hydrological phenomenon. Chaos theory is an important part
of nonlinear science and some scientists have done research on its theories and applications
[10, 11]. From the last decades, a series of theories and methods identifying chaotic essences
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in dynamic systems have gradually been established [12–17]. The first application of chaos
theory in hydrological processes could be traced back to the analysis of a series of 1008
monthly rainfall values recorded in Nauru Island by Hense in 1987 [18], and then the chaos
theory became a more and more reliable tool for the study of hydrological processes.

With the development of chaos theory and research on its application technique, many
methods have been proposed to predict chaotic time series, which can broadly be divided
into two main categories: global method [19] and local method [20, 21]. The global method
is made an attempt to approximate the whole time series on all attractors and seek a function
valid at every point. It is obvious that this kind of method has the disadvantage that if new
information is added into the model, the parameters may be changed and a lot of time will
be wasted in the parameter estimation. However, the local method overcomes this drawback
by building model only on the local attractor and utilizing only part of the past information.
Farmer and Sidorowich [20] have already proved that the local prediction method is better
than the global prediction method. On the other hand, by using some combining techniques,
the forecast accuracy can be improved both in the global method and in the local method
[21].

In the process of the local prediction, the phase space reconstruction is the first step
and three parameters (the embedding dimension m, the time delay τ , and the number of
the nearest neighbors q) should be determined. The studies of the nonlinear predictions
indicate that the selection of delay time does not affect the reconstructed attractor reflecting
the dynamics of the system unambiguously; so the key problem is the determination of the
optimal m and q for prediction. (Usually, the number of the nearest neighbors q is taken
greater than m in general condition.)

Although there are many discussions on how to determine the optimal embedding
dimension, three basic methods presented below are most usually used. The first kind
of methods is based on calculating some geometrical invariants of the attractor, such as
Grassberger-Procaccia method (G-P method) [16]. By increasing the embedding dimension,
the minimum embedding dimension can be selected when the value of the invariant becomes
saturated. The typical problems of this method are time-consuming for computation,
unsuited for a short time series, and certainly subjective and sensitive to noise. The second
kind of methods, such as the false nearest neighbors method (FNN) [22, 23] and Aleksić
method [24], is based on the theory of false neighbors that the far apart points in the
original phase space will moving closer together in the reconstruction phase space when a
too low embedding dimension is selected. But the criterion is subjective in the judgment
of the false neighbors, and Cao has improved the method [25]. The third kind of methods,
such as principal component analysis (PCA) [26], singular-spectrum analysis (SSA) [27]
and singular-value decomposition (SVD) [28], is based on a singular value decomposition
proposed by Broomhead and King [26]. But the singular value decomposition is essentially
a linear method based on the covariance matrix which reflects the linear dependence [29].
This approach is also subjective to some extent that the number of large singular values
may depend on the details of the embedding process and the accuracy of data. Numerical
experience has led several researchers [28, 30] to suspect the authenticity of this method in
the analysis of nonlinear time series [31]. All of the methods mentioned above have some
shortcomings like inapplicability to a short time series, more or less subjective, sensitivity to
noise, and so forth [31].

The uncertainties in the determination of the embedding dimension and the number
of the nearest neighbors can affect the forecast precision in the process of the traditional local
prediction. So as to improve the prediction accuracy, the problem that arises then is how to
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reduce the parameter uncertainties in the predictionmethod. Aswe know, the time series data
are continually updated as the prediction process proceeded; the parameter estimated by the
phase space reconstruction using the original time sequence may not be able to reconstruct
the chaotic attractor of the new sequence. In order to reduce the uncertainties caused by the
time sequence data updating, the embedding dimension and the number of nearest neighbors
should be changed adaptively in the forecast procedure. For the purpose of getting a better
prediction results, Jayawardena et al. [32] proposed a method using the generalized degrees
of freedom (GDF) to determine the optimal number of the neighbors for the prediction. But
in his method, the embedding dimensions take the same values in the whole forecast process
like the traditional local prediction; so this method still needs to be improved.

In this study, a parameter set (m, q) is established on the basis of the two uncertain
parameters, that is, embedding dimension m and the number of nearest neighbors q. Then a
new adaptive local prediction method is proposed, in which m and q are not fixed as certain
values but are changed as the prediction steps developed. In the selection of the optimal
parameter set (m, q) for each prediction step, the generalized degrees of freedom (GDF) are
used and different error variances are calculated under different combinations of (m, q). The
optimal parameter set (m, q) is chosen when the variance obtains the smallest value. In order
to examine the validity of the new method, some real hydrological time series are used.

2. The New Local Linear Prediction Method

2.1. The Phase Space Reconstruction

For a scalar time series x1, x2, . . . , xn, the multidimensional phase-space Yi can be recon-
structed by the Takens embedding theory [15], according to

Yi =
(
xi, xi+τ , . . . , xi+(m−1)τ

)
, (2.1)

where i = 1, 2, . . . ,M,M is the total points number of the phase-space, andM = n− (m− 1)τ ,
τ is the delay time, m is the dimension of the vector Yi, called as embedding dimension, and
n is the length of the time series.

2.1.1. The Determination of Delay Time

Many methods have been developed in estimating the delay time. And the autocorrelation
function [15, 16, 33, 34], the most widely used tool in determining the delay time, is employed
in this study. The autocorrelation function can be described as

C(t) =
1

n − t

∑n−t
i=1

(
xi − μ

)(
xi+t − μ

)

σ2(x)
, (2.2)

where C(t) is the autocorrelation coefficient, t is the lag time, and μ and σ are the mean and
standard variation of the time series, respectively. The delay time τ is always selected when
the autocorrelation coefficient has dropped to 1−1/e of its initial value (e is the base of natural
logarithm).
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2.1.2. The Determination of Embedding Dimension

Among a number of embedding dimension calculation methods, the false nearest neighbors
(FNN) method [22] is most widely used. Cao has proposed a new method on the basis of
FNN method. The Cao method [25] can be described as follows. Assume that

a(i,m) =

∥
∥
∥Y (m+1)

i − Y
(m+1)
j

∥
∥
∥

∥
∥
∥Y (m)

i − Y
(m)
j

∥
∥
∥

(i = 1, 2, . . . , n −mτ), (2.3)

where ‖ · ‖ is some measurements of Euclidian distance, Y (m+1)
i is the ith phase points in the

(m+1)-dimension reconstructed phase space, and Y
(m)
j (j = 1, 2, . . . , q) is the nearest neighbor

of Y (m)
i . The mean value of all a(i,m) is

E(m) =
1

n −mτ

n−mτ∑

i=1

a(i,m). (2.4)

When the embedding dimension changes from m tom + 1, E1(m) can be defined as

E1(m) =
E(m + 1)
E(m)

. (2.5)

If E1(m) stops changing when m is greater than some value m0, then m0 + 1 can be
taken as the minimum embedding dimension to reconstruct the phase space.

2.2. The Traditional Local Linear Prediction Method

Many local prediction methods have been developed during the last decades, and the local
linear predictionmethod is considered in this study. The first step of the local linear prediction
is to find the nearest neighbor points of the current phase point YM in the reconstructed phase
space. The Euclidean distances d(i) = ‖Yi − YM‖ (i = 1, 2, . . . ,M − 1) between the current
vector YM and itsM− 1 preceding delay vectors Yi (i = 1, 2, . . . ,M− 1)will be calculated and
then q nearest neighbor points YMk (k = 1, 2, . . . , q, q is taken value great than m in general
condition) will be selected.

The local linear prediction model in an m-dimensional reconstructed phase space is
an autoregressive model and the prediction value, which is a linear superposition of the m
elements in the delay vector YM, can be given as follows:

x̂(n + 1) = AX1 = a0 +
m∑

j=1

ajxM+(j−1)τ , (2.6)

where A = [a0, a1, a2, . . . , am] is a coefficient vector that needs to be determined, and

X1 = [1, YM]T =
[
1, xM, xM+τ , . . . , xM+(m−1)τ

]T
. (2.7)
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Deterministic predictions assume that if the phase space point Yt was similar to the
current point YM, then the future point Yt+1 will also be close to the future point YM+1.
The coefficient vector A can be estimated by the current phase vector YM and its q nearest
neighbor points YMk (k = 1, 2, . . . , q) through the following equation:

AX = Y, (2.8)

where Y = [xM1+(m−1)τ+1, xM2+(m−1)τ+1, . . . , xMq+(m−1)τ+1]
T is the next series value of the points

YMk (k = 1, 2, . . . , q), and

X =

⎡

⎢
⎢
⎢⎢
⎣

1 1 · · · 1
xM1 xM2 · · · xMq

...
...

. . .
...

xM1+(m−1)τ xM2+(m−1)τ · · · xMq+(m−1)τ

⎤

⎥
⎥
⎥⎥
⎦
. (2.9)

Because the value of X and Y is known, so the estimation of coefficient vector A can
be obtained by the least squares method as A = YXT (XXT )−1 from (2.8), and then by using
(2.6), the prediction value x̂(n + 1) can be calculated. The new prediction value x̂(n + 1) is
added to the original time series as the prediction steps developed, and the last phase point
is YM+1 by the phase space reconstruction now. Following the same scheme in the forecast of
x̂(n + 1) and reestimating the coefficient vector A, x̂(n + 2) can be computed.

2.3. The Determination of the Optimal Parameters (m, q)

In the regression analysis, the degrees of freedom are often used as a model complexity
measure in various model selection criteria, such as Mallows Cp, Akaike information criteria
(AIC), and Bayesian information criterion (BIC). Yet these model selection criterion are
asymptotic in nature and do not take into account the modeling procedure which can often be
very complex [32]. So Ye [35] developed a concept of generalized degrees of freedom (GDF)
that is applicable for evaluation of the model selection.

The GDF is defined as the sum of the sensitivities of each fitted value of the model to
perturbations in the corresponding observed value [32]. It is nonasymptotic in nature and
thus is free of the sample-size constraint [35]. In the process of chaotic local linear prediction,
the GDF can be viewed as the cost of the modeling process. Considering the uncertainty in
the determination of the optimal embedding dimension and the number of nearest neighbors
for the prediction, different unbiased estimates of the error variance can be obtained under
different parameter sets (m, q). A better (m, q) for the model prediction is the one that has
a smaller error variance. So the optimal parameters (m, q) can be selected by comparing the
different error variances that are calculated. In every step of the prediction, the GDF can be
calculated and the optimal parameters (m, q) can be selected; so the GDF can provide a novel
way to guide the (m, q) changing adaptively.

Using the local linear prediction method introduced earlier, the future values of the
data series can be obtained. Here we will show how to choose the optimal (m, q) for the
prediction by using the GDF method.
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From the foregoing description, the estimate of the coefficient vectorA in (2.8) can also
be given as follows:

Y = AX + ε, (2.10)

where Y , A, X are the same in (2.8) and ε is a row vector of error values.
Using the least squares method, A and μY = AX (μY is the mean vector of Y ) can be

estimated as

A = YXT
(
XXT

)−1
, (2.11)

μ̂Y = AX = YXT
(
XXT

)−1
X. (2.12)

The sum of squared residuals for a fixed embedding dimension RSS is then expressed
as

RSS =
(
Y − μ̂Y

)(
Y − μ̂Y

)T
. (2.13)

Then an unbiased estimation of the error variance σ2
GDF is given as

σ2
GDF =

RSS
q −D

=

(
Y − μ̂Y

)(
Y − μ̂Y

)T

q −D
, (2.14)

where q is the number of nearest neighbors. D is the GDF and can be estimated by D =
tr(H) =

∑
i hii,H = (hii)(m+1)×(m+1) = X(XTX)−1XT .

This provides a tool to evaluate the goodness of the model with the chosen (m, q). With
different values of the parameter set (m, q), the matrixX and fitted vector functions μ̂Y will be
different, then different error variances can be obtained. An optimal (m, q) for the prediction
is the one that has the smallest variance.

2.4. The New Local Linear Prediction Method

By comparing the estimations of error variances σ2
GDF for different (m, q), the optimal

parameter set can be selected. It is then used for prediction. The new local linear method
proposed in this study is described as follows.

Step 1. Phase space reconstruction. Determine the embedding dimension mc and the time
delay τ for the original time series.

Step 2. Calculate the error variances. Let the embedding dimension m change from mmin to
mmax, and the number of the nearest neighbor change from qmin to qmax (In this study, mmin

andmmax are selected as 2 andmc, resp. This is not the only choice. qmin and qmax are taken as
2m+1 and 2m+10, the same as Jayawardena’s method [32].) (mmax−mmin+1)×(qmax−qmin+1)
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Table 1: Statistics indices of daily discharge time series at Peschanaya and Tim.

Statistical indices Peschanaya Tim
Total number of data 16437 15340
Mean value (m3/s) 32.3357 192.5562
Standard of deviation (m3/s) 44.6106 215.4076
Maximum value (m3/s) 661.0000 1360.0000
Minimum value (m3/s) 1.7400 28.4000
Coefficient of variation 1.3796 1.1187

local linear models can be obtained. For eachmodel, the error variance can be estimated using
(2.13) and (2.14).

Step 3. Choose the optimal (mopt, qopt) which has the minimum variance.

Step 4. Use (mopt, qopt) to reconstruct the original time series and construct a local model to
predict the next value x̂(n + 1).

Step 5. Then x̂(n + 2) can be computed by the same scheme following the last point; now it is
YM+1.

Some real hydrological time series are chosen to examine the performance of the new
local linear method (NLLP-2), and the new method is compared with the traditional local
linear prediction method (TLLP) and Jayawardena’s method (NLLP-1) [32].

3. Application in Hydrological Time Series

3.1. Study Area and Data Description

The real hydrological time series in this study are chosen as the daily discharges of
Peschanaya at Tochil’noye (52.17◦N and 85.17◦E, basin area, 4720 km2) in Russian for the
period January 1936–December 1980, and the daily discharges of Tim at Napas (59.85◦N and
81.95◦E, basin area, 24500 km2) in Russian for the period January 1953–December 1994. Some
important statistical values are shown in Table 1.

For the daily discharge from Peschanaya, the time series is divided into two data sets,
the first training data set is the data during the period January 1936–December 1979, and the
second prediction data set is the data during the period January 1, 1980–February 9, 1980.
In the same way, the first training data set for Tim is the data during the period January
1953–December 1993, the second prediction data set is the data during the period January 1,
1994–February 9, 1994. The prediction lead time for both of the time series is 40 days.

3.2. Phase Space Reconstruction

In this study, the delay time and the embedding dimension of the above two daily discharge
time series are determined by the autocorrelation function method and the Cao method,
respectively. The changes of the autocorrelation functions for both of the time series are
presented in Figure 1 and the values of E1(m) are shown in Figure 2.
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Figure 1: Autocorrelation functions for daily discharge time series observed at Peschanaya and Tim. (The
red line presents the situation that the autocorrelation function value is 1 − 1/e of its initial value.)
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Figure 2: The values of E1(m) for daily discharge time series observed at Peschanaya and Tim.

The delay time is selected when the autocorrelation coefficient has dropped to 1 −
1/e of its initial value. From Figure 1, the delay time for the Peschanaya and Tim can be
determined as 9 and 20, respectively. (The red line in Figure 1 presents the situation that the
autocorrelation function value is 1 − 1/e of its initial value.)
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From Figure 2, the value of E1(m) becomes saturated from m0 = 5; so the embedding
dimension can be determined as m0 + 1 = 6 for Peschanaya. In the same way, the embedding
dimension for Tim can be determined as 6 too.

The third parameter in the local linear prediction of the daily discharge time series is
the number of the nearest neighbors. In this study, only the traditional prediction method
(TLLP) needs to give this parameter as a prior; the rest two methods (NLLP-1 and NLLP-2)
can obtain the number of nearest neighbors adaptively in the prediction procedure.

3.3. The Prediction Results and Analysis

Both of the time series were predicted by TLLP, NLLP-1, and NLLP-2, respectively. In order
to obtain the best forecast results with the TLLP, the number of nearest neighbors q for TLLP
is changed from m + 1 to m + 19. By comparing the prediction results under different q, the
optimal forecast results by TLLP in different q can be selected. The prediction results by TLLP
were shown in Table 2.

The accuracy of prediction is evaluated by three measurement indices in this study,
which are the Mean absolute error (MAE), Root mean square error (RMSE), and Correlation
coefficient (CC). The definitions of the three indices can be given as follows:

MAE =
1
n

n∑

i=1

∣∣yi − xi

∣∣,

RMSE =

√√√
√ 1

n

n∑

i=1

(
yi − xi

)2
,

CC =
∑n

i=1(xi − x)
(
yi − y

)

√∑n
i=1 (xi − x)2

∑n
i=1

(
yi − y

)2
,

(3.1)

where n is the number of the time series under investigation. The yi and xi are the predicted
values and observed values in the time series, respectively, and x and y are the mean of
observed values and predicted values, respectively.

Generally, in the above measurement indices, lower values with the MAE and RMSE
indicate better agreement, and higher positive values with the CC indicate better agreement
between the observed values and predicted values.

From Table 2, it can be seen that the best forecast results for Peschanaya by TLLP
method are obtained when the number of nearest neighbors ism+ 7, that is, 13, (with MAE =
0.4781, RMSE = 0.6878, CC = 0.9092). And the best forecast results for Tim by TLLP method
are obtained when the number of nearest neighbors ism+ 16, that is, 22, (with MAE = 7.6517,
RMSE = 9.4725, CC = 0.9089).

The results of NLLP-1, NLLP-2, and the optimal results of the TLLP are showed in
Figure 3. The comparisons of the three methods between 20 lead time steps and 40 lead time
steps are showen in Tables 3 and 4, respectively.

From Figure 3(a) and Table 3, it can be seen that NLLP-1 gets the best prediction results
at the beginning of the prediction process for Peschanaya (withMAE = 0.2367, RMSE = 0.2767
and CC = 0.9636 for NLLP-1 when the lead time step is 20), and under this condition, both of
the results by NLLP-1 and NLLP-2 are better than those by TLLP. But as the prediction step
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Table 2: The prediction results for the daily discharge time series observed at Peschanaya and Tim by TLLP
method.

Number of nearest
neighbors

Peschanaya Tim
MAE (m3/s) RMSE (m3/s) CC MAE (m3/s) RMSE (m3/s) CC

m + 1 9.6882 × 102 2.1893 × 103 0.6966 1.6088 × 1010 4.5795 × 1010 0.2904

m + 2 4.2862 × 105 1.4036 × 106 0.5548 47.9224 78.8664 0.0600

m + 3 5.3151 6.2056 0.4293 8.1494 × 104 1.4928 × 105 0.5736

m + 4 1.4779 1.8310 0.9503 8.4746 × 1011 3.0884 × 1012 0.3439

m + 5 2.4415 4.2853 0.7696 2.0832 × 1017 9.1309 × 1017 0.2899

m + 6 0.8428 1.1907 0.8307 2.1107 × 1011 7.5627 × 1011 0.3491

m + 7 0.4781 0.6878 0.9092 22.4636 24.4395 −0.3345
m + 8 0.5362 0.6917 0.8891 19.9365 20.9531 −0.5286
m + 9 0.5599 0.7638 0.8127 19.1111 20.0202 −0.5056
m + 10 0.4978 0.6815 0.9236 11.1223 14.2123 0.7822

m + 11 0.7445 0.9671 0.8399 18.2638 24.1865 0.8162

m + 12 2.6259 5.6787 −0.6568 13.6905 17.0975 0.8609

m + 13 2.7742 6.0485 −0.6574 11.0150 13.6199 0.8799

m + 14 1.9536 3.7148 −0.6846 11.7535 14.7329 0.8702

m + 15 2.6877 5.8700 −0.6505 11.7260 14.4979 0.8819

m + 16 1.8358 3.4853 −0.6612 7.6517 9.4725 0.9089

m + 17 1.8763 3.3413 −0.7216 11.9486 14.7064 0.8939

m + 18 2.5108 5.5012 −0.6394 13.2781 16.1363 0.8916

m + 19 2.0266 4.0896 −0.6516 14.8208 17.9076 0.8850

Table 3: The comparison of the prediction results by TLLP (m = 6, q = 13), NLLP-1, and NLLP-2 for
Peschanaya.

Method 20 steps 40 steps
MAE (m3/s) RMSE (m3/s) CC MAE (m3/s) RMSE (m3/s) CC

TLLP 0.4723 0.6005 0.8747 0.4781 0.6878 0.9092
NLLP-1 0.2367 0.2767 0.9636 0.8613 1.1324 0.7158
NLLP-2 0.3511 0.4455 0.6942 0.9658 1.1894 0.9516

Table 4: The comparison of the prediction results by TLLP (m = 6, q = 22), NLLP-1, and NLLP-2 for Tim.

Method 20 steps 40 steps
MAE (m3/s) RMSE (m3/s) CC MAE (m3/s) RMSE (m3/s) CC

TLLP 2.5799 3.5369 0.9539 7.6517 9.4725 0.9089
NLLP-1 7.4430 9.2437 −0.5338 8.8872 9.8291 −0.1647
NLLP-2 2.6050 2.9928 0.9113 1.7600 2.2413 0.9054

increased, the forecast precision of NLLP-1 and NLLP-2 becomes worse than that of TLLP.
When the lead time step becomes 40, the TLLP (with MAE = 0.4781, RMSE = 0.6878 and CC
= 0.9092) obtains the best results.

From Figure 3(b) and Table 4, it can be seen that, not only at the beginning of the
prediction procedure but also along the whole procedure when the lead time step is 40, the
NLLP-2 gets the best prediction results (with MAE = 2.6050, RMSE = 2.9928, and CC = 0.9113
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Figure 3: The prediction results of the hydrological time series. (a) The prediction results by TLLP (m = 6,
q = 13), NLLP-1 and NLLP-2 for Peschanaya. (b) The prediction results by TLLP (m = 6, q = 22), NLLP-1
and NLLP-2 for Tim.

when the lead time step is 20 and MAE = 1.7600, RMSE = 2.2413, and CC = 0.9054 for TLLP
when the lead time step is 40).

From the above analysis, the prediction performance of the new method proposed in
this study (NLLP-2) is better than that of TLLP at the beginning of prediction process for
Peschanaya. For the daily discharge from Tim, the NLLP-2 is working superior than both
TLLP and NLLP-1.

The changes of the embedding dimension and the number of nearest neighbors in the
foregoing three methods are shown in Figures 4 and 5 (the lead time step is 20 days). It can
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Figure 4: The changes of embedding dimension (a) and number of nearest neighbors (b) in the prediction
process for Peschanaya (the lead time step is 20 days).

be found that the embedding dimension and the number of nearest neighbors do change
adaptively in the prediction processes.

4. Conclusion and Prospect

To obtain the optimum prediction results, a new adaptive local linear prediction method
is proposed in which the embedding dimension and the number of nearest neighbors are
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Figure 5: The changes of embedding dimension (a) and number of nearest neighbors (b) in the prediction
process for Tim (the lead time step is 20 days).

combined as a parameter set (m, q) and change adaptively as the forecast steps increased in
this study. The main results are given as follows.

(i) The optimal parameters (m, q) can be gotten by using the GDF method. In the
process of the selection of the optimal parameters (m, q) for each prediction step,
the generalized degree of freedom (GDF) is used and different error variances are
calculated under different combinations of (m, q). The optimal parameters (m, q)
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are chosen when the variance is the smallest. Then the optimal parameters are used
to reconstruct the phase space and predict the next value of the time series.

(ii) For the sake of comparing the performance of the different prediction method, real
nonlinear hydrological time series are chosen to be examined. The results from
the used example indicate that the new adaptive local linear prediction method
proposed in this study can choose the embedding dimension and the number of
the nearest neighbors adaptively in the prediction process. Compared with the
methods of TLLP andNLLP-1, the newmethod is better than TLLP at the beginning
of the prediction steps for both of the time series, and NLLP-2 is better than TLLP
and NLLP-1 for the time series from Tim during the whole forecast period.

(iii) The new adaptive local linear prediction method can be used in predicting other
nonlinear time series in the future and its theory will be further studied.
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