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This paper points out that the predictability analysis of conventional time series may in general be
invalid for long-range dependent (LRD) series since the conventional mean-square error (MSE)
may generally not exist for predicting LRD series. To make the MSE of LRD series prediction
exist, we introduce a generalized MSE. With that, the proof of the predictability of LRD series
is presented in Hilbert space.

1. Introduction

Let x(t) be a realization, which is a second-order random function for t ∈ [0,∞). Let xT (t) be
a given sample of x(t) for 0 ≤ t ≤ T . Then, one of the important problems in time series is to
predict or forecast x(t) for t > T based on the known realizations of xT (t); see, for example,
Clements and Hendry [1], Box et al. [2], and Fuller [3].

A well-known case in the field of time series prediction refers to Yule’s work for the
analysis of Wolfer’s sunspot numbers (Yule [4]). The early basic theory of predicting a 2nd-
order stationary random function in the conventional sense refers to the work of Wiener [5]
and Kolmogorov [6]. By conventional sense, we mean that the stationary random functions
Wiener and Kolmogorov considered are not long-range dependent (LRD). In other words,
the time series they studied have finite mean and variance. Consequently, they in general are
not heavy tailed as can be seen from Zadeh and Ragazzini [7], Bhansali [8], and Robinson
[9].

The predictability of conventional time series has been well studied; see, for example,
Papoulis [10], Vaidyanathan [11], Bhansali [12], Lyman et al. [13], Lyman and Edmonson
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[14], and Dokuchaev [15]. The basic idea in this regard is to use mean-square error (MSE) as
a constraint to obtain a prediction; see, for example, Harrison et al. [16], Bellegem and Sachs
[17], Man [18], as well as Clements and Hendry [19]. We shall note in next section that the
conventional MSE may in general fail to be used for predicting LRD series.

LRD processes gain increasing applications in various fields of sciences and
technologies; see, for example, Beran [20], Mandelbrot [21], Cattani et al. [22], and Li et al.
[23–29]. Consequently, the prediction is desired for LRD series. The literature regarding the
prediction of LRD series appears to be increasing; see, for example, Brodsky and Hurvich
[30], Reisen and Lopes [31], Bisaglia and Bordignon [32], Bhansali and Kokoszka [33], Man
[34], Bayraktar et al. [35], Man and Tiao [36], Bisaglia and Gerolimetto [37], Godet [38], as
well as Gooijer andHyndman [39]. However, unfortunately, suitableMSE used for predicting
LRD series may be overlooked, leaving a pitfall in this respect. We shall present a generalized
MSE in the domain of generalized functions for the purpose of proving the existence of LRD
series prediction.

The rest of this article is arranged as follows. Section 2 will point out the pitfall of
prediction of time series based on traditional MSE. The proof of the predictability of LRD
series will be proposed in Section 3, which is followed by discussions and conclusions.

2. Problem Statement

Denote the autocorrelation function (ACF) of x(t) by rxx(τ), where rxx(τ) = E[x(t)x(t + τ)].
Then, x(t) is called short-range dependent (SRD) series if rxx(τ) is integrable (Beran [20]),
that is,

∫∞

0
rxx(τ)dτ < ∞. (2.1)

On the other side, x(t) is long-range dependent (LRD) if rxx(τ) is nonintegrable, that is,

∫∞

0
rxx(τ)dτ = ∞. (2.2)

A typical form of such an ACF has the following asymptotic expression:

rxx(τ) ∼ c|τ |−β(τ −→ ∞), (2.3)

where c > 0 is a constant and 0 < β < 1.
Denote the probability density function (PDF) of x(t) by p(x). Then, the ACF of x(t)

can be expressed by

rxx(τ) =
∫∞

−∞
x(t)x(t + τ)p(x)dx. (2.4)

Considering that rxx(τ) is nonintegrable, we see that a heavy-tailed PDF is a consequence
of LRD series; see, for example, Resnick [40], Heath et al. [41], Paxson and Floyd [42], Li
[23, 24, 43], Abry et al. [44], as well as Adler et al. [45].
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Denote μx by the mean of x(t). Then,

μx =
∫∞

−∞
xp(x)dx. (2.5)

The variance of x(t) is given by

Var(x) =
∫∞

−∞

(
x − μx

)2
p(x)dx. (2.6)

One remarkable thing in LRD series is that the tail of p(x) may be so heavy that the
above integral either (2.5) or (2.6) does not exist (Bassingthwaighte et al. [46], Doukhan et al.
[47], Li [48]). To explain this, we utilize the Pareto distribution. Denote pPareto(x) the PDF of
the Pareto distribution. Then (G. A. Korn and T. M. Korn [49]),

pPareto(x) =
ab

xa+1
, (2.7)

where x ≥ a. The mean and variance of x(t) that follows pPareto(x) are, respectively, given by

μPareto =
ab

a − 1
, (2.8)

Var(x)Pareto =
ab2

(a − 1)2(a − 2)
. (2.9)

It can be easily seen that μPareto and Var(x)Pareto do not exist if a = 1.
Following the work of Kolmogorov’s, a linear prediction can be expressed as follows.

Given n > 0 and m ≥ 0, the selection of proper real coefficient as is such that the following
linear combination of random variables x(t − 1), x(t − 2), . . . , x(t − n) given by

L =
n∑
i=1

aix(t − i) (2.10)

can approximate x(t +m) as accurately as possible (Kolmogorov [6]). The following MSE is
usually chosen as the prediction criterion of (2.10):

σ2 � σ2(n,m) = E[x(t +m) − L]2. (2.11)

By minimizing (2.11), one has the desired ai in (2.10). Wiener well studied that criterion for
both prediction and filtering; see, for example, Levinson [50, 51]. A predictor following (2.10)
and (2.11) can be regarded in the class of Wiener-Kolmogorov predictors.
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Various forms of linear combination in terms of (2.10) have been developed, such as
autoregressive moving average (ARMA)model, autoregressive (AR)model, moving average
(MA) model, and autoregressive integrated moving average (ARIMA); see, for example,
Lyman et al. [13], Lyman and Edmonson [14], Wolff et al. [52], Bhansali [12, 53], Markhoul
[54], Kohn and Ansley [55], Zimmerman and Cressie [56], Peiris and Perera [57], Kudritskii
[58], Bisaglia and Bordignon [59], Kim [60], Cai [61], Harvill and Ray [62], Atal [63], Huang
[64], Schick andWefelmeyer [65], Jamalizadeh and Balakrishnan [66], Clements and Hendry
[1], and Box et al. [2]. However, one thing in common for different forms of predictors is to
minimize prediction error that in principle usually follows the form of (2.11).

Note that the necessary condition for the above-described Wiener-Kolmogorov
predictor to be valid is that E[x(t)] exists (Kolmogorov [6]). For LRD series, however, it may
not always be satisfied. For instance, if an LRD series obeys the Pareto distribution, its mean
does not exist for a = 1; see (2.8).

In addition to the fact that the mean of an LRD series may not exist, its variance may
not exist either. The error in (2.11) can be expressed by

σ2(n,m) = E[x(t +m) − L]2 =
∫∞

−∞
[x(t +m) − L]2p(x)dx. (2.12)

Kolmogorov stated that the above σ2(n,m) does not increase as n increases [6]. However,
that statement may be untrue if x(t) is LRD.

It is worth noting that errors may be heavy tailed; see, for example, Peng and Yao [67]
as well as Hall and Yao [68]. For instance, LRD teletraffic is heavy tailed with the possible
heavy-tail model of Pareto (Resnick [69], Michiel and Laevens [70]) and it is Gaussian at
large time scales (Paxson and Floyd [71], Scherrer et al. [72]). Therefore, it is quite reasonable
to assume that [x(t + m) − L] follows a heavy-tailed distribution, for example, the Pareto
distribution, for the purpose of this presentation. If it obeys the Pareto one, then the above
expression approaches infinite for a = 2 (see (2.9)) no matter how large n is.

From the above discussions, we see that it may be unsuitable to use the conventional
MSE as used in the class of conventional Wiener-Kolmogorov predictors to infer that LRD
series is predictable. In the next section, we shall give the proof of the predictability of LRD
series.

3. Predictability of LRD Series

Let x(t + m) ∈ X, where X is the set of LRD processes. Let L ∈ X̂. Then, X̂ ⊆ X. We now
consider the norms and inner products in X̂ and X.

Definition 3.1 (see [73]). A function of rapid decay is a smooth function φ : R → C such that
tnφ(r)(t) → 0 as t → ±∞ for all n, r ≥ 0, where C is the space of complex numbers. The set of
all functions of rapid decay is denoted by S.

In the discrete case, the rapid decayed function is denoted by φ(n) and we still use the
symbol S to specify the space it belongs to for the simplicity without confusions.

Lemma 3.2 (see [73]). Every function belonging to S is absolutely integrable in the continuous case
or absolutely summable in the discrete case.
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Now, define the norm of x(t +m) ∈ X by

‖x(t +m)‖2 = 〈x(t +m), x(t +m)〉 =
∫∞

−∞
x2(t +m)p(x)g(x)dx, (3.1)

where g ∈ S. Define the inner product of x(t +m) ∈ X by

〈x(t +m), x(t +m)〉 = ‖x(t +m)‖2. (3.2)

Then, combining any x(t +m) ∈ X with its limit makes X a Hilbert space.
Note that

‖L‖2 = 〈L, L〉 =
∫∞

−∞
L2p(x)g(x)dx. (3.3)

Then, X̂ is the closed subset of X.

Lemma 3.3 (see [73–75], Existence of a unique minimizing element in Hilbert space). Let H
be a Hilbert space and let M be a closed convex subset of H. Let x ∈ H, x /∈M. Then, there exists a
unique element x̂ ∈ M satisfying

‖x − x̂‖ = inf
y∈M

∥∥x − y
∥∥. (3.4)

Theorem 3.4. Let L be a linear combination of the past values of x(n) according to (2.10). Then, there
exists a unique L ∈ X̂ such that ‖L − x(t +m)‖ = infs∈X̂‖x(t +m) − s‖.
Proof. X is a Hilbert space. X̂ is its closed subset and it is obviously convex. According to
Lemma 3.3, for any x(t +m) ∈ X, there exists a unique L ∈ X̂ ⊆ X such that ‖L − x(t +m)‖ =
infs∈X̂‖x(t +m) − s‖.

The above theorem exhibits that LRD series are predictable in the sense that the mean-
square error expressed by (2.12) is in general generalized to the following for g ∈ S:

σ2(n,m) = E[x(t +m) − L]2 =
∫∞

−∞
[x(t +m) − L]2p(x)g(x)dx. (3.5)

4. Discussions and Conclusions

LRD series considerably differ from the conventional series; see, for example, Beran [20, 76],
Adler et al. [45], Doukhan et al. [47], as well as Künsch et al. [77]. Examples mentioned in
this regard are regressions for fitting LRD models (Peng and Yao [67], Beran [78], and Beran
et al. [79]), variance analysis of autocorrelation estimation (Li and Zhao [80]), stationarity
test (Li et al. [81]), power spectra (Li and Lim [82, 83]), and [84–91]. This paper addresses
the particularity of the predictability of LRD series. We have given a proof of LRD series being
predictable. As a side product obtained from the proof procedure, themean-square error used
by Kolmogorov as a criterion of LRD series prediction has been generalized to be the form of
(3.5).
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