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This paper presents the solution of the nonlinear equation that governs the flow of a viscous,
incompressible fluid between two converging-diverging rigid walls using an improved homotopy
analysis method. The results obtained by this new technique show that the improved homotopy
analysis method converges much faster than both the homotopy analysis method and the optimal
homotopy asymptotic method. This improved technique is observed to be much more accurate
than these traditional homotopy methods.

1. Introduction

The mathematical study of the flow of a viscous incompressible two-dimensional fluid in a
wedge-shaped channel with a sink or source at the vertex was pioneered by Jeffery [1] and
Hamel [2]. The problem has since been studied extensively by, among others, Axford [3]who
included the effects of an externally applied magnetic field and Rosenhead [4]who obtained
a general solution containing elliptic functions.

Instability and bifurcation are other aspects of the Jeffery-Hamel problem that
have attracted widespread interest; see, for example, Akulenko and Kumakshev [5, 6].
Three-dimensional extensions to and bifurcations of the Jeffery-Hamel flow have been
made by Stow et al. [7] while McAlpine and Drazin [8] presented a normal mode
analysis of two-dimensional perturbations of a viscous incompressible fluid driven between
inclined plane walls by a line source at the intersection of the walls. Banks et al.
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[9] investigated various perturbations and the linear temporal stability of such flows
and found evidence of a strong interaction between the disturbances up- and down-
stream if the angle between the planes exceeds a certain Reynolds-number-dependent
critical value. Makinde and Mhone [10] investigated the temporal stability of MHD
Jeffery-Hamel flows. They showed that an increase in the magnetic field intensity has
a strong stabilizing effect on both diverging and converging channel geometries. A
review of the theory of instabilities and bifurcations in channels is given by Drazin
[11].

As with most problems in science and engineering, the equations governing the
Jeffery-Hamel problem are highly nonlinear and so generally do not have closed form
analytical solutions. Nonlinear equations can, in principle, be solved by any one of a
wide variety of numerical methods. However, numerical solutions rarely give intuitive
insights into the effects of various parameters associated with a problem. Consequently,
most recent studies of flows in diverging and converging channels have centred on the
use of the Jeffery-Hamel flow equations as a testing and proving tool for the accuracy,
reliability, and robustness of new techniques for solving nonlinear equations. Examples
of such techniques include the summation series technique [12], the homotopy analysis
method [13, 14], the decomposition method [15], the homotopy perturbation method [16],
Hermite-Padé approximation [17], and the spectral-homotopy analysis method [18–21].
The study by Joneidi et al. [14] used three methods: the differential transform method
(DTM), the homotopy analysis method (HAM), and the homotopy perturbation method
(HPM) to solve the Jeffery-Hamel problem. The study confirmed that although both the
DTM and the HPM give acceptable accuracy, the HAM is by far the superior method
delivering faster convergence and better accuracy. Nonetheless, important improvements
have been made to the HAM by Motsa et al. [18, 19]. The spectral modification of the
HAM or SHAM proposed by Motsa et al. [18, 19] removes some of the prescriptive
assumptions associated with the HAM and further accelerates the convergence rate of the
method.

A recent study by Esmaeilpour and Ganji [22] reported on the solution of the Jeffery-
Hamel problem using an optimal homotopy asymptotic method (OHAM). This method was
developed byMarinca and Herişanu [23] for the approximate solution of nonlinear problems
of thin film flow of a fourth-grade fluid. The OHAMwas used by these authors and others to
solve the equations for the steady flow of a fourth-grade fluid in a porous medium [24, 25]
and has since been applied to many other nonlinear problems including the squeezing flow
problem by Idrees et al. [26]. Studies by Islam et al. [27, 28] further suggest that the OHAM
is more general than both the HAM and the HPMwith the latter methods being special cases
of the OHAM.

In this paper, we report on a new and improved method known as improved
homotopy analysis method (IHAM) for solving general boundary value problems. The
IHAM is an algorithm that seeks to improve the initial approximation that is later used in
the HAM to solve the governing nonlinear equation resulting in significant improvement in
the accuracy and convergence rate of the solutions. We seek to demonstrate the application
of this method by solving the Jeffery-Hamel problem and to show its accuracy and rapid
convergence by comparing the present solutions with those in the literature, including the
HAM, SHAM, and the OHAM. The IHAM solutions are further compared with numerical
solutions. Finally, we believe that this work will motivate further improvements to the
homotopy-based semi-analytical methods.
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2. Governing Equations

We consider the steady two-dimensional flow of a viscous incompressible fluid between two
nonparallel rigid planes with angle 2α. Assuming radial flow with velocity v = u(r, θ), the
motion of such a fluid is described by the equations (see [14, 19, 22])
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where ρ is the fluid density, p the pressure, and ν the kinematic viscosity. The continuity
equation implies that

h(θ) = ru(r, θ), (2.4)

and by using the nondimensional parameters

f
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, (2.5)

Equations (2.2)-(2.3) reduce to

f ′′′ + 2αRe ff ′ + 4α2f ′ = 0, (2.6)

where

Re =
αfmax

ν
=

Umaxrα

ν
(2.7)

is the Reynolds number and Umax is the maximum velocity at the centre of the channel. The
appropriate boundary conditions are

f(0) = 1, f ′(0) = 0, f(1) = 0. (2.8)
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3. Improved Homotopy Analysis Method (IHAM) Solution

In this section, we describe the use of the improved homotopy analysis method (IHAM) in
the governing equation (2.6). To apply the IHAM, we assume that the solution f(y) can be
expanded as

f
(
y
)
= fi

(
y
)
+

i−1∑
n=0

fn
(
y
)
, i = 1, 2, 3, . . . , (3.1)

where fi are unknown functions whose solutions are obtained using the HAM approach at
the ith iteration and fn, (1 ≤ n ≤ i − 1) are known from previous iterations. The algorithm
starts with the initial approximation f0(y)which is chosen to satisfy the boundary conditions
(2.8). An appropriate initial guess is

f0
(
y
)
= 1 − y2. (3.2)

Substituting (3.1) in the governing equation (2.6)-(2.8) gives

f ′′′
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subject to the boundary conditions

fi(0) = 0, f ′
i(0) = 0, fi(1) = 0, (3.4)

where the coefficient parameters ak,i−1, (k = 1, 2) and ri−1 are defined as
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Starting from the initial approximation (3.2), the subsequent solutions fi (i ≥ 1) are obtained
by recursively solving equation (3.3) using the HAM approach [29, 30]. To find the HAM
solutions of (3.3), we begin by rewriting (3.3) as

N[
fi
(
y
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= ri−1, (3.6)

where N is a nonlinear operator defined by
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i + a2,i−1fi + 2αRe fif ′
i . (3.7)
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Let fi,0(y) denote the initial guess for the unknown function fi(y), and let �/= 0 be an auxiliary
parameter. Using an embedding parameter q ∈ [0, 1] we construct a homotopy

H[
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(
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, �, q

]
=
(
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}
, (3.8)

where L is an auxiliary linear operator with the property that L[0] = 0 and Fi(y; q) is an
unknown function. Upon equatingH to 0, we obtain the zero-order deformation equation
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When, q = 0 (3.9) becomes
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This equation holds provided
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as L[0] = 0. When q = 1, (3.9) is simplified to
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= ri−1 (3.12)

as �/= 0. Equation (3.12) is the same as equation (3.6) provided

Fi
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)
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It follows from (3.11) and (3.13) that as q increases from 0 to 1, the unknown function F(y; q)
varies continuously from initial guess fi,0(y) to exact solution fi(y) of (3.6).

Differentiating (3.9) m times with respect to q and then setting q = 0 and finally
dividing the resulting equations by m! yields the mth-order deformation equations
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subject to the boundary conditions

fi,m(0) = f ′
i,m(0) = fi,m(1) = 0, (3.15)

where

χm =

⎧⎨
⎩
0, m ≤ 1,

1, m > 1.
. (3.16)
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If we define the linear operator L by

L[
Fi
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=

∂3Fi

∂y3
, (3.17)

then the initial approximation fi,0 that is used in the higher-order equations (3.14) is obtained
by solving the differential equation
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fi,0

]
= f ′′′

i,0 = ri−1, (3.18)

subject to the boundary conditions

fi,0(0) = f ′
i,0(0) = fi,0(1) = 0. (3.19)

Thus, starting from the initial approximation, which is obtained-from (3.18), higher order
approximations fi,m(y) for m ≥ 1 can be obtained through the recursive formula (3.14).
We note that (3.14) forms a set of linear ordinary differential equations and can be easily
solved analytically, especially by means of symbolic computation software such as Maple,
Mathematica, Matlab, and others.

Expanding Fi(y; q) in Taylor series about q = 0 gives

Fi

(
y; q

)
= Fi

(
y; 0

)
+

+∞∑
k=1

qk

k!
∂kFi

(
y; q

)
∂yk

∣∣∣∣∣
q=0

. (3.20)

If we set q = 1 in (3.20) and define

fi,k
(
y
)
:=

1
k!

∂kFi

(
y; q

)
∂yk

∣∣∣∣∣
q=0

(3.21)

for each k = 1, 2, . . ., then making use of (3.11) and (3.13) transforms (3.20) to

fi
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= fi,0

(
y
)
+

+∞∑
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(
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. (3.22)

Upon truncating the infinite series in (3.22), the solutions for fi are then generated using the
solutions for fi,m as follows:

fi = fi,0 + fi,1 + fi,2 + fi,3 + fi,4 + · · · + fi,m. (3.23)

The [i,m] approximate solution for f(y) is then obtained by substituting fi (obtained from
(3.23)) in (3.1).



Mathematical Problems in Engineering 7

Table 1:Comparison between the numerical results and the order [m,n] IHAM approximate results (using
� = −1) for f(y) against the OHAM results reported in [22]when Re = 50, α = 5.

y OHAM [22] [2, 2] [2, 3] [2, 4] Numerical
0 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000
0.1 0.98251809 0.98243121 0.98243124 0.98243124 0.98243124
0.2 0.93156589 0.93122583 0.93122596 0.93122596 0.93122596
0.3 0.85138155 0.85061033 0.85061061 0.85061062 0.85061062
0.4 0.74826040 0.74679035 0.74679080 0.74679080 0.74679080
0.5 0.62953865 0.62694761 0.62694817 0.62694817 0.62694817
0.6 0.50242894 0.49823389 0.49823445 0.49823445 0.49823445
0.7 0.37293383 0.36696589 0.36696634 0.36696634 0.36696634
0.8 0.24508198 0.23812347 0.23812375 0.23812375 0.23812375
0.9 0.12071562 0.11515181 0.11515193 0.11515193 0.11515193
1 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

4. Results and Discussion

The accuracy and reliability of the IHAM is determined by comparing the current results
with the optimal homotopy analysis method (OHAM) of Esmaeilpour and Ganji [22], the
homotopy analysis results (HAM) of Joneidi et al. [14], and the numerical results obtained
using the MATLAB bvp4c routine which is a boundary value solver based on the adaptive
Lobatto quadrature scheme [31, 32]. In Table 1 we show a comparison of the current velocity
results at various dimensionless angles y for different orders [m,n] of the IHAM. The
Reynolds number is fixed at Re = 50, and we consider a diverging channel with angle α = 5◦.
Convergence of the current results to the numerical results to six decimal places is achieved
at order [2, 2] while convergence to ten decimal places is achieved at order [2, 3]. On the
other hand, convergence of the OHAM is evidently slow, and up to the twentieth order of
approximation, the method mostly fails to converge to the numerical results.

The slow convergence of the OHAM is confirmed in Table 2 where the absolute errors
of the two methods in relation to the numerical solution are given. At any angle y, the
absolute error using the OHAM is much larger than that obtained using the IHAM. The
largest absolute error at any angle y using the IHAM is 5.6 × 10−7 while, by comparison,
the largest absolute error when using the OHAM is 6.958 × 10−3.

Table 3 gives a comparison of the convergence rate of the current method with the
HAM [14]. Convergence of the IHAM to the numerical results is found to be rapid, with
agreement to ten decimal places being archived at order [3, 3] of the IHAM algorithm. The
sixteenth-order HAM on the other hand fails to achieve the accuracy of both the IHAM and
the numerical results. The poor performance of the HAM is further confirmed in Table 4
where the largest absolute error incurred by the IHAM at order [3, 2] is 7.2 × 10−9 while
the largest absolute error incurred by using the sixteenth-order HAM at any angle y is
approximately a hundred times larger at 4.7 × 10−7.

Figure 1 shows the effect of the Reynolds number on the fluid velocity for different
values of α. It can be seen from the figure that the fluid velocity increases with Reynolds
numbers in the case of convergent channels (α < 0) but decreases with Re in the case of
divergent channels (α > 0). This observation is consistent with the observations made in
[13, 14, 19].
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Table 2: Comparison between the errors of the order [m,n] IHAM results against the OHAM results
reported in [22] for Re = 50 and α = 5.

OHAM [2, 2] [2, 3] [2, 4]
0.00000000 0.00000000 0.00000000 0.00000000
0.00008685 0.00000003 0.00000000 0.00000000
0.00033993 0.00000013 0.00000000 0.00000000
0.00077093 0.00000029 0.00000001 0.00000000
0.00146960 0.00000045 0.00000000 0.00000000
0.00259048 0.00000056 0.00000000 0.00000000
0.00419449 0.00000056 0.00000000 0.00000000
0.00596749 0.00000045 0.00000000 0.00000000
0.00695823 0.00000028 0.00000000 0.00000000
0.00556369 0.00000012 0.00000000 0.00000000
0.00000000 0.00000000 0.00000000 0.00000000

Table 3:Comparison between the numerical results and the order [m,n] IHAM approximate results (using
� = −1) for f(y) against the HAM results reported in [14] when Re = 110, α = 3.

y HAM [14] [3, 2] [3, 3] [3, 4] Numerical
0 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000
0.1 0.9792357062 0.9792357059 0.9792357065 0.9792357065 0.9792357065
0.2 0.9192658842 0.9192658839 0.9192658856 0.9192658856 0.9192658856
0.3 0.8265336102 0.8265336105 0.8265336123 0.8265336123 0.8265336123
0.4 0.7102211838 0.7102211831 0.7102211833 0.7102211832 0.7102211832
0.5 0.5804994700 0.5804994617 0.5804994588 0.5804994588 0.5804994588
0.6 0.4469350941 0.4469350728 0.4469350671 0.4469350670 0.4469350670
0.7 0.3174084545 0.3174084348 0.3174084276 0.3174084276 0.3174084276
0.8 0.1976410661 0.1976411012 0.1976410945 0.1976410945 0.1976410945
0.9 0.0912302288 0.0912304252 0.0912304211 0.0912304211 0.0912304211
1 0.0000004700 0.0000000000 0.0000000000 0.0000000000 0.0000000000

Table 4:Comparison between the errors of the order [m,n] IHAM results against the HAM results reported
in [14] for Re = 110 and α = 3.

y HAM [14] [3, 2] [3, 3] [3, 4]
0 0.0000000000 0.0000000000 0.0000000000 0.0000000000
0.1 0.0000000003 0.0000000006 0.0000000000 0.0000000000
0.2 0.0000000014 0.0000000017 0.0000000000 0.0000000000
0.3 0.0000000021 0.0000000018 0.0000000000 0.0000000000
0.4 0.0000000006 0.0000000001 0.0000000001 0.0000000000
0.5 0.0000000112 0.0000000029 0.0000000000 0.0000000000
0.6 0.0000000271 0.0000000058 0.0000000001 0.0000000000
0.7 0.0000000269 0.0000000072 0.0000000000 0.0000000000
0.8 0.0000000284 0.0000000067 0.0000000000 0.0000000000
0.9 0.0000001923 0.0000000041 0.0000000000 0.0000000000
1 0.0000004700 0.0000000000 0.0000000000 0.0000000000
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Figure 1: Velocity profile f(y) for different values of Re when α = 5 and α = −5, respectively.
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Figure 2: Variation of f ′′(0) against the Reynolds number when α = 5 and α = −5, respectively.

Figure 2 shows the effect of the Reynolds number on f ′′(0), which is related to wall
shear stress, for different values of α. It can be seen from the figure that f ′′(0) decreases
monotonically for α > 0. In the case of α < 0, f ′′(0) increases for a range of Re until it reaches
a peak then decreases.

5. Conclusion

In this brief note we have proposed an improved homotopy analysis method (IHAM) for the
solution of general nonlinear differential equations. We have compared the performance of
the new algorithm against the optimal homotopy analysis method (OHAM), the standard
homotopy analysis method (HAM), and numerical approximations by solving the Jeffery-
Hamel problem for Newtonian flow in converging/diverging channels. Numerical compu-
tations show that the IHAM is accurate and converges to the numerical approximations at
lower orders compared to both the HAM and the OHAM. However, at this juncture, we
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cannot say with certainty that this method is better than these other existing methods. We
recommend that we need to use this improved homotopy analysis method (IHAM) to solve
more nonlinear differential equations.

Acknowledgments

The authors wish to acknowledge financial support from the University of Swaziland,
University of KwaZulu-Natal, University of Venda, and the National Research Foundation
(NRF).

References

[1] G. B. Jeffery, “The two-dimensional steady motion of a viscous fluid,” Philosophical Magazine, vol. 6,
no. 29, pp. 455–465, 1915.
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flows,” Applied Mathematics and Computation, vol. 181, no. 2, pp. 966–972, 2006.

[18] S. S. Motsa, P. Sibanda, and S. Shateyi, “A new spectral-homotopy analysis method for solving a
nonlinear second order BVP,” Communications in Nonlinear Science and Numerical Simulation, vol. 15,
no. 9, pp. 2293–2302, 2010.



Mathematical Problems in Engineering 11

[19] S. S. Motsa, P. Sibanda, F. G. Awad, and S. Shateyi, “A new spectral-homotopy analysis method for
the MHD Jeffery-Hamel problem,” Computers & Fluids, vol. 39, no. 7, pp. 1219–1225, 2010.

[20] Z. G. Makukula, P. Sibanda, and S. S. Motsa, “A note on the solution of the von Kármán equations
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