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We study the possible link between “local turbulence strength” in a flow which is represented
by a finite time series and a “chaotic invariant”, namely, the leading Lyaponuv exponent that
characterizes this series. To validate a conjecture about this link, we analyze several time series
of measurements taken by a plane flying at constant height in the upper troposphere. For each
of these time series we estimate the leading Lyaponuv exponent which we then correlate with
the structure constants for the temperature. In addition, we introduce a quantitative technique to
educe the scale contents of the flow and a methodology to validate its spectrum.

1. Introduction

A deterministic definition of the atmospheric state as a function of time t in a domain D can
be made in terms of the values of the various meteorological variables (wind, temperature,
pressure, moisture, etc.) at each point of the domain. However, using this definition to
characterize and make meaningful distinctions between different states is not practical due to
lack of appropriate data. In view of this situation, one has to use averaged statistical quantities
to characterize the atmospheric state at least partially (e.g., one can use for this purpose
the root-mean-square of any meteorological variable in D). Ideally a finite number of such
quantities will be sufficient to characterize the state completely (as in the case of an ideal gas
in equilibrium). However it is obvious that this is not the case for the atmosphere.

In general, characterization of the state of a dynamical system in terms of a (finite) set
of invariants is a difficult task. To complicate this problem further, the representation of the
dynamical system is usually made in terms of a finite time series of measurements. For the
atmosphere, the local state is usually represented by a (finite) time series of measurements
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at one point or (almost) simultaneous measurements over a spatial domain (by aircraft).
Under these circumstances, the challenge is to extract as much useful information from this
representation [1, 2]. In particular one would like to use this time series to characterize and
differentiate quantitatively between the different local atmospheric states.

One of the “traditional tools” for extracting information from this representation is
the averaged spectrum of the time series and its slope at different wave numbers. This
information is important for the determination of the atmospheric “structure constants”
[3], which impact the propagation of electromagnetic signals in the atmosphere [4] and
many other applications. However, the estimation of this spectrum might be biased by
discontinuities in the data and the parameters that are used for this estimation (e.g., padding,
windowing, etc.) [5]. It is important therefore to cross-validate the determination of this
spectrum by other independent methods. Our first task in this paper will be to use wavelet
transform to carry out this cross validation. In addition, we introduce in this paper a new
quantitative methodology to perform a “scale decomposition” of the flow from the time series
data.

Our primary objective in this paper is to examine the possible characterization of
the local turbulence strength [6] by a “Chaotic invariants” namely, the leading Lyaponuv
exponent [1, 7, 8] of the time series that represents the flow. Thus, the basic conjecture that we
want to validate in this paper, through multiple case study, is that local turbulence strength
is functionally linked to the leading Lyaponuv exponent of the time series. Intuitively this
means that as the turbulence strength in the flow increases, it becomes more chaotic and there
is increased sensitivity to initial conditions. (We provide some additional insights about this
conjecture in Section 2.3.)

To validate this conjecture we proceed indirectly. One well-known manifestation of
turbulence strength in the atmosphere is through density fluctuations (this leads to the well
known “twinkling of the stars” phenomena). Hence turbulence strength is related to the value
of C2

N (the refraction structure constant [3, 9, 10]). In the upper troposphere (at heights of
about 10 km), the main contributor to C2

N is C2
T -the structure constant for the temperature.

It follows then that if our conjecture is correct then the leading Lyaponuv exponent for the
temperature time series should be a function of C2

T . (We note that many other attempts were
made to relate chaos theory and turbulence, see e.g., [11].)

In the analysis of atmospheric flow “length scale” is of great importance. In fact one
speaks of the “integral scale” and the “scale regimes” that are present in the atmospheric
flow. However, algorithms to compute these from a time series representation are available
only for the integral scale [6]. Scale density representation which was introduced by
Cohen [12] and others [13, 14] can give a quantitative representation of the different
scales that are present in the flow and their intensity. In a way, this decomposition is
similar to spectral analysis (which represents the averaged energy density distribution
as a function of frequency) except that here we represent the intensity of the flow at
a given scale. In particular, one can expect this intensity to “drop considerably” at the
boundary between two scale regimes that are present in the flow. In this paper, we apply
this transform to obtain a “scale decomposition” of the flow from its the time series
data.

The plan of the paper is as follows: in Section 2 we present a short theoretical overview
of the techniques that are used in this paper. In Section 3 we present the data that is being
used to carry out the objectives of this research. In Section 4 we discuss the results that were
obtained from this data using the techniques mentioned above. We end in Section 5 with
some conclusions and observations.
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2. Theoretical Background

2.1. Fractal Dimension and Wavelet Transform

In general, geophysical time series are assumed to be “self-affine” [5]. Accordingly one can
apply the theorem of Mandelbrot and Van Ness which states that the Hausdorff dimension
Hd of the time series {yn}N1 is related to the semivariogram

γk =
1
N

∑

n

(
y(n + k) − y(n)

)2
(2.1)

by the relation

γk = kHd , (2.2)

where k is the “lag”. Furthermore [1, 5], the spectral density slope β of the time series is
related to the Hausdorff and fractal (correlation) dimensions (Hd andD, resp.) by the relation

−β = 2Hd + 1 = 5 −D. (2.3)

Together these relations enable us to evaluate β without recourse to the computation
of the spectra.

Another method to compute β is based on the wavelet transform [5] where the wavelet
function is chosen to be the Mexican hat function. LetW(a, t) be the wavelet transform of (the
time series) y(t)

W(t, a) =
1

2πa

∫∞

−∞
g
(
a, t − t′

)
y
(
t′
)
dt′,

g(a, t) =
(

1
2π

)1/2(
1 − x2

)
e−x

2/2, x =
t

a
,

(2.4)

where a is the “width” of the wavelet function.
It was found that for this wavelet the variance Va of W(t, a) satisfies the power law

relation

Va = aHw (2.5)

and furthermore

β = −Hw (2.6)

which yields therefore another independent determination of β.
Finally we note that to evaluate β for a range of wave numbers where β is not constant

a proper “detrending” (namely, filtering) has to be applied to the time series that is, one has
to remove first the contributions from other parts of the flow. We discuss such a technique
which is based on the principal component analysis in Section 2.4.
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2.2. Scale Transform

The Fourier transform of a function f(t) is defined as

f̂(ω) =
1√
2π

∫∞

−∞
f(t)e−iωtdt. (2.7)

This definition utilizes “weight functions” of the form eiωt which are eigenfunctions of the
“frequency operator”

F =
1
i

d

dt
. (2.8)

Motivated by this observation Cohen [12] and De Sena and Rocchesso [13] introduced the
symmetrized “scale operator”

Cx =
1
2i

(
x
d

dx
+

d

dx
x

)
(2.9)

whose eigenfunctions are

s(c, x) =
1√
2π

eic lnx

√
x
. (2.10)

To interpret the parameter “c” in (2.10), we note that s(c, x) has the same phase at
positions xk, k = 1, 2, . . . as x0 if

xk = x0e
2πk/c. (2.11)

The distance between two consecutive points in this sequence is not constant

xk+1 − xk = x0

(
e2π/c − 1

)
e2πk/c. (2.12)

However, as “c” increases in value this distance shrinks; that is, s(c, x) oscillates more
rapidly but with decreasing amplitude (as x becomes larger). Thus “c” represents the “wave
number” of the function s(c, x) which in this case measures the scale rather than frequency
of this function. Observe that “meteorological larger scales” are represented by the smaller
values of “c”.

Using these eigenfunctions, the scale transform of f(x) is defined as

D(c) =
1√
2π

∫∞

0
f(x)

e−ic lnx

√
x

dx. (2.13)

It is easy to show (using the transformation t = ez) that this integral is not singular at zero if
f(x) is bounded. The scale density of f(x) is then defined as |D(c)|2.
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To obtain some insight about the nature of this transform we, note that for an impulse

f1(x) = δ(x − x0), D(c) =
1√
2π

eic lnx0

√
x0

. (2.14)

Similarly for a wave

f2(x) = e−iω0x, f̂(ω) = δ(ω −ω0),

D(c) =
1√
2π

e−ic lnω0

√
ω0

.
(2.15)

(These are signals of “low” scale contents). However, for the eigenfunctions

s(x) =
exp(ic0 lnx)
√

2πx
, (2.16)

we have

D(c) = δ(c − c0), (2.17)

that is, these functions have a sharp scale contents.
In the context of the applications at hand, this transformation enables us to evaluate

the contribution of different scales to a signal s(x).

2.3. Structure Constants

The structure function of a geophysical variable, for example, the temperature T is defined as
[3, 9, 10]

S(r) =
〈[
T ′(r1 + r) − T ′(r1)

]2
〉
, (2.18)

where T ′ are the turbulent fluctuations in the temperature and r is the vector from one point
to another.

Kolmogorov showed that for isotropic turbulence in the inertial range, this function
depends only on d = |r| and scales as

S(d) = C2
Td

2/3. (2.19)

C2
T which appears as the proportionality constant in this equation is referred to as the

“temperature structure constant”.
The determination of the atmospheric structure constants [3, 9, 10, 15, 16] and in

particular the temperature structure constant C2
T is important in many applications, for

example, the propagation of electromagnetic signals [3, 9]. Local peaks in the values of
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these constants, which are indicative of strong turbulence and reflect on the structure of the
atmospheric flow, can have a negative effect on the operation of various optical instruments.

To estimate these structure constants in the upper troposphere or the stratosphere,
it is a common practice to send high flying airplanes that collect data about the basic
meteorological variables (such as wind, temperature, and pressure) along its flight path
which may extend up to 200 kms. To estimate the averaged value of the structure constants
along this path, one must decompose first the meteorological data into mean flow, waves, and
turbulent residuals [17–19]. From the spectrum of the turbulent residuals, one can estimate
an averaged value of the structure constants using Kolmogorov inertial range scaling and
Taylor’s frozen turbulence hypothesis [6]. For C2

T in particular we have

C2
T (k) = 4F(k)k5/3, (2.20)

where F(k) is the temperature spectral density in the inertial range and k is the wave number.
An averaged value for C2

T (over all wave numbers in the inertial range) is obtained by
averaging these values over k. Same relations hold for other geophysical variables.

In the upper troposphere where humidity is low, C2
T is the main contributor to the

refraction structure constant C2
N [3, 9] which has an important impact on the operation of

ground telescopes and is the cause for the twinkling of the stars.
To motivate our conjecture about the relationship between C2

T and the leading
Lyapunov exponents of the time series, we note that these exponents are defined by

αi = lim
t→∞

1
t

ln
‖f(x0 + y, t) − f(x0, t)‖

‖y‖ , (2.21)

where f(x0, t) is a trajectory of the dynamical system with initial conditions x0 and y is a small
change in these conditions. Thus S(r) in (2.18) represents a spatial average of the function
(f(r1 + r) − f(r1))

2 (i.e., f(x0, t) = T ′(r, t). Observe that t was suppressed in (2.18) due to
Taylor frozen turbulence field hypothesis). On the other hand, Lyaponuv exponents represent
the asymptotic time behavior of the same function. (The square is not material due the ln in
the definition of the Lyaponuv exponents). Accordingly, our conjecture can be construed as
an “ergodic proposition” which postulates a functional relationship between the spatial and
time behavior of this function.

2.4. Data Decomposition

The statistical approach to turbulence splits the raw (=actual) measurements of the flow
variables u, T, p into a sum of

u = ũ + u′ + ut, T = T̃ + T ′ + Tt, p = p̃ + p′ + pt, (2.22)

where ũ, T̃ , p̃ represent the mean (large scale) flow; u′, T ′, p′ represent waves are ut, Tt, pt,
“turbulent residuals” [17, 18].

To effect such a decomposition in our data, we used the Karahunan-Loeve (K-L)
decomposition algorithm (or PCA) which was used by many researchers. For a review see
[20]. Here we will give only a brief overview of this algorithm within our context.
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Let be given a time series X (of length N) of some geophysical variable. We first
determine a time delay Δ for which the points in the series are decorrelated. Using Δ we
create n copies of the original series

X(k), X(k + Δ), . . . , X(k + (n − 1)Δ). (2.23)

To create these one uses either periodicity or choose to consider shorter time series [21]. For
the data under consideration, we used Δ = 1024. For these n time series, one computes the
auto covariance matrix R = (Rij)

Rij =
N∑

k=1

X(k + iΔ)X
(
k + jΔ

)
. (2.24)

Let λ0 > λ1, . . . , > λn−1 be the eigenvalues of R with their corresponding eigenvectors

φi =
(
φi0, . . . , φ

i
n−1

)
, i = 0, . . . , n − 1. (2.25)

The original time series T can be reconstructed then as

X
(
j
)
=

n−1∑

k=0

ak
(
j
)
φk0 , (2.26)

where

ak
(
j
)
=

1
n

n−1∑

i=0

X
(
j + iΔ

)
φki . (2.27)

The essence of the K-L decomposition is based on the recognition that if a large spectral
gap exists after the first m1 eigenvalues of R then one can reconstruct the mean flow (or
the large component (of the data)) by using only the first m1 eigenfunctions in (2.26). A
recent refinement of this procedure due to Penland et al. [20] is that the data corresponding
to eigenvalues between m1+1 and up to the point m2 where they start to form a “continuum”
represent waves. The location of m2 can be ascertained further by applying the tests devised
by Axford [22] and Dewan [16]. According to these tests turbulence data (at the same
location) is a characterized by low coherence between u, v,w and a phase close to zero or π
between w and T . (A phase close to π/2 is characteristic of waves). These tests applied to our
data show that to a large extent the residuals that were obtained from the K-L decomposition
represent actual turbulence. For a detailed exposition of this decomposition with appropriate
supporting plots see [18].

3. Description of the Atmospheric Data

In this paper we will use two sets of data: the first was gathered by NASA [23] and the second
by the US Airforce in collaboration with some Australian universities [10, 18, 19].
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3.1. NASA Data

This data was obtained during a mission to the arctic [23] by high flying ER2 plane over
the northern polar vortex. Out this data we analyze in this paper two data sets. These sets
represent the “state of the stratosphere” (traversed by the plane) on Feb 9 and 10, 1989. The
choice of these two dates seems to be appropriate since according to mission records Feb 9
was a “normal day” while on Feb 10 the measurements were conducted at a time when “large
mesoscale disturbances were observed”. The time series of measurements for each of these
dates consists of over 100,000 data points for each of the geophysical variables u, v,w, T, and
P (which represent, respectively, the west-east, north-south, and vertical winds, temperature,
and pressure). The measurements were taken at (almost) equal intervals of 0.2 sec (a spatial
distance of 45 m).

3.2. US Airforce Data

Previous to this data collection campaign, the high flying airplanes were equipped with
only one meteorological probe. However, it was impossible to use this one-probe data to
compute several important characteristics of the flow such as Brunt-Vaisala frequency and
the Richardson number or to initiate simulations of the flow in the vicinity of the flight path
(to determine the vorticity field and the scale structure of the flow). Furthermore, it was
impossible to construct a dynamical model of the stratified flow and its related structure
constants.

In order to overcome these shortcomings, a special purpose airplane was equipped
with three probes (on the two wings and tail). This plane was used in the period of 1999–2002
to collect data over Australia and Japan about the geophysical flow at heights of about 8 km–
12 km [10, 18, 19]. The data was collected at a frequency of 50 Hertz and spatial resolution of
approximately 1 m.

Based on instrument specifications, the data noise should be at a relative error level
of 10−3. This is confirmed by the eigenvalues obtained in the K-L decomposition where the
last few eigenvalues (which reflect the noise level in the data) are of order 10−3 of the leading
eigenvalue.

4. Results

4.1. Determination of the Spectral Slope

From a meteorological (and fluid dynamics) point of view, a slope of −5/3 in the “inertial
range” of the spectrum [6] characterizes a three-dimensional turbulence. However, as was
noted already by Lilly [24], this slope can change due to “geophysical factors”. Furthermore
Kraichnan [25] showed that for 2-dimensional turbulence there is a part of the spectrum
where this slope is −3. Bacmeister et al. [15], who considered similar time series which
represent the stratospheric flow, found using averaged spectral analysis that for a large
range of wave numbers the spectral slope is close to −3. Our analysis of the time series for
the two dates under consideration tends to lend independent support for these findings.
In fact our estimates for the spectral slopes are between −2 and −3. This implies that
the stratospheric flow (which is strongly stratified) has some of the characteristics of 2D
turbulence.
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Table 1: Spectral slopes for raw data.

Variable February 9, 1989 February 10, 1989
β = −(2Ha + 1) β = D − 5 β = −Hw β = −(2Ha + 1) β = D − 5 β = −Hw

u −2.202 −2.980 −2.703 −2.322 −2.990 −2.867
v −2.144 −2.840 −2.785 −2.294 −2.976 −2.778
w −1.892 −2.992 −2.621 −2.530 −2.994 −3.098
t −2.130 −2.992 −2.665 −2.466 −2.990 −2.882
p −2.664 −2.996 −2.496 −2.786 −2.994 −2.467

Table 2: Spectral slopes for turbulent residuals.

Variable February 9, 1989 February 10, 1989
β = −(2Ha + 1) β = D − 5 β = −Hw β = −(2Ha + 1) β = D − 5 β = −Hw

u −2.406 −2.988 −2.914 −2.300 −2.984 −2.873
v −2.204 −2.992 −2.741 −2.290 −2.986 −2.863
w −1.882 −2.994 −2.565 −2.524 −2.994 −3.041
t −2.120 −2.992 −2.859 −2.426 −2.994 −2.923
p −2.394 −2.998 −2.955 −2.698 −2.998 −2.970

In Tables 1 and 2 we present the determinations of the spectral slopes which are based
on (2.1)–(2.6) for the raw data and the turbulent residuals. The estimate of the spectral
slope based on fractal dimension and wavelet transform is between −2.5 and −3. On the
other hand, the estimate based on the semivariogram is between −2. and −2.5. A possible
explanation for this discrepancy is that these techniques give different weights to different
parts of the spectrum (namely, different wave numbers). Thus the semivariogram method
gives more weight to higher wave numbers (smaller scales) where the slope should be −5/3
while the other two estimators give more weight to the larger scales where Bacmeister et al.
found a slope of −3. Furthermore, the difference between the spectral slope of the different
meteorological variable can be attributed to the fact that they are coupled differently to the
stratospheric attractor in the sense of Lorenz [26]. (We note also that the path of the plane
taking the measurements traversed twice the polar vortex.)

4.2. Scale Transform

We present in Figures 1 and 2 the scale densities for the temperature and w (the vertical
component of the wind) for a flight that took place on September 9, 2002 over Australia at
height of approximately 10 km above sea level.

These figures show clearly the integral scale(s) in the flow which is represented by
small values of “c”. They show also several other peaks which correspond to the smaller
scales in the flow. The boundaries between the different scale regimes are represented by a
well-defined dips in the scale density. We note also the similarities between the peaks of these
two scale density representations for different values of “c”.

The details that can be extracted from this analysis should be compared to the
“traditional” (statistical) technique for estimating the integral scale (only). This technique
which is based on the zero crossing of the correlation function of the turbulent residuals is
not always reliable as it might be sensitive to the methodology used to detrend the time series
that represents the flow [6].
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Figure 1: Scale transform for the temperature data for one of the flight segments on Sept 09, 2002 over
Australia.

10−2

10−1

100

101

10
2

103

|D
(c
)
|2

0 10 20 30 40 50 60 70 80 90 100

c

Scale transform of w

Figure 2: Scale transform for w (vertical wind) data for the same flight segment as in Figure 1.

4.3. C2
T and the Leading Lyaponuv Exponent

To estimate C2
T we used the US Airforce data. To derive the turbulent residuals, we used

Karahunen-Loeve (K-L) decomposition as described in Section 2.4. For fifteen data sets that
were contained in this data, averaged values for C2

T were obtained using the methodology
described in Section 2.3.

To compute the leading Lyaponuv exponents for these time series, we used Rosenstein
algorithm and its implementation in the TISEAN package [7]. (However, one should note
that other algorithms are available for this purpose [7, 8]). To apply this algorithm, one has
to determine first the “optimal” delay coordinates and embedding dimension. These were
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Figure 3: Log-log plot of E—the leading Lyapunov exponent versus C2
T . The first-order least squares fit for

this data yield the relation E = 10.85 ∗ (C2
T )

0.276.

determined using the mutual information and false neighborhood algorithms [21] which are
also implemented in the abovementioned package. This analysis led us to choose a four-
dimensional embedding space with delay coordinates of 1024 data points. This led to the
following (least squares) functional relationship:

E = 10.85
(
C2
T

)0.276
, (4.1)

where E is the leading Lyaponuv exponents. Figure 3 presents a log-log plot of the results for
this exponent versus C2

T . We also show on this plot the least square line for this data. From
this plot we see that a change in C2

T over three orders of magnitudes correlates well with the
leading Lyaponuv exponents. The fluctuations around the least squares line can be attributed
to wave activity and possible measurements errors. This demonstrates that the Lyaponuv
exponent can be used as a second local measure of turbulence strength in the data. In cases of
discrepancy between C2

T and the leading Lyaponuv exponent, one must trace out the reasons
for this mismatch and correct them.

5. Summary and Conclusions

We introduced in this paper several data analysis tools that have the potential to validate and
characterize the local atmospheric state and yield new insights about its structure.

In particular, we demonstrated that scale analysis can supplement other statistical and
spectral tools which are used routinely in the analysis of meteorological data. We believe that
we showed clearly the new depth that they bring into this analysis.

In addition, we showed that that there is a link between the local turbulence strength
and the leading Lyaponuv exponent of the time series that represents the flow. Although
our analysis does not constitute a proof of this conjecture in general, we still feel that our
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results will be useful in many applied contexts especially as a check for the validity of other
global invariants that characterize the flow. Furthermore, the determination of the leading
Lyaponuv exponent can help verify the value of C2

T (or other structure constants) that have
important practical applications.
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