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The linear thermoelastic behavior of a composite material reinforced by two independent and
inextensible fiber families has been analyzed theoretically. The composite material is assumed
to be anisotropic, compressible, dependent on temperature gradient, and showing linear elastic
behavior. Basic principles and axioms of modern continuum mechanics and equations belonging
to kinematics and deformation geometries of fibers have provided guidance and have been
determining in the process of this study. The matrix material is supposed to be made of elastic
material involving an artificial anisotropy due to fibers reinforcing by arbitrary distributions.
As a result of thermodynamic constraints, it has been determined that the free energy function
is dependent on a symmetric tensor and two vectors whereas the heat flux vector function is
dependent on a symmetric tensor and three vectors. The free energy and heat flux vector functions
have been represented by a power series expansion, and the type and the number of terms taken
into consideration in this series expansion have determined the linearity of the medium. The linear
constitutive equations of the stress and heat flux vector are substituted in the Cauchy equation of
motion and in the equation of conservation of energy to obtain the field equations.

1. Introduction

Generally, composite materials are separated into natural composites and artificial compos-
ites. While natural and artificial composites have functional similarities, they differ greatly
in terms of methods of production and purposes of use. Natural composites are not the
result of a manufacturing and production method implemented by humans for a certain
purpose. Having extremely fine and complex subsystems, structures of this kind comprise
known natural structure elements by combination in a certain distribution at a time and on
grounds determined according to a universal program of sometimes microscopic and other
times macroscopic level. Artificial composites appear as a product of a certain manufacturing
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process produced by intellectual capabilities of the human mind to create a material with
superior characteristics for a certain application purpose. Dealing with microlevel study for
natural and artificial composite structure elements is a subject of micromechanics [1].

Generally, studies of composite materials are divided into two main branches, namely,
micromechanical and macromechanical analyses. The micromechanical analysis aims to
uncover certain mechanical characteristics relating to the general behavior of composite
materials using the physical andmechanical properties of matrix and reinforcement materials
as a starting point. Micromechanical methods can be separated into three, that is, the energy
method, elasticity method, and material mechanics method [2]. Composites are broadly used
in civilian and military aircraft, aerospace technologies, automotive industry, sea vehicles
primarily in ships, pneumatic vessels, power transmission axles, and orthopedic devices [3].

In our previous study [4], viscoelastic composites of a single fiber family have been
studied assuming that the medium has a discontinuity surface. In our study [5], it has been
assumed that a viscoelastic medium with two different inextensible fiber families does not
have a discontinuity surface. Again, in the studies in [6, 7], the exposure of a viscoelastic
medium to the effect of electrical and magnetic fields in addition to its reinforcement by
a single fiber family has been researched in the form of separate studies. Furthermore,
in his study [8], Usal has examined the electromechanical behavior of a piezoelectric
viscoelastic medium with two fiber families. Since temperature was assumed to be constant
in all of the previous studies, temperature change has not been taken into consideration.
In this study, constitutive equations have been obtained that indicate the stress and heat
distribution determining the thermoelastic behavior of a composite material reinforced by
two arbitrary independent and inextensible fiber families. Since the temperature is not
constant, a temperature gradient has been included in the calculations as an independent
constitutive variable.

Researchers like those in [9–11] have made progress in the studies they have
conducted on the formulation of thermoelastic effect on a variety of materials. A study by
Nowacki fills a large gap in thermoelasticity and its applications [12].

The thermal properties can play a significant role in affecting the design and
manufacture of composite structures in their industrial applications [13]. The subject of
thermoelastic behavior of composites has been studied by a number of different researchers
[14–21]. Fiber-reinforced composite materials belong to a very important class of materials
which are often employed in a wide variety of industrial applications. Typically, these
composite materials consist of a fabric structure where the fibers are continuously arranged
in a matrix material, and, at the macroscopic level, these composite materials exhibit strong
directional dependencies. The vehicle tyres furnishe a typical example of technological
application of such man-made composites [21].

Due to some technological requirements, it is aspired that specific construction
elements have rather elastic properties, provided that they have high durability in certain
directions. Fiber-reinforced composite materials are produced by sticking fibers in a
polymeric matrix which is elastic but with low strength. These fibers are manufactured from
high-strength graphite or bor. They can be easily bent due to the very small size of their
cross-section and it can be assumed that these fibers show a continuous distribution in a
medium. Assuming inextensibility of the fibers is a reasonable approach since the rigidity of
the fibers is very high compared to the rigidity of the matrix. Inextensibility of the fibers is
broadly accepted in practice for formulation purposes. Thus, fiber families are assumed to be
inextensible (λ2a = CKLAKAL = 1, λ2z = CKLZKZL = 1) [22]. On the other hand, the composite
material taken into consideration in this work is assumed to be compressible and shows
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linear elastic behavior. In a class of engineered fiber composites for structural load-bearing
components in civil or aerospace applications, an assumption of linear elastic behavior is
suitable and this class of composites belongs to a compressible material response.

2. Kinematics of Fibers Deformation

It is assumed that an element from two different continuous fiber families is placed on
each point of the composite material. Before deformation and after deformation, these fiber
families are represented by continuous unit vectors A(X), Z(X), a(x), and z(x), respectively.
The fibers deform along with the material; that is, fibers do not have a relative motion with
respect to the material in which they are embedded. Relationships given below are true for
an A-fiber family [23, 24]

akdl = xk, KAKdL, ak
dl

dL
= xk,KAK. (2.1)

Rates of extension of fiber family A can be defined as follows:

λa ≡
(
dl

dL

)
A

. (2.2)

If expression (2.2) is substituted into (2.1), the following expression is obtained:

ak = λ−1a xk,KAK. (2.3)

Deformation geometry of the fiber family A is expressed by relationship (2.3). Because
vectors A and a here represent unitized vectors of the fiber family A, operations are true

|A | = | a | = 1, akak = 1 = λ−2a xk,Kxk,LAKAL = λ−2a CKLAKAL. (2.4)

Accordingly, the form is found to be

λ2a = CKLAKAL. (2.5)

Relationships that are true for the Z-fiber family can be expressed as follows [23, 24]:

zk = λ−1z xk,KZK, λz ≡
(
dl

dL

)
Z

, λ 2
z = CKLZKZL, (2.6)

where dL and dl are, respectively, arc length of fiber before and after deformation, AK and
ZK are fiber unit vector components before deformation, ak and zk are fiber unit vector
components after deformation, xk,K = ∂xk/∂XK is deformation gradient, λa and λz are rates
of extension of fiber families, and CKL = xk,Kxk,L is Green deformation tensor.
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3. Thermomechanic Balance Equations

Balance equations, mass, linear momentum, angular momentum, energy balances, and
entropy inequality have been summarized in [22, 25]. We have the following:

Conservation of mass:

ρ̇ + ρvk,k = 0, ρ(x, t) =
ρ0(X)
J(x, t)

(
conservation of mass in material representation

)
,

(3.1)

balance of linear mometum:

ρv̇p = ρfp + trp,r , (3.2)

balance of moment of momentum:

εkrptrp = 0, trp = tpr , (3.3)

conservation of energy:

ρε̇ = tkldkl + qk,k + ρh, (3.4)

Clausius-Duhem inequality:

ρθη̇ − ∇ · q +
1
θ
q · ∇θ − ρh � 0. (3.5)

Here, v stands for the velocity field in a continuous medium, ρ0 for mass density before
deformation, ρ for mass density after deformation, J ≡ det[xk,K] = ρ0/ρ(x, t) for jacobian, v̇
for acceleration, tlk for stress tensor, fk for the mechanical volumetric force per unit of mass,
ε for internal energy density per unit of mass, qk for heat flux vector, h for heat source per
unit of mass, η for entropy density per unit of mass, θ(X, t) for the absolute temperature of a
material point X at a moment t, and εijk for permutation tensor.

4. Thermodynamic Constraints and Modeling Constitutive Equations

Taking (ρh) from the local energy (3.4) and substituting it in the entropy inequality (3.5)will
give us the following:

−ρ (
ε̇ − θη̇) + tkldlk + 1

θ
qkθ,k ≥ 0. (4.1)
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Since the material derivative of the entropy density in this expression cannot be controlled
inside a thermodynamic process, a defined Legendre transformation like the one provided
below can be used to transform the derivative of these values into the controllable value θ

ψ ≡ ε − θη. (4.2)

As a result, the entropy inequality is transformed as follows, expressed in new terms:

−ρ(ψ̇ + θ̇η
)
+ tkldlk +

1
θ
qkθ,k ≥ 0. (4.3)

Entropy inequality is obtained as follows in the material form [26]:

−(Σ̇ + ρ0θ̇η
)
+
1
2
TKLĊKL +

1
θ
θ,KQK ≥ 0. (4.4)

Terms relating to the new values have been provided below:

Σ ≡ ρ0ψ, (4.5)

ĊKL = 2dklxk,Kxl,L =⇒ dkl =
1
2
ĊKLXK,kXL,l, (4.6)

TKL ≡ JXK,kXL,ltkl =⇒ tkl = J−1xk,Kxl,LTKL, (4.7)

QK ≡ JXK,kqk =⇒ qk = J−1xk,KQK, (4.8)

GK ≡ θ,K = xk,Kθ,k =⇒ gk ≡ θ,k = XK,kθ,K. (4.9)

Here, Σ stands for thermodynamic stress potential, ψ for generalized free energy density, dkl
for deformation (strain) rate tensor, XK,k = ∂XK/∂xk for the deformation gradient of the
reverse motion, TKL for the stress tensor on material coordinates, QK for the heat flux vector
on material coordinates, and GK for the temperature gradient on material coordinates.

To be able to use the inequality (4.4), we need to know the independent variables
on which the thermodynamic potential Σ depends. Arguments of Σ and the variables they
depend on have been found using constitutive axioms based on the selected material.
According to the axioms of causality and determinism [22, 25], our stress potential, as a
response functional at a material point X at a time t, can be written as follows:

Σ(X, t) = Σ
[
x
(
X′, t′

)
, θ

(
X′, t′

)
,X

]
X ∈ V −∞ < t′ ≤ t. (4.10)

Here, t′ is any point in time between now and the past. X′ stands for all material points other
than X.

Using the results of causality, determinism, objectivity, smooth neighborhood, and
admissibility axioms [22, 25], the arguments on which Σ depends in a composite with two
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fiber families exposed to mechanical loading and temperature change can be expressed as
follows:

Σ(XK, t) = Σ [CKL(XK, t), GK(XK, t), AK(XK), ZK(XK), θ(XK, t), XK]. (4.11)

Assuming that the materials are homogenous, X will be eliminated from among the
arguments given in the expression (4.11) on which Σ depends. Because the fiber vectors AK

and ZK do not depend on time, the following expression is obtained by taking the material
derivative of expression (4.11).

Σ̇ =
∂Σ
∂CKL

ĊKL +
∂Σ
∂θ,K

Ġ +
∂Σ
∂θ

θ̇. (4.12)

Substituting this expression in (4.4) gives us the following inequality:

1
2

(
TKL − 2

∂Σ
∂CKL

)
ĊKL − ρ0

(
η +

1
ρ0

∂Σ
∂θ

)
θ̇ − ∂Σ

∂GK
ĠK +

1
θ
GKQK ≥ 0. (4.13)

Since we are able to arbitrarily replace the arguments in inequality (4.13) from θ to θ̇, from
CKL to ĊKL, and from GK to ĠK, for the inequality (4.13) to be satisfied, the coefficients of θ̇,
ĊKL and ĠK will be zero. The coefficient of GK cannot be zero as due to GK’s presence in the
arguments of Σ, it cannot be arbitrarily replaced. Equalizing the coefficients of ĊKL, θ̇, and
ĠK to zero will give us the following expressions:

TKL = 2
∂Σ
∂CKL

, (4.14)

η = − 1
ρ0

∂Σ
∂θ

, (4.15)

∂Σ
∂GK

= 0. (4.16)

It is understood from expression (4.16) that the stress potential does not depend on GK.
Therefore, arguments on which the stress potential depends are expressed as follows:

Σ = Σ(CKL,AK,ZK, θ). (4.17)

Thus, inequality (4.13) is reduced to the following form:

1
θ
GKQK ≥ 0. (4.18)

For the heat flux vector, expression (4.18) gives the Clausius-Duhem inequality and the
following expression indicates the arguments on which the heat flux vector depends

QK = QK(CKL,AK,ZK,GK, θ). (4.19)
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In consideration of expression (4.19), inequality (4.18) is written down as follows:

GKQK(CKL,AK,ZK,GK, θ) ≥ 0 or Q (C,A,Z,G, θ,X) ·G ≥ 0. (4.20)

In inequality (4.20), when GK = 0, QK must also be equal to zero. Accordingly, maintaining
the order of independent constitutive variables in expression (4.20), the following expression
should be written:

QK(CKL,AK,ZK, 0, θ) = 0. (4.21)

On the other hand, internal energy density ε can be written as follows from the expressions
(4.2), (4.5), and (4.15):

ε =
1
ρ0

(
Σ − ∂Σ

∂θ
θ

)
. (4.22)

From the constitutive equations offered by expressions (4.14) and (4.19), it is understood
that the stress is derived from the stress potential Σ, while the heat flux vector appears as a
vectorial form with known arguments independent of the stress potential. Thus, the explicit
forms of Σ and QK, which appear as constitutive functions with definite arguments, should
be determined. However, constraints imposed on the constitutive functions of the material in
question by the material symmetry axiom should firstly be revised.

Let the symmetry group of the material be the full orthogonal group (isotropic
material) or any of its subgroups (anisotropic material). Let S = [SKL] be any arbitrary matrix
representing the orthogonal transformation of material coordinates (or rigid configurations
of the material medium according to the reference coordinate frame) and pertaining to the
symmetry group of the medium. According to the material symmetry axiom, constitutive
functionals under each transformation

X′
K = SKLXL, XL = STLKX

′
K, S−1 = ST (4.23)

established using the orthogonal matrix S should remain form invariant. Mathematically, this
indicates the validity of the transformations

Σ
(
S C ST , S A, S Z, θ

)
= Σ

(
C,A,Z, θ

)
, (4.24)

Q
(
S C ST , S A, S Z, S G, θ

)
= Q

(
C,A,Z,G, θ

)
. (4.25)

The following conditions should be satisfied since the fiber families are assumed to be
inextensible [22, 27]:

λ2a = CKLAKAL = 1, λ2z = CKLZKZL = 1. (4.26)
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Thus, the constitutive equation for the stress is obtained as follows in spatial and material
coordinates:

tkl = Γaakal + Γzzkzl + 2xk,Kxl.L
∂Σ
∂CKL

,

TKL = ΓaAKAL + ΓzZKZL + 2
∂Σ
∂CKL

.

(4.27)

In these expressions, Γa and Γz are Lagrange coefficients and are defined by field equations
and boundary conditions.

In this study, the matrix material has been considered as an anisotropic medium. In
the scope of this approach, the stress potential and heat flux vector functions are expanded
in power series in terms of the components of arguments on which they depend, giving us
the thermoelastic behavior of the composite medium. The reference position of the medium
has been selected at a uniform temperature T0 in a stress-free natural condition, and it has
been assumed that the medium moves away from that position by small displacements
and deformations and small changes in temperature. By referring to small changes in
temperature, we mean θ = T0 + T , T0 > 0, |T | 
 T0 [22]. The type and the number of terms
taken in the series expansion have been determined based on the linearity condition of the
medium. Moreover, because the matrix material remains insensitive to change of direction
along the fibers, expressions of vector fields representing the fiber distribution through
outer products in even numbers as arguments should be considered. The linear constitutive
equation of stress has been obtained by taking the derivative of the stress potential according
to its deformation tensor. Field equations have been obtained by substituting the linear
constitutive equations of the stress and heat flux vector in the Cauchy motion equation and
in the equation of conservation of energy.

5. Determination of Stress Constitutive Equation in
Linear Thermoelasticity

Since the relation CKL = δKL + 2EKL exists between the Green deformation tensor and strain
tensor, EKL can be expressed as EKL ∼= ẼKL ≡ (1/2)(UK,L + UL,K) in a linear theory, and the
arguments of the stress potential given by expression (4.17) can be written down as follows:

Σ = Σ
(
ẼKL,AK,ZK, θ

)
. (5.1)

Assuming that this function is analytic in terms of the Ẽ,A,Z values, if this function is
expanded in Taylor series around Ẽ = 0, A = 0, Z = 0, the expression will be obtained for
the stress potential:

Σ
(
ẼKL,AS,ZY , θ

)
= Σ0(θ,X) + ΣKL(θ,X)ẼKL +

1
2
ΣKLMN(θ,X)ẼKLẼMN + λSN(θ,X)ASAN

+ ΩYN(θ,X)ZYZN + ζKLSN(θ,X)EKLASAN

+ κKLYN(θ,X)EKLZYZN + · · · .
(5.2)
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Coefficients in this equation have been defined as follows:

Σ0 = Σ
(
0, 0

)
, ΣKL ≡ ∂Σ

∂ẼKL

∣∣∣∣∣
0

, ΣKLMN ≡ ∂2Σ

∂ẼKL∂ẼMN

∣∣∣∣∣
0

, λSN ≡ 1
2

∂2Σ
∂AS∂AN

∣∣∣∣∣
0

,

ΩYN ≡ 1
2

∂2Σ
∂ZY∂ZN

∣∣∣∣∣
0

, ζKLSN ≡ 1
6

∂3Σ
∂EKL∂AS∂AN

∣∣∣∣∣
0

, κKLYN ≡ 1
6

∂3Σ
∂EKL∂ZY∂ZN

∣∣∣∣∣
0

.

(5.3)

Due to the symmetry of the ẼKL tensor and nondependence on order of the derivatives in
the definitions in the expressions (5.3), these coefficients bear the symmetry characteristics
indicated below:

ΣKL= ΣLK, ΣKLMN = ΣLKMN = ΣKLNM = ΣMNKL, λSN = λNS, ΩYN = ΩNY ,

ζKLSN = ζLKSN = ζKLNS, κKLYN = κLKYN = κKLNY .

(5.4)

The following relations can be written down for the linear theory in continuum mechanics
[22]:

EKL ∼= ẼKL ≡ 1
2
(UK,L +UL,K), ekl ∼= ẽkl = ∈kl ≡ 1

2
(uk,l + ul,k), ∈kl ∼= λkKλlLẼKL,

ẼKL ∼= λkKλlLẽkl, xk,K = λkK + uk,K, XK,k = ΛKk −UK,k, xk, Kxl,L = λkKλlL,

XK,kXL,l = λkKλlL, EKL ∼= ẼKL ≡ λkKλlLẽkl = 1
2
λkKλlL(uk,l + ul,k),

xp,Pxr,RAKAL = xp,Pxr,RXK,kXL,lakalλ
2
a = λpPλrRλkKλlLakal (for λa = 1),

xp,Pxr, RZKZL = xp,Pxr, RXK, kXL, lzkzlλ
2
z = λpPλrRλkKλlLzkzl (for λz = 1),

dpr =
∂EPR
∂t

XP,rXR,r =
∂∈pr
∂t

, dpr =
∂
(
up,r

)
∂t

, ε̇ ≈ ∂ε

∂t
,

J−1 ∼= 1 − uk,k, ρ ∼= ρ0(1 − uk,k).

(5.5)

The expression of the spatial form of stress for compressible media with inextensible fiber
families can be written down as indicated below:

tpr = Γaakal + Γzzkzl + (1 − uk,k) ∂Σ
∂ ∈pr . (5.6)

In the linear theory, arguments on which Σ depends can be expressed in spatial form as
follows:

Σ = Σ(∈kl, ak, zk, θ,X). (5.7)
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Assuming this function is analytic in terms of ∈kl, ak, zk and expanding it in the Taylor series
around ∈kl = 0, as = 0, zy = 0 will give us the following expression:

Σ
(∈kl, as, zy, θ,X) = Σ0(θ,X) + Σkl(θ,X)∈kl + 1

2
Σklmn(θ,X)∈kl∈mn + λsn(θ,X)asan

+ Ωyn(θ,X)zyzn + ζklsn(θ,X)∈klasan + κklyn(θ,X)∈klzyzn + · · · .
(5.8)

The spatial material tensors Σkl, Σklmn, λsn, Ωyn, ζklsn, and κklyn in (5.8) bear the same
properties as the material tensors of the material ΣKL, ΣKLMN , λSN , ΩYN , ζKLSN , and κKLYN
and are defined as follows:

Σkl = λkKλlLΣKL, Σklmn ≡ λkKλlLλmMλnNΣKLMN, λsn = λsSλnNλSN,

Ωyn = λyYλnNΩYN, ζklsn ≡ λkKλlLλsSλnNζKLSN, κklyn ≡ λkKλlLλyYλnNκKLYN.
(5.9)

In order to obtain a correct formulation of the linear theory, expression (5.8) should be
quadratic at most in terms of the endlessly small expansion tensor ∈kl and temperature
change T. For this purpose, the coefficients dependent on θ in the expression (5.8) have been
defined as follows, respectively:

Σ0(θ,X) = Σ0(T0 + T,X) = ρ0(X)ψ0(T0,X) − ρ0(X)η0(T0,X)T − 1
2
ρ0(X)

1
T0
C(T0,X)T2 + · · · ,

Σkl(θ,X) = γkl (T0,X) − βkl(T0,X)T + · · · ,
λsn(θ,X) = Λsn(T0,X) − μsn(T0,X)T + · · · ,
Ωyn(θ,X) = Ωyn(T0,X) − πyn(T0,X)T + · · · ,

Σklmn(θ,X) = Σklmn(T0 + T,X) = Σklmn(T0,X),

ζklsn(θ,X) = ζklsn(T0 + T,X) = ζklsn(T0,X),

κklyn(θ,X) = κklyn(T0 + T,X) = κklyn(T0,X).
(5.10)

Coefficients in this equations have been defined as follows:

∂ψ0(T,X)
∂T

∣∣∣∣
T=T0

≡ −η0(T0,X),
∂2ψ0(T,X)

∂T2

∣∣∣∣∣
T=T0

≡ − 1
T0
C(T0,X),

γkl(T0,X) ≡ Σkl(T0,X) = γlk(T0,X), βkl(T0,X) ≡ − ∂Σkl(T,X)
∂T

∣∣∣∣
T=T0

= βlk(T0,X),

Λsn(T0,X) ≡ Λns(T0,X), μsn(T0,X) ≡ − ∂λsn(T,X)
∂T

∣∣∣∣
T=T0

= μns(T0,X),

Ωyn(T0,X) ≡ Ωny(T0,X), πyn(T0,X) ≡ − ∂Ωyn(T,X)
∂T

∣∣∣∣∣
T=T0

= πny(T0,X).

(5.11)
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In these expressions, ψ0(T0,X), η0(T0,X), and C(T0,X) are scalar; γkl(T0,X), βkl(T0,X),
Λsn(T0,X), μsn(T0,X), Ωyn(T0,X), πyn(T0,X), Σklmn(T0,X), ζklsn(T0,X), and κklyn(T0,X) are
tensorial material constants, and these coefficients depend on the initial temperature T0 of
the medium and medium particles in heterogeneous materials. In homogenous materials,
the dependence on X is eliminated. In order to simplify notation, we will not indicate the
arguments (T0,X) of such coefficients. Substituting the expressions (5.11) and (5.10) in (5.8)
gives us the following expression:

Σ
(∈kl, as, zy, T0 + T,X) = ρ0ψ0 − ρ0η0T − ρ0c

2T0
T2 + γkl∈kl − βklT∈kl + Λsnasan

− μsnTasan + Ωynzyzn − πynTzyzn + 1
2
Σklmn∈kl∈mn

+ ζklsn∈klasan + κklyn∈klzyzn + · · · .

(5.12)

If derivative in (5.6) is taken from (5.12) and used in substitution, the following expression is
obtained:

tpr = Γaapar + Γzzpzr + (1 − uk,k)
(−βprT + Σprmn∈mn + ζprsnasan + κprynzyzn

)
. (5.13)

Due to the Σprmn = Σprnm symmetry property of the coefficient Σprmn in this expression, the
constitutive equation given by expression (5.13) can be converted into the following form in
terms of linear constituents of the displacement gradient:

tpr = Γaapar + Γzzpzr − βprT + Σprmnum,n + ζprsnasan + κprynzyzn

− ζprsnasanuk,k − κprynzyznuk,k.
(5.14)

In a composite material reinforced by two arbitrary independent and inextensible fiber
families, the medium is assumed to be anisotropic, compressible, homogeneous, dependent
on temperature gradient and showing linear elastic behavior. Equation (5.14) is the linear
constitutive equation of stress. First and second terms on the right part of (5.14) are caused
by the inextensibility of the fibers. Γa and Γz-fiber stretch, both are determined through field
equations and boundary conditions. These two terms are reaction stresses and cannot be
expressed by any constitutive equation. The third term expresses the temperature effect, and
the fourth term expresses the contribution of the elastic deformation to the stress. Regarding
the fifth and the sixth term, two interpretations are possible. The first one states that if the
medium is not loaded in any way (T = constant, EKL = 0), it will not switch to stress and
therefore physically it should be ζprsn = 0 and κpryn = 0, because being loaded with fibers
is not sufficient for a medium to automatically get stressed. Another interpretation can be as
follows. No parameters have been used related with cross-section thickness of fibers neither
in this study nor in other studies examining macroscopic behavior of fiber-reinforced media.
In other words, distribution of fibers is present in the medium only as a topologic object that
just causes anisotropy, which means it is completely geometric. In this regard, there is no
constraint that would prevent us from reinforcing fiber on the molecular scale. Therefore, if
a distribution can be practically placed into the medium in the form of a molecular chain, it
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is possible to suggest that this will alter the present ionic distribution and stress the medium
with no other effect. In this case, coefficients ζprsn and κpryn in fifth and sixth terms will be
different from zero and will thus gain a physical meaning. These terms can be interpreted
as internal stress contribution stimulated by dislocation. The seventh and eighth terms
show the stress formed by interaction of the deformation field with contributions of fiber
fields.

If it is assumed that the medium is without fibers, expression (5.14)will be reduced to
retain the third and fourth terms indicating the contribution to the stress of the temperature
and strain tensor. Accordingly, in this study, terms of (5.14) have been obtained under the
mentioned assumptions and are reduced to generally known classical expressions in special
cases. This supports the opinion proving the reliability of the model we have created. These
new terms are the expressions of constitutive equation on spatial coordinates for stress on a
mathematical model created for fabricated composites, specifically for materials involving a
distribution of two absolutely arbitrary fibers.

6. Determination of Heat Flux Vector Constitutive Equation in
Linear Thermoelasticity

Here, the approach assumed for the stress potential has been assumed for the heat flux vector.
Accordingly, the heat flux vector can be found through a power series expansion in terms of
components of the arguments onwhich it depends, around a reference location selected as the
natural condition. Considering that E can be substituted by Ẽ in the linear theory, arguments
on which the heat flux vector depends, entropy inequality, and constraint caused by this
inequality have been found as follows:

QR = QR

(
Ẽ, A,Z,G, θ,X

)
, (6.1)

Q
(
Ẽ,A,Z,G, θ,X

)
·G ≥ 0, (6.2)

QR = QR

(
Ẽ,A,Z, , 0, θ,X

)
= 0. (6.3)

Expanding the function (6.1) in a Taylor series around Ẽ = 0, A = 0, Z = 0, G = 0 will give us
the following expression:

QR

(
Ẽ,A,Z,G, θ,X

)
= QR(G, θ,X) +

∂QR

(
Ẽ,G, θ,X

)
∂ELM

∣∣∣∣∣∣∣
E=0

ẼLM

+
∂QR(A,G, θ,X)

∂ALAM

∣∣∣∣
A=0

ALAM +
∂QR(Z,G, θ,X)

∂ZLZM

∣∣∣∣
Z=0

ZLZM.

(6.4)
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Here, the definitions as in the following are used

QR(G, θ,X) ≡ QR(θ,X) +
∂QR(G, θ,X)

∂GL

∣∣∣∣
G=0

GL = BR(θ,X) + BRL(θ,X)GL + · · · ,

HRLM(G, θ,X) ≡
∂QR

(
Ẽ,G, θ,X

)
∂ELM

∣∣∣∣∣∣∣
E=0

= BRLM(θ,X) + · · · ,

YRLM(G, θ,X) ≡ ∂QR(A,G, θ,X)
∂ALAM

∣∣∣∣
A=0

= DRLM(θ,X) + · · · ,

NRLM(G, θ,X) ≡ ∂QR(Z,G, θ,X)
∂ZLZM

∣∣∣∣
Z=0

= FRLM(θ,X) + · · · .

(6.5)

Using the above-mentioned definitions in the series expansion given by expression (6.4) can
give us the following expression:

QR

(
Ẽ,A,Z,G, θ,X

)
= BR(θ,X) + BRL(θ,X)GL + BRLM(θ,X)ẼLM

+DRLM(θ,X)ALAM + FRLMZLZM + · · · .
(6.6)

Due to the symmetry of the tensor Ẽ and independence of derivatives in the definitions in
expressions (6.5) from the order, these coefficients bear the symmetry characteristics given
below:

BRLM = BRML, DRLM = DRML, FRLM = FRML. (6.7)

Since G = 0 ⇒ Q = 0 due to the constraint in (6.3), the following expression can be written
down from the relation (6.6):

0 = BR(θ,X) + BRLM(θ,X)ẼLM +DRLM(θ,X)ALAM + FRLM(θ,X)ZLZM + · · · . (6.8)

Since expression (6.8) is zero for any arbitrary deformation measure, coefficients in this
equation should be zero. Therefore,

BR(θ,X) = BRLM(θ, X) = DRLM(θ,X) = FRLM(θ,X) = 0. (6.9)

Accordingly, (6.6) is reduced to the following form:

QR = QR

(
Ẽ,A,Z,G, θ,X

)
= BRL(θ,X)GL = BRL(θ,X)θ, L. (6.10)

Substituting expression (6.10) in the inequality (6.2) gives us the following expression:

BRL(θ,X)θ, Lθ, R ≥ 0 or BRL(θ,X)GLGR ≥ 0. (6.11)
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Therefore, the tensor BRL(θ,X) should satisfy the following condition for any temperature
gradient:

BRLθ,Rθ,L ≥ 0 or B(RL)θ,Rθ,L ≥ 0. (6.12)

The BRL tensor is named conductivity coefficient tensor. Inequality (6.12) tells us that the
symmetric part of this tensor is positive definite. For the linear theory, the coefficient BRL is
expressed as follows in similarity to the coefficient ΣPR:

BRL(θ,X) = BRL(T0 + T,X) = BRL(T0,X) +
∂BRL(T,X)

∂T

∣∣∣∣
0
T + · · · . (6.13)

Moreover, the coefficient θ,L can be written down as follows:

θ,L = (T0 + T),L = T,L. (6.14)

Substituting expression (6.14) in (6.10) and omitting the nonlinear term (T)(T,L), the heat flux
vector is written down as follows:

QR = BRL(T0,X)T,L. (6.15)

The expression of the spatial form of heat flux vector for compressible media can be written
down as indicated below:

qr = (1 − uk,k)QRxr,R. (6.16)

If (6.15) is substituted into expression (6.16), using expressions (5.5) and omitting the
nonlinear term (uk,kT,l), the spatial form of the heat flux vector follows as

qr = Brl(T0,X)T,l. (6.17)

The spatial tensor Brl of the material in (6.17) has the same symmetry characteristics as the
tensor BRL and is defined as follows:

Brl ≡ λrRλlLBRL. (6.18)

Equation (6.17) is the Fourier heat transfer law, which defines linear heat transfer, and it can
be written down as follows in the vectorial form:

q = B∇T. (6.19)
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7. Determination of Field Equations

Before proceeding to obtain the field equations, let us discuss the meaning of the tensor βpr
in (5.14). Firstly, let us define the tensor Σ−1

prmn, which is the reversed tensor Σprmn and has the
same symmetry properties as this tensor, as follows:

ΣprmnΣ−1
mnkl ≡

1
2
(
δpkδrl + δplδrk

)
, Σ−1

prmn = Σ−1
rpmn = Σ−1

mnpr = Σ−1
prnm. (7.1)

The tensor αpr comprised of thermal expansion coefficients that can be easily measured
physically can be defined as follows:

αpr ≡ Σ−1
prmnβmn = αrp. (7.2)

To find the reverse of expression (7.2), let us multiply both sides of the equation by the tensor
Σklpr . Then, using a suitable index replacement, the following can be written down:

βpr = Σprmnαmn. (7.3)

Substituting expression (7.3) in (5.14) will give us the following:

tpr = Γaapar + Γzzpzr + ζprsn(asan − uk,kasan) + κpryn
(
zyzn − uk,kzyzn

)
+ Σprmn(um,n − αmnT).

(7.4)

The following expression can be written down in regard to a linear theory:

ρv̇k ∼= ρ0(1 − uk,k)∂vk
∂t

∼= ρ0 ∂
∂t

∂uk
∂t

∼= ρ0 ∂
2uk
∂t2

. (7.5)

In a linear theory, the Cauchy equations of motion can be written as follows substituting the
expressions (7.5) and (5.5) in (3.2):

tkl,l + ρ0(1 − ul,l)fk = ρ0
∂2uk
∂t2

. (7.6)

Considering that the medium is homogenous and omitting the term (ρ0ul,lfk), let us calculate
the divergence of the stress given by (7.4) and substitute it in (7.6) to obtain the following
field equation under the above-mentioned assumptions:

ρ0
∂2up

∂t2
= Σprmn(um,nr − αmnT,r) + ρ0fp + (Γa), rapar + Γa

(
ap,rar + apar,r

)

+ (Γz),rzpzr + Γz
(
zp,rzr + zpzr,r

)
+ ζprsn(as,ran + asan,r)

− ζprsn(as,ran + asan,r)uk,k − ζprsnuk,krasan + κpryn
(
zy,rzn + zyzn,r

)
− κpryn

(
zy,rzn + zyzn,r

)
uk,k − κprynuk,krzyzn.

(7.7)
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Expression (7.7) gives us a field equation with the unknowns uk,Γa,Γz. The solution of this
field equation under initial and boundary conditions forms the mathematical structure of a
boundary value problem to consider.

Because θ = T0 + T and ∂T/∂θ = 1, the entropy and the internal energy density given
in expressions (4.15) and (4.22) can be written down as follows:

η = − 1
ρ0

∂Σ
∂T

∂T

∂θ
= − 1

ρ0

∂Σ
∂T

, (7.8)

ε =
1
ρ0

[
Σ − (T0 + T)

∂Σ
∂T

]
. (7.9)

Substituting (7.8) in expression (7.9)will give us the following expression:

ε =
Σ
ρ0

+ (T0 + T)η. (7.10)

Taking the derivative of Σ given by expression (5.12) according to T and substituting it in
(7.8) after related operations will allow us to express entropy in terms of the displacement
gradient component as follows:

η = η0 +
cT

T0
+
βkl
ρ0
uk,l +

μsn
ρ0

asan +
πyn

ρ0
zyzn. (7.11)

Let us now substitute expressions (5.12) and (7.11) in (7.10) and make necessary
arrangements to obtain the internal energy density as follows:

ε = ε0 + c

(
T +

T2

2T0

)
+
T0βkl
ρ0

uk,l +
1

2 ρ0
Σklmnuk,lum,n

+
1
ρ0

[
(Λsn + ζklsnuk,l)asan +

(
Ωyn + κklynuk,l

)
zyzn

]
.

(7.12)

ε0 coefficient in this equation has been defined as ε0 = ψ0 + T0η0, where ε0, ψ0, and
η0 are, respectively, internal energy density, free energy density, and entropy density in
natural condition. Taking a material derivative of expression (7.12) and considering that
ρ = ρ0 (1 − uk,k) give us the following expression:

ρε̇ = ρ0(1 − um,m)ε̇

= ρ0c
(
1 +

T

T0

)
∂T

∂t
+ T0βkl

∂uk,l
∂t

+ Σklmn
∂uk,l
∂t

um,n + ζklsn
∂uk,l
∂t

asan

+ κklyn
∂uk,l
∂t

zyzn − ζklsn
∂uk,l
∂t

um,masan − κklyn
∂uk,l
∂t

um,mzyzn

(7.13)
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The term qr,r is obtained as follows from (6.17):

qr,r = Brl,rTl + B(rl)T,lr = B(rl)T,lr . (7.14)

Let us now substitute the expressions (7.13), (7.14), (7.4), and (5.5) in the equation
conservation of energy given by expression (3.4) and make necessary arrangements to make
the following field equations linear in terms of uk,l and T :

ρ0c
∂T

∂t
+
(
T0βkl − Γaakal − Γzzkzl

)∂uk,l
∂t

= β(kl)T,lk + ρ0(1 − ul,l)h. (7.15)

In a composite material reinforced by two arbitrary independent and inextensible fiber
families, where the medium is assumed to be anisotropic, compressible, homogeneous,
dependent on temperature gradient, and showing linear elastic behavior, (7.15) is a heat
transfer equation.

8. Conclusions

As an approach in this study, the stress potential and heat flux vector functions have been
assumed to be analytic and expanded in Taylor series in terms of their arguments on which
they depend. The type and the number of terms taken in the series expansion have been
determined based on the assumption that mechanical interactions and temperature changes
are linear. On the other hand, since the matrix material has to remain insensitive to directional
changes along fibers, even-numbered exterior products of vector fields representing fiber
distributions have been considered. The reference position of the medium has been selected
at the uniform temperature T0 and stress-free natural condition, from which position the
medium has been assumed to move away by small displacements, and small temperature
changes. Accordingly, the forms in spatial coordinates of the constitutive equations of the
stress and the heat flux vector have been presented by (5.14) and (6.17). The constitutive
equation of the stress expressed by (5.14) in terms of the tensor αpr comprised of thermal
expansion coefficients has been expressed by (7.4). To obtain field equations, constitutive
equation of the stress given by (7.4) has been substituted into the Cauchy equation of motion,
yielding field equation (7.7). Values in the equation of conservation of energy given by
expression (3.4) have been substituted into (3.4), yielding field equation (7.15). Solution of the
field equations along with initial and boundary conditions in conformity with the structure of
the problem to be used in practice will constitute the structure of a boundary value problem
to consider. Unknowns in the field equations (7.7) and (7.15), u(x, t), Γa, and Γz. Γa and Γz,
which are Lagrange coefficients, can be calculated using the field equations and boundary
conditions. After u has been designated, the stress distribution is obtained from (7.4). After
the stress distribution is found as a tensor field, the stress vector at a desired cross-section
can be easily calculated from the expression t(n)r = np tpr . Here, it needs to be considered that
the fiber distributions ak(x, t) and zk(x, t) after deformation for inextensible fibers in terms of
fiber distributions before deformation are ak = xk,KAK(X) and zk = xk,KZK(X).

Besides, considering the equations of motion (7.7), we can see the internal thermo-
mechanical forces affecting the medium. Type of the terms on the right is in the dimension
of force per unit of volume. The first term on the right represents force created by the
elastic deformation, the second term is force created by the temperature gradient, the third
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term is mechanical body force, and the fourth and the sixth terms are similar to molecular
considerations in (5.14). The fifth, seventh, eighth, and eleventh terms are forces caused by
curvature of the fibers. The ninth and twelfth terms are forces caused by interaction of fibers
and their curvature with the deformation field. The tenth and thirteenth terms represent
forces caused by interaction of the deformation field with distributions of fiber fields. In other
words, by drawing a free body diagram of a material element in the medium, it is possible
to see all such force contributions acting on the element. As stated before, our field equations
where we can apply initial and boundary conditions for the aforementioned media are (7.7)
and (7.15). A more detailed discussion of these equations will be contained in future works.
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[5] M. R. Usal, M. Usal, and Ü. Esendemir, “A mathematical model for thermomechanical behavior of
arbitrary fiber reinforced viscoelastic composites - I,” Science and Engineering of Composite Materials,
vol. 13, no. 4, pp. 291–300, 2006.
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İstanbul, Turkey, 1994.

[23] A. J. M. Spencer, Continuum Theory of the Mechanics of Fibre Reinforced Composites, Cism International
center for mechanical sciences, Course and lecturers, A. J. M. Spencer Eds.,, Springer, New York, NY,
USA, 1984.

[24] A. J. M. Spencer, Deformations of Fibre-Reinforced Materials, Clarendon Press, Oxford, UK, 1972.
[25] A. C. Eringen,Mechanics of Continua, Robert E. Krieger Publishing, Hungtington, NY, USA, 1980.
[26] B. Hamamcı, A mathematical model for fiber reinforced thermoelastic materials, M.S. thesis, Süleyman
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