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The concept and model of hybrid systems are introduced. Invariant sets introduced by LaSalle
are proposed, and the concept is extended to invariant sets in hybrid systems which include
disturbance. It is shown that the existence of invariant sets by arbitrary transition in hybrid
systems is determined by the existence of common Lyapunov function in the systems. Based on the
Lyapunov function, an efficient transition method is proposed to ensure the existence of invariant
sets. An algorithm is concluded to compute the transition mode, and the invariant set can also
be computed as a convex problem. The efficiency and correctness of the transition algorithm are
demonstrated by an example of hybrid systems.

1. Introduction

Hybrid systems and invariant sets are novel topics in recent years. Hybrid systems are
systems which include discrete and continuous dynamics. In many applications, hybrid
systems have multiple operating modes; each is described by a different dynamic equation
[1–3]. Invariant set of hybrid system plays an important role in the many situations when
dynamics system is constrained in some way [4, 5]. For hybrid systems, the transition is
very important for constructing an invariant set for the systems. For some transitions, the
states of the systems may get out of each subsystem’s invariant set. In this paper, an efficient
transition method which makes the states of the hybrid systems stay in the invariant sets is
proposed. When the system is given an initial set, this method constructs transition regions
for the hybrid system to ensure the invariant set existence. Then, the invariant set can be
computed as ellipsoid set or polyhedral set [6–9].

Some studies have been done in the area of hybrid systems in recent years. Controller
design and invariant set of hybrid systems have been studied [10, 11]. The lecture notes
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[12] by Lygeros have talked about the basic theory of hybrid system including automata,
existence, analysis and synthesis, model checking, and reachability. The set invariance in
control provides a survey of the literature on invariant sets and their applications [13], and
the stability of mode transitions has been studied in [14]. Research about invariant set of
special hybrid systems has been done in [6, 7]. Polyhedral approximation computation of
invariant set has been studied in [15].

This paper proposes an efficient approach to compute the transition regions. By
the efficient transition based on the Lyapunov function theory, the system will stay in
the invariant sets. This method is attractive as the invariant set is useful to design the
switching strategies and the controller. The rest of the paper is organized as follows. Section 2
introduces the basic concept and model of the hybrid systems. The invariant sets, as well
as the existence and computation of invariant sets are given in Section 3. Section 4 presents
the invariant sets in the hybrid system and proposes an efficient transition method for the
invariant set. In Section 5, an example demonstrating the efficacy of the proposed method
is introduced. Section 6 summarizes the results presented in this paper and discusses future
research.

2. Hybrid Systems

Roughly speaking, hybrid systems are dynamic systems that involve the interaction of
different types of dynamics. Consider a hybrid system

ẋ = fi(x(t)), i = 1, 2, . . . , m. (2.1)

It can be modelled by a hybrid automaton [16].

Definition 2.1 (Hybrid Automaton). A Hybrid automaton H is the collection H =
(Q,X,U, f, Init, D, E,G,R), where Q is a discrete state space, X : X ⊂ Rn is a continuous
state space, U : U ⊂ Rλ is a set of inputs, f : Q × X → Rn is a vector field, Init is a set of
initial states, D : Q → P(X) is a domain (the domain is sometimes called the invariant set in
hybrid system), E ⊂ Q ×Q is a set of edges, G is a guard condition, and R : E ×X → P(X) is
a reset map.

Hybrid automaton defines possible evolution for their states. Starting from an initial
value (x0, q0) ∈ Init, the continuous states x flow according to the vector field f(q0, ·) in
the discrete state q0 and remain in D(q0). If the states reach a guard G(q0, qi), the discrete
state will change to qi. At the same time the states will reset to R(q0, qi, x) if the system
has the reset condition. The discrete state qi is called mode in hybrid system. So in the
hybrid automaton, the system starts from initial mode q0 to any mode qi. The process can be
repeated.

By the hybrid automaton, a temperature controller can be described as follows.
In mode q0, ud and u are the inputs, the temperature x flows according to f(q0, ud, u),

and state x stays in domain D(q0). If the temperature reaches G(q0, q1) = {x > 18}, the mode
will change to q1. It is the same process in mode q1 as shown in Figure 1. By the hybrid
controller, the temperature will stay in a domain which is called invariant set.
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Figure 1: Temperature controller automaton.

3. Invariant Set

An (positive) invariant set of a dynamic system is a subset of the state space such that once
the state enters this set, it will remain in it for all the future time [6].

That is,

x(0) ∈ M −→ x(t) ∈ M, t > 0, (3.1)

where x(t) is the subset of the dynamic system at time t and X is a subset of the state space.
Consider the continuous dynamic system

ẋ(t) = f(x(t)), (3.2)

where f is a continuous Lipschitz function with x. A sufficient and necessary condition for
X in the invariant set is that the differential equation is directed into the set at every point of
the boundary.

Definition 3.1 (Bouligand, 1932). Given a closed set κ ⊂ R
n, the tangent cone to κ in x0 is the

set

κx0 =
{
z ∈ R

n : lim inf
h→ 0

dist(x0 + hz, κ)
h

= 0
}
. (3.3)

The definition is due to Bouligand. As shown in Figure 2, if x0 ∈ int{κ}, the interior of
κ, then κx0 = R

n; if x0 /∈ int{κ}, then κx0 = φ, and x0 ∈ ∂κ. The tangent cone is a cone which
contains all the vectors directing into the set κ. According to Nagumo theorem, the closed set
is a positively invariant set for the system (3.2) if and only if for all x ∈ κ,

f(x) ∈ κx. (3.4)

Every point on the boundary is directed into the set. This can be expressed as follows:

nκ(x)Tf(x) ≤ 0, ∀x ∈ κ, (3.5)
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Figure 2: Tangent cone.

where nk(x) denotes a normal to ∂κ at x. The invariant set is described by an inequality

κ = {x ∈ R
n | V (x) ≤ b}. (3.6)

V (x) which defines the invariant set is a function of x. Considering the existence of
a quadratic Lyapunov function for a system and the fact that the level sets of Lyapunov
functions are invariant sets, a lemma can be concluded as follows.

Lemma 3.2. A system ẋ = Ax, x ∈ R
n, A ∈ R

n, exists as invariant set if all eigenvalues of A lies in
the open left half plane.

Given a set of initial states, if there exists invariant set in the system from Lemma 3.2,
the invariant set can be computed as invariant ellipsoid or invariant polyhedron.

Computed as an invariant polyhedron, the invariant set can be represented in the
following form [11]:

δ =
{
x : Fx ≤ 1

}
, (3.7)

where F is a r × n matrix and 1 ∈ Rr denotes vector of the form

1 = [1 1 · · · 1]T . (3.8)

There are mainly two computation methods [17] which include eigenstructure
analysis/assignment method [13] and the iterative method as follows.

Algorithm 3.3. One has the following.

Initialization: k = 0 and δ0 = δ
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Repeat: δk+1 = {x ∈ δ : ∃u(x) ∈ U : Ax + Bu(x) + Ew ∈ δk, for all w ∈ W}

δ∞=̇
∞⋂
i=0

δi (3.9)

Until δi+1 = δi, then δ∞ = δi.

At each step, the algorithm computes the set of states for which all solutions of the
system stay in the δk+1. The invariant set of the system is the intersection of δi until δi+1 = δi.

As an invariant ellipsoid, the invariant set can be represented as the following
ellipsoid:

δ =
{
x ∈ R

n | (x − xa)TQ−1(x − xa) ≤ 1
}
, (3.10)

where QT = Q ∈ R
n and Q 	 0. Given an initial set, the maximal invariant set in it can be

computed as a convex optimization problem. xa is the center of the ellipsoid. If a set of initial
states δ0 is given, it can be described as a polytope by linear inequalities first:

δ0 =
{
x ∈ R

n | vT
kx ≤ 1, k = 1, . . . , q

}
. (3.11)

Then this invariant set can be computed as a convex problem (CP), and it is more
convenient to compute by LMI toolbox:

Minimize log det Q−1

Subject to QAT +AQ ≤ 0, P 	 0,

vT
kQ

−1vk ≤ 1.

(3.12)

4. Invariant Sets in Hybrid System

The computation for the existence of invariant sets in linear systems presented in the previous
section can be used for computation for the existence of invariant set for the subsystems in
the hybrid systems. In hybrid systems, the existence of invariant set can be determined by
the common Lyapunov function first.

4.1. Common Lyapunov Function

In some cases, it is possible to prove the existence of invariant set. Based on the stability
theorem [18, 19], the computation is based on the sufficient conditions.

Theorem 4.1. A hybrid system qi, fi(x) = Aix exists as invariant sets by arbitrarily transition if a
common Lyapunov function exists in each subsystem.

By the common Lyapunov function, if there exists AT
i PAi ≤ 0, P 	 0, the states of the

systems will stay in an invariant set for a given initial set.
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Proof. (1) Take an arbitrary mode qi, fi, and define v(t) := V (x(t))

v̇ =
∂v

∂x
(x)ẋ =

∂v

∂x
fi ≤ 0. (4.1)

(2) There is

v(t) := V (x(t)) ≤ v(0) := V (x(0)). (4.2)

So, if the hybrid system is given an initial set which can be found as V (x(0)) ≤ b and
V (x(t)) ≤ b, the invariant set of the hybrid system exists.

In some cases, it is needed to verify that no common Lyapunov function in Theorem 4.1
exists. If the systems satisfy the following condition, as matrices Ri, Ri 	 0 can be found to
satisfy

∑
qi∈Q

AT
i Ri + RiAi > 0, (4.3)

then there is not a solution P = PT existing in Theorem 4.1.

4.2. Problem Formulation

In a hybrid system, there may not exist an invariant set by arbitrary transition if common
Lyapunov function does not exist, although an invariant set exists in each subsystem
according to Lemma 3.2. It can be shown as the example below.

Example 4.2. One has the following:

q1 :f1(x) = A1x, q2 :f2(x) = A2x,

A1 =

(−0.1 1

−10 −0.1

)
, A2 =

(−0.1 10

−1 −0.1

)
.

(4.4)

This is a simple transition system. In mode q1, it is easy to compute that all eigenvalues
of A1 lie in the open left half plane max{Re(λ(A1))} = −0.1 < 0, max{Re(λ(A2))} = −0.1 < 0.
So an invariant set exists in subsystem 1 and subsystem 2 if given an initial set as Figure 3.

However, after arbitrary transitions between the two modes, the states of the system
may not shrink to an invariant set. As Figure 4 shows, the states get out of the initial set after
transitions. There is no invariant set existing.

4.3. Efficient Transition

As the example in Section 4.2 shows, the invariant set does not exist by arbitrary transitions
although it exists in each subsystem. If there is not an invariant set in the subsystems, how
to design the transition strategy to construct the invariant set for the hybrid systems is very
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Figure 3: Trajectory of system ẋ = f1(x), ẋ = f2(x).
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Figure 4: No invariant set exists.

important such as the temperature controller in Section 1. There is not an invariant set existing
in each mode of the temperature controller, but the temperature stays in a domain after
transitions between the two modes. Based on the stability theorem by Li [20], the transition
method constructing for an invariant set can also be established as follows.

Theorem 4.3. A hybrid system

ẋ(t) = Aix(t) + Ei(t)x(t), ‖Ei(t)‖ ≤ ηi, i ∈ Q (4.5)
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if there exist a positive matrix P(P = PT ) and positive number β satisfying the matrix inequalities
below:

(
m∑
i=1

δiAi

)T

P + P

(
m∑
i=1

δiAi

)
+ P 2 + βI ≤ 0,

(
m∑
i=1

δi

)
= 1, (4.6)

η ≤
√

β

2
. (4.7)

Then, there exist invariant sets in this hybrid system by efficient transition.

In Theorem 4.3, (
∑m

i=1 δi) = 1, Ei(t)x(t) is the disturbance of each system i, and
||Ei(t)|| ≤ ηi, ηi is a constant, η = max(ηi). The domain of each system can be computed
as follows:

Di =
{
x(t) | xT (t)

(
AT

i P + PAi + P 2 + βI
)
x(t) ≤ 0

}
. (4.8)

Proof. Construct the Lyapunov function as follows:

V (x(t)) = xT (t)Px(t) + γ

∫ t

0
xT (τ)x(τ)d(τ), γ > 0. (4.9)

so

V̇ (x(t)) = xT (t)
(
ATP + PA

)
x(t) + 2xT (t)PE(t)x(t) + γxT (t)x(t)

≤ xT (t)
(
ATP + PA

)
x(t) + xT (t)P 2x(t) + xT (t)ET (t)E(t)x(t) + γxT (t)x(t)

= xT (t)
(
ATP + PA + P 2 + 2γI

)
x(t) + xT (t)

(
η2 − γ

)
x(t).

(4.10)

From (4.3),

δ1
(
AT

1P + PA1

)
+ δ2
(
AT

2P + PA2

)
+ · · · + δm

(
AT

mP + PAm

)
+ P 2 + βI ≤ 0. (4.11)

Considering the condition δ1 + δ2 + · · · + δm = 1, the inequality can also be written as

δ1
(
AT

1P + PA1 + P 2 + βI
)
+ δ2
(
AT

2P + PA2 + P 2 + βI
)
+ · · · + δm

(
AT

mP + PAm + P 2 + βI
)
≤ 0.

(4.12)

Suppose that

Di =
{
x(t) | xT (t)

(
AT

i P + PAi + P 2 + βI
)
x(t) ≤ 0

}
. (4.13)
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Taking β = 2γ , when x(t) ∈ Di,

V̇ (x(t)) ≤ xT (t)
(
AT

i P + PAi + P 2 + βI
)
x(t) + xT (t)

(
η2 − β

2

)
x(t). (4.14)

Then in conditions (4.6) and (4.7), V̇ (x(t)) ≤ 0, the states stay in the level set of
Lynapunov function V (x). So, an invariant set exists by the efficient transition. From (4.7),
we know that η determines the bound of E(t), so η is bigger and the robustness of the system
is better.

From common Lyapunov function and the concept of Theorem 4.3, the computation
for the efficient transition can be concluded as follows.

(1) Compute whether there exists common Lyapunov function by Theorem 4.1 and
inequality (4.3). If it exists, invariant sets exist in the hybrid systems by arbitrary
transitions in a given set. Otherwise go to step (3.1).

(2) Compute βmax and matrix P in (4.6), and inequality (4.6) is equivalent to the linear
matrix inequalities (LMI) as below:

P > 0, β > 0,

⎛
⎜⎝
(

m∑
i=1

δiAi

)T

P + P

(
m∑
i=1

δiAi

)
+ P 2 + βI P

P −I

⎞
⎟⎠ < 0. (4.15)

βmax and P can be computed by LMI toolbox in Matlab.

(3) Compute whether η ≤ √βmax/2; if the inequality is true, the invariant set exists in
the hybrid system (4.5).

(4) Compute the transition domain by inequality (4.8), and the computation of
invariant set in hybrid systems can be extended to the computation methods in
Section 3.

5. Example

In this sector, the hybrid system which includes two continuous dynamics in R
2 is chosen as

the trajectories and sets can be easily visualized.
Consider a class of hybrid system as follows.

Example 5.1. One has the following:

ẋ(t) = Aix(t) + Ei(t)x(t), (5.1)

A1 =

(−3 0

−2 2

)
, E1 =

(
0.6 sin t 0

0 −0.3 cos t

)
,

A2 =

(
1 6

0 −6

)
, E2 =

(−0.1 sin t 0

0 0.5 sin t

)
.

(5.2)
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For the system, we know that

η = max
{
η1, η2

}
= 0.6. (5.3)

The transition domain can be computed by the computation algorithm in Section 4.3.

(1) Common Lyapunov function. As in the modes q1 and q2,

max{Re(λ(A1))} = 2,

max{Re(λ(A2))} = 1.
(5.4)

There exists no Lyapunov function in the subsystems and no common Lyapunov
function in the hybrid system, so an invariant set exists neither in each subsystem
nor in the hybrid system by arbitrary transitions.

(2) Compute βmax and matrix P.
Fist, δi can be selected as δ1 = 0.3, δ2 = 0.7. Then, compute the linear matrix
inequalities (4.7) by LMI toolbox in Matlab. The variables can be computed as
below:

βmax = 0.993, P =

[
0.6174 0.7978

0.7978 2.8776

]
. (5.5)

(3) Compute the maximum range of the disturbance,
√
βmax/2 = 0.7069, η ≤√

βmax/2, and the disturbance is inside the bound. So, there exists an invariant set
in the hybrid system.

(4) Compute the transition domain of the hybrid system by the inequality(4.6)

D1 =
{
x(t) | xT (t)

(
AT

1P + PA1 + P 2 + βI
)
x(t) < 0

}

=

{
x(t) | xT

(−4.8786 −3.7647
−3.7647 21.4268

)
x < 0

}

=
{
(x1, x2)T |

(
−4.8786x2

1 − 7.5294x1x2 + 21.4268x2
2 < 0

)}
,

D2 =
{
x(t) | xT (t)

(
AT

2P + PA2 + P 2 + αI
)
x(t) < 0

}

=

{
x(t) | xT

(
3.2518 2.5037

2.5037 −15.0412

)
x < 0

}

=
{
(x1, x2)T |

(
3.2518x2

1 − 5.0074x1x2 − 15.0412x2
2 < 0

)}
.

(5.6)

By the transition method, there exist invariant sets in the system (5.1). The simulation
of the system by efficient transition is shown as Figure 5.
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Figure 5: Invariant set exists by efficient transitions.

In Figure 5, it is shown that there exists an invariant set for a given initial set (rectangle :
5 × 5) by the efficient transition which has been computed. The invariant set here is easy to
visualize, as shown in Figure 5; the invariant set is a part of polygon shadow. The invariant
set also can be computed as an invariant ellipsoid in (5.1) by LMI toolbox.

6. Conclusions

The concepts of hybrid systems and invariant set have been introduced in this paper, and the
computation of invariant set is also introduced. The concept is extended to invariant set in
hybrid systems in this paper. It is shown that the existence of invariant sets by arbitrary
transition in hybrid systems is determined by whether there exists a common Lyapunov
function in the systems. Based on the Lyapunov function, an efficient transition method
is proposed to ensure the existence of an invariant set. Given an initial set, an algorithm
is proposed to compute the transition mode, and the invariant set is also computed as an
invariant ellipsoid.

Since the invariant sets and the efficient transition mode can be computed efficiently,
the proposed invariant sets make it possible to model predictive control, protection, and
decision for mode transitions. An example of hybrid systems is given in this paper. The
applications to the realistic problem are currently being studied.

After the efficient transition in hybrid system, the computation for complex systems
may be difficult as it has large event sets. More efficient methods for the invariant set are
investigated in the next step. Controller design is important in the invariant set. By the effect
of the control, the system stays in the invariant set, and the application of the invariant set
in hybrid systems will be studied in the future. The method can be used to the realistic
application such as unmanned helicopter control [20] and power system.
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[11] S. Di Cairano, A. Bemporad, and J. Júlvez, “Event-driven optimization-based control of hybrid
systems with integral continuous-time dynamics,” Automatica, vol. 45, no. 5, pp. 1243–1251, 2009.

[12] J. Lygeros, Lecture Notes on Hybrid Systems, Department of Electrical and Computer Engineering,
University of Patras, 2004.

[13] F. Blanchini, “Set invariance in control,” Automatica, vol. 35, no. 11, pp. 1747–1767, 1999.
[14] H. L. Pei and B. H. Krogh, “Stability regions for systems with mode transitions,” in Proceedings of the

American Control Conference, pp. 4834–4839, June 2001.
[15] A. Chutinan and B. H. Krogh, “Computing polyhedral approximations to flow pipes for dynamic

systems,” in Proceedings of the 37th IEEE Conference on Decision and Control (CDC ’98), pp. 2089–2094,
December 1998.

[16] H. Johansson, J. Lygeros, and S. Sastry, Modeling of Hybrid Systems, UNESCO Encyclopedia of Life
Support Systems, 2002.

[17] J. Q. Li, H. L. Pei, and S. X. Zhang, “Efficient computation of invariant sets for mode transitions
systems,” in Proceedings of the International Conference on Computational Intelligence and Security, 2006.

[18] M. S. Branicky, “Multiple Lyapunov functions and other analysis tools for switched and hybrid
systems,” IEEE Transactions on Automatic Control, vol. 43, no. 4, pp. 475–482, 1998.

[19] R. A. Decarlo, M. S. Branicky, S. Pettersson, and B. Lennartson, “Perspectives and results on the
stability and stabilizability of hybrid systems,” Proceedings of the IEEE, vol. 88, no. 7, pp. 1069–1082,
2000.

[20] W. D. Li, Analysis and control of hybrid dynamic system [D], A Dissertation, Zhejiang University, 2003.


