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In many applications, observed signals are contaminated by both random noise and blur. This
paper proposes a blind deconvolution procedure for estimating a regression function with possible
jumps preserved, by removing both noise and blur when recovering the signals. Our procedure
is based on three local linear kernel estimates of the regression function, constructed from
observations in a left-side, a right-side, and a two-side neighborhood of a given point, respectively.
The estimated function at the given point is then defined by one of the three estimates with the
smallest weighted residual sum of squares. To better remove the noise and blur, this estimate can
also be updated iteratively. Performance of this procedure is investigated by both simulation and
real data examples, from which it can be seen that our procedure performs well in various cases.

1. Introduction

Nonparametric regression analysis provides us statistical tools for estimating regression
functions from noisy data [1]. When the underlying regression function has jumps, the esti-
mated functions by conventional nonparametric regression procedures are not statistically
consistent at the jump positions. However, the problem to estimate jump regression functions
is important because the true regression functions are often discontinuous in applications [2].
This paper focuses on estimation of the jump regression function when the observed data are
contaminated by both random noise and blur.

In the literature, there are some existing procedures for estimating regression curves
with jumps preserved in cases when only random noise is present in observed data. These
procedures include the one-sided kernel estimation methods (e.g., [3–9]), the local least-
squares estimation procedures (e.g., [10–12]), the wavelet transformation method [13], the
spline smoothing method [14], and the direct estimation methods (e.g., [15, 16]).
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In some applications, our observations are both blurred and contaminated by
pointwise noise (e.g., signals of groundwater levels in geothermy). It is, therefore, important
to remove both noise and blur when estimating the true regression function. In the
nonparametric regression literature, we have not seen any discussion about this problem
yet. In the context of image processing, which can be regarded as a two-dimensional
nonparametric regression problem [2], there is a related research area concerned about
deblurring images. Most existing image deblurring procedures assume that the point-
spread function (psf), which describes the blurring mechanism, either is known or has a
parametric form, and this function is homogeneous in the entire image (e.g., [17–20]). In
many applications, however, it is difficult to specify the psf completely or partially by a
parametric model. Our major goal in this paper is to provide a method to estimate the true
regression function properly in cases when both noise and blur are present and the psf is
unspecified.

The remaining part of the paper is organized as follows. In next section, our
proposed method is discussed in detail. Some comparative results are presented in Section 3
with several simulated examples. A real data application is presented in Section 4. Some
concluding remarks are included in Section 5.

2. Our Proposed Method

Suppose that the regression model concerned is

yi = h ⊗ f(xi) + εi, i = 1, 2, . . . , n, (2.1)

where 0 < x1 < x2 < · · · < xn < 1 are design points, εi are i.i.d. random noise with mean 0
and variance σ2, and f is an unknown nonparametric regression function that is continuous
in [0, 1] except on some jump points 0 < s1 < s2 < · · · < sm < 1. In (2.1), h is a psf, and h ⊗ f
denotes the convolution between h and f , defined by

h ⊗ f(x) =
∫
R

h(u)f(x − u)du. (2.2)

If h is not zero at the origin and zero everywhere else, then there is no blurring in the
observed curve. In such cases, model (2.1) is the conventional nonparametric regression
model. Generally speaking, the problem described by model (2.1) is ill posed if both h and
f are unknown, because infinite sets of h and f would correspond to the same response in
such cases. Therefore, proper estimation of f based on (2.1) is a challenging problem. As a
demonstration, in Figure 1(a), the solid lines denote a true regression function f with one
jump point at x = 0.5, the dotted curve denotes the blurred regression function h ⊗ f , and the
small pluses denote a set of observations from model (2.1).

To estimate f , by the conventional local linear kernel (LLK) smoothing [1], we would
consider the problem

min
a,b

n∑
i=1

{
yi − [a + b(xi − x)]

}2
K

(
xi − x
hn

)
, (2.3)
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Figure 1: (a) Solid lines denote the true regression function, and dotted curve denotes the blurred
regression function. (b) Solid lines denote the estimate of the regression function by the proposed method,
dotted curve denotes the blurred true regression function, and dashed curve denotes the conventional
local linear kernel estimate of the regression function. In both plots, little “+”s denote a set of observations
generated from model (2.1).

where K is a density kernel function with support [−1, 1] and hn is a bandwidth parameter.
Then the solution of (2.3) to a, denoted as âc(x), is defined as the LLK estimator of f(x). In
Figure 1(b), the dotted curve denotes the blurred regression function, and the dashed curve
denotes the LLK estimate of f . It can be seen that the LLK estimate removes the noise well;
but the blur is not removed and it is actually made more serious around the jump point.

Qiu [15] finds that the major reason why the conventional LLK estimate could not
preserve the jump at the jump point is that it uses a “continuous” function (i.e., a linear
function) locally to approximate the jump regression function. To overcome this limitation,
Qiu suggests fitting a piecewise linear function around x as follows:

min
al,bl ;ar ,br

n∑
i=1

{
yi − [al + bl(xi − x)] − [(ar − al)I(xi − x) + (br − bl)(xi − x)I(xi − x)]

}2
K

(
xi − x
hn

)
,

(2.4)

where I(·) is an indicator function defined by I(u) = 1 if u ≥ 0 and 0 otherwise. The
solution to al and ar are denoted as âl(x) and âr(x). It is easy to see that âl(x) and âr(x) are
actually LLK estimates of f(x) constructed from observations in the left-sided neighborhood
[x − hn, x) and the right-sided neighborhood [x, x + hn], respectively, with kernel functions
Kl(x) = K(x)I(−x) andKr(x) = K(x)I(x). Then, Qiu suggests the following jump-preserving
estimate of f(x):

f̂1(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

âl(x), if WRMSl(x) < WRMSr(x),

âr(x), if WRMSl(x) > WRMSr(x),

(âl(x) + âr(x))
2

if WRMSl(x) = WRMSr(x),

(2.5)
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where WRMSl and WRMSr are the Weighted Residual Mean Squares(WRMSs) of the left-
sided and right-sided estimates, respectively, defined by

WRMSl(x) =

∑n
i=1

[
Yi − âl − b̂l(xi − x)

]2
Kl((xi − x)/hn)∑n

i=1 Kl(xi − x/hn)

WRMSr(x) =

∑n
i=1

[
Yi − âr − b̂r(xi − x)

]2
Kr((xi − x)/hn)∑n

i=1 Kr(xi − x/hn)
.

(2.6)

Qiu [15] proves that f̂1 is a consistent estimate of f when there is no blurring in the observed
data.

Since only part of observations is actually used in f̂1, this estimator would be quite
noisy in continuity regions of f . To overcome this problem, similar to the method in [16], we
propose a modification as follows:

f̂2(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

â(x), if WRMS(x) ≤ min[WWRMSl(x),WWRMSr(x)],

âl(x), if WWRMSl(x) < WWRMSr(x),

âr(x), if WWRMSl(x) > WWRMSr(x),

(âl(x) + âr(x))
2

if WWRMSl(x) = WWRMSr(x).

(2.7)

By (2.7), when x is far away from any jump points, f(x) would be estimated by the
conventional LLK estimate. It would still be estimated by one of the one-sided estimates
around the jump points. Therefore, it is expected that f̂2(x) would be better for estimating
f(x) than f̂1(x). The solid curve in Figure 2 denotes f̂2 constructed from the data shown in
either plot of Figure 1. The two dotted curves show âl and âr , respectively. It can be seen that
f̂2 indeed estimates f well in this case.

The estimate defined in (2.7) can also be updated iteratively as follows. The estimated
values {f̂2(xi), i = 1, 2, . . . , n} can be used as observed data, and the estimate f̂2 can be
updated by (2.7) with all quantities on the right-hand side of (2.7) computed from {f̂2(xi), i =
1, 2, . . . , n}, and this process can continue iteratively. Numerical results in the next section
suggest that a good estimate can usually be generated after about 5 iterations in all the cases
considered there.

In our procedure, the bandwidth parameter hn should be chosen properly. To this end,
we use the following cross-validation (CV) procedure:

hn = arg min
hn

1
n

n∑
i=1

(
yi − f̂−i(x)

)2
, (2.8)

where f̂−i(x) is the estimate of f(x) using all of the data points except the ith point (xi, yi).
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Figure 2: The solid curve denotes f̂2 constructed from the data shown in either plot of Figure 1. The two
dotted curves show âl and âr , respectively.

3. Simulation Study

In this section, some simulated examples are presented concerning the numerical perfor-
mance of our proposed procedure. In all numerical examples presented in this paper, the
Epanechnikov kernel functionK(x) = 3/4(1−x2)I(|x| ≤ 1) is used. We consider the following
two true regression functions:

f1(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

4x, if 0 ≤ x ≤ 0.2,

4(0.4 − x), if 0.2 < x ≤ 0.4,

exp−2x2
sin(2.5πx) − 1, if 0.4 < x ≤ 0.8,

exp−2x2
sin(2.5πx), if 0.8 < x ≤ 1,

f2(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2 − 2(0.26 − x)0.2, if 0 ≤ x ≤ 0.26,

2 − 2(x − 0.26)0.6, if 0.26 < x ≤ 0.78,

2 − 2(x − 0.26)0.6 + 1, if 0.78 < x ≤ 1.

(3.1)

The function f1 has two jumps at 0.4, 0.8, and a roof discontinuity (i.e., jump in the slope) at
0.2. The function f2 has a jump at 0.78, and an unbalanced cusp (i.e., a sharp angle) at 0.26.
These functions are shown by the solid curves in Figure 3. Our observations are generated
from model (2.1) with random noise from the N(0, σ2) distribution and the psf h = (1 −
x2)(1+ cos(1.5xπ))I(|x| ≤ 1). One set of observations from each regression function is shown
by the little pluses in Figure 3.

For the proposed procedure, its Mean-Squared Error (MSE) values with several
different (n, σ) combinations are presented in Figure 4 as functions of the number of
iterations, where the bandwidth hn is chosen by the CV procedure in each iteration. All of
the MSE values are computed based on 100 replications. From the plots in Figure 4, it can
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Figure 3: (a) Solid curve denotes the true regression function f1, and little pluses denote a set of
observations when n = 400 and σ = 0.2. (b) Solid curve denotes the true regression function f2, and
little pluses denote a set of observations when n = 400 and σ = 0.2.

Table 1: Comparison of the MSE values of the three methods in various cases when f = f1. The numbers
in parentheses are the standard errors.

Method n = 200 n = 400 n = 1000
σ = .1 σ = .2 σ = .5 σ = .1 σ = .2 σ = .5 σ = .1 σ = .2 σ = .5

New .0012 .0051 .0195 .0008 .0022 .0093 .0005 .0010 0.0040
(.0001) (.0003) (.0008) (.0001) (.0001) (.0004) (.00004) (.0007) (.0002)

CLLK .0066 .0118 .0275 .0042 .0079 .0203 .0029 .0051 .01218
(.0001) (.0002) (.0006) (.0001) (.0001) (.0004) (.00002) (.0004) (.0002)

JPCF .0052 .0106 .0336 .0035 .0056 .0184 .0013 .0024 .0087
(.0003) (.0004) (.0009) (.0002) (.0002) (.0005) (.00007) (.0007) (.0002)

be seen that, for each (n, σ) combination, MSE values first decrease and then increase with
the iteration number. The optimal number of iteration is around 5 in each case, which is the
number that we recommend to use in applications.

Next, we compare the proposed procedure (denoted as NEW) with the conventional
local linear kernel (LLK) smoothing procedure and the jump-preserving curve estimation
(JPCE) procedure by Qiu [15]. Figure 5 presents the estimated regression functions by all
three methods from the observed data shown in Figure 3. For procedure NEW, 5 iterations
are used. From the plots in Figure 5, it can be seen that LLK blurs the jumps, JPCE preserves
the jumps well but its estimates are quite noisy in continuity regions, and our proposed
procedure NEW preserves the jumps well and also removes noise efficiently.

Tables 1 and 2 present the MSE values and the corresponding standard errors of the
three methods in various cases. We use 5 iterations in the proposed procedure NEW. From
Tables 1 and 2, it can be seen that procedure NEW performs the best in all cases.

4. An Application

In this section, we apply our proposed method to a groundwater level data. Possible jumps
in groundwater level arise from changes in subsurface fluid currents, which has become an



Mathematical Problems in Engineering 7

100806040200

Iterations

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
M

SE

(a)

100806040200

Iterations

0

0.005

0.01

0.015

M
SE

(b)

100806040200

Iterations

σ = 0.5
σ = 0.2
σ = 0.1

0

0.005

0.01

0.015

0.02

0.025

M
SE

(c)

100806040200

Iterations

σ = 0.5
σ = 0.2
σ = 0.1

0

0.005

0.01

0.015

M
SE

(d)

Figure 4: MSE values of the estimated regression function. (a) f = f1 and n = 200, (b) f = f1 and n = 400,
(c) f = f2 and n = 200, (d) f = f2 and n = 400.
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Figure 5: Solid curves denote the estimates by the proposed procedure NEW, dotted curves denote the
estimates by LLK, and dashed curves denote the estimates by JPCE.
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Table 2: Comparison of the MSE values of the three methods in various cases when f = f2. The numbers
in parentheses are the standard errors.

Method n = 200 n = 400 n = 1000
σ = .1 σ = .2 σ = .5 σ = .1 σ = .2 σ = .5 σ = .1 σ = .2 σ = .5)

New .0012 .0051 .0195 .0006 .0018 .0088 .0002 .0012 .0038
(.0001) (.0003) (.0008) (.00004) (.0001) (.0004) (.00003) (.00005) (.0002)

CLLK .0066 .0118 .0275 .00344 .0066 .0171 .0021 .0041 .0109
(.0001) (.0002) (.0006) (.00003) (.0001) (.0004) (.00002) (.00004) (.0002)

JPCF .0052 .0106 .0336 .00222 .0043 .0151 .0017 .0020 .0086
(.0003) (.0004) (.0009) (.0001) (.0001) (.0004) (.00003) (.00005) (.0002)
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Figure 6: Little pluses denote the groundwater level observed by the Seismograph Network Stations of
China Earthquake Center during January and May 2007, and solid curve denotes the estimated regression
curve by our proposed procedure.

important predictor of earthquakes. In Figure 6, little pluses denote the groundwater level
observed by the Seismograph Network Stations of China Earthquake Center during January
and May 2007. The solid curve denotes the estimated regression curve by our proposed
procedure in which all parameters are chosen in the same way as in the simulation examples
presented in Section 3. As indicated by the plot, the jumps around Mar 23, Aril 10, and Aril 17
are preserved well by our procedure. We checked the earthquake history and it is confirmed
by China Earthquake Center that earthquakes with magnitude of more than 4.0 occurred in
these periods in the area of observation.

5. Concluding Remarks

We have presented a blind deconvolution procedure for jump-preserving curve estimation
when both noise and blur are present in the observed data. Numerical results show that it
performs well in various cases. However, theoretical properties of the proposed method are
not available yet, which requires much future research. We believe that the proposed method
can be generalized to two-dimensional cases to solve problems such as image deblurring and
restoration.
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